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Abstract

Stochastic variance reduction algorithms have recently become popular for min-
imizing the average of a large, but finite, number of loss functions. We propose
a novel Riemannian extension of the Euclidean stochastic variance reduced gra-
dient algorithm to a compact manifold search space. To this end, we show the
developments on the Grassmann manifold. We present a global convergence anal-
ysis of the proposed algorithm with a decay step-size and a local convergence rate
analysis under a fixed step-size with under some natural assumptions. Numeri-
cal comparisons on low-rank matrix completion show that the proposed algorithm
outperforms the standard Riemannian stochastic gradient descent algorithm.

1 Introduction

In this paper, we focus on the problem minw f(w), where f(w) := 1
N

∑N
n=1 fn(w), w is the model

variable, N is the number of samples, and fn(w) is the loss incurred on n-th sample. The full
gradient descent (GD) algorithm requires evaluations of N derivatives, i.e.,

∑N
n=1 ∇fn(w), per

iteration, which is computationally heavy when N is very large. A popular alternative is to use only
one derivative ∇fn(w) per iteration for n-th sample, which is the basis of the stochastic gradient
descent (SGD) algorithm. However, SGD suffers from a slower convergence rate. To circumvent
this issue, variance reduction techniques have been recently proposed to accelerate the convergence
of SGD [1, 2, 3, 4, 5, 6, 7]. Particularly, the stochastic variance reduced gradient (SVRG) algorithm
is a popular algorithm that enjoys superior convergence properties [1]. For smooth and strongly
convex functions, SVRG has convergence rates similar to those of stochastic dual coordinate ascent
[5] and stochastic average gradient (SAG) algorithms [3]. The works [8, 9, 10, 11] extend the
analysis to particular non-convex unconstrained optimization problems.

In this paper, we deal with problems where the variables have a Riemannian manifold structure.
Specifically, the problem of interest is

min
w∈M

f(w) :=
1

N

N∑
n=1

fn(w), (1)

where M is a Riemannian manifold. Bonnabel [12] proposes a Riemannian stochastic gradient de-
scent algorithm (R-SGD) that extends SGD from the Euclidean space to Riemannian manifolds. The
problem (1) is solved as an unconstrained optimization problem defined over the Riemannian mani-
fold search space. Building upon this work, we propose a novel extension of SVRG in the Euclidean
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space to the Riemannian manifold (R-SVRG). This extension is not trivial and requires particular
consideration in dealing with averaging, addition, and subtraction of multiple gradients at different
points on the manifold M. To this end, this paper specifically focuses on the Grassmann manifold.
Nonetheless, the proposed algorithm and the analysis presented can be generalized to other compact
Riemannian manifolds. The detailed analysis of our proposed algorithm and numerical comparisons
are in our extended technical report [13].

It should be mentioned that the recent work [14], which appeared simultaneously with our technical
report [13], also proposes R-SVRG on manifolds. The differences of our work with [14] are two fold.
First, our convergence analysis deals with global convergence and local rate of convergence analysis
separately. This is similar to the typical analysis for batch algorithms on Riemannian manifolds [15].
The second difference is that our assumptions for the local rate of convergence analysis are imposed
only in a local neighborhood around a minimum, which are milder and more natural than those in
[14] that assumes Lipschitz smoothness in the entire space. Consequently, our analysis should be
applicable to wider kinds of manifolds than [14].

Our proposed R-SVRG is implemented in the Matlab toolbox Manopt [16]. The implementations
are available at https://bamdevmishra.com/codes/rsvrg/.

2 Riemannian stochastic variance reduced gradient on Grassmann manifold

After a brief explanation of the variance reduced gradient variants in the Euclidean space, the Rie-
mannian stochastic variance reduced gradient on the Grassmann manifold is proposed.

SVRG in the Euclidean space. The SGD update is wt+1 = wt − ηvt, where vt is a randomly
selected vector that is called the stochastic gradient and η is the step-size. While SGD assumes
∇fn(wt), an unbiased estimator of the full gradient, i.e., En[∇fn(wt)] = ∇f(wt), as a stochastic
gradient, many recent variants of the variance reduced gradient of SGD attempt to reduce its variance
E[∥vt−∇f(wt)∥2] as t increases to achieve better convergence [1, 2, 3, 4, 5, 6, 7]. SVRG introduces
an explicit variance reduction strategy with double loops where s-th outer loop, called s-th epoch,
has ms inner iterations. SVRG first keeps w̃ = ws−1

ms−1
or w̃ = ws−1

t for randomly chosen t ∈
{1, . . . ,ms−1} at the end of (s−1)-th epoch, and also sets the initial value of s-th epoch as ws

0 = w̃.
It then computes a full gradient ∇f(w̃). Subsequently, denoting the selected random index i ∈
{1, . . . , N} by ist , SVRG randomly picks ist -th sample for each t ≥ 1 at s ≥ 1 and computes the
modified stochastic gradient vst as vst = ∇fist (w

s
t−1)−∇fist (w̃

s−1) +∇f(w̃s−1).

The Grassmann manifold. Gr(r, d) is the set of r-dimensional linear subspaces in Rd. An element
on the Grassmann manifold is represented by a d × r matrix U with orthonormal columns, i.e.,
UT U = I. The Grassmann manifold has the structure of a Riemannian manifold [15, Section 3.4].
Notions such as the Riemannian gradient (first order derivative of a cost function), geodesic (shortest
curve), exponential mapping (moving in a straight line), and logarithm mapping (difference between
elements) have closed-form expressions [15].

R-SVRG on Grassmann. We denote the Riemannian stochastic gradient for ist -th sample as
gradfist (Ũ

s−1
) and the modified Riemannian stochastic gradient as ξst instead of vst to show dif-

ferences with the Euclidean case. R-SVRG keeps a Ũ
s−1 ∈ Gr(r, d) after ms−1 stochastic update

steps of (s−1)-th epoch and computes the full Riemannian gradient gradf(Ũ
s−1

) only for this
stored Ũ

s−1
. The algorithm also computes the gradfist (Ũ

s−1
) that corresponds to this ist -th sample.

Then, picking ist -th sample for each t-th inner iteration of s-th epoch at Us
t−1, we calculate ξst in the

same way as vst in the Euclidean case, i.e., by modifying gradfist (U
s
t−1) using both gradf(Ũ

s−1
)

and gradfist (Ũ
s−1

). Translating the right-hand side of vst to the manifold M involves the sum of

gradfist (U
s
t−1), gradfist (Ũ

s−1
), and gradf(Ũ

s−1
), which belong to two tangent spaces TUs

t−1
M

and TŨs−1M. This requires particular attention on a manifold and parallel translation provides an
adequate and flexible solution to handle multiple elements on two separated tangent spaces. More
concretely, gradfist (Ũ

s−1
) and gradf(Ũ

s−1
) are parallel-transported to TUs

t−1
M at the current point

Us
t−1. Consequently, ξst at t-th inner iteration of s-th epoch is set as

ξst = gradfist (U
s
t−1)− P Us

t−1←Ũs−1

(gradfist (Ũ
s−1

)) + P Us
t−1←Ũs−1

(gradf(Ũ
s−1

)), (2)
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Algorithm 1 R-SVRG with a fixed step-size.
Require: Update frequency ms > 0 and step-size η > 0.

1: Initialize Ũ
0
.

2: for s = 1, 2, . . . do
3: Calculate the Riemannian full gradient gradf(Ũ

s−1
).

4: Store Us
0 = Ũ

s−1
.

5: for t = 1, 2, . . . ,ms do
6: Choose ist ∈ {1, . . . , N} uniformly at random.
7: Calculate the tangent vector ζ from Ũ

s−1
to Us

t−1 by logarithm mapping.
8: Calculate the modified Riemannian stochastic gradient ξst as

ξst = gradfist (U
s
t−1)− PUs

t−1←Ũs−1
(
gradfist (Ũ

s−1
)− gradf(Ũ

s−1
)
)

.

9: Update Us
t from Us

t−1 as Us
t = ExpUs

t−1
(−ηξst ) with the exponential mapping.

10: end for
11: option I: Ũ

s
= gms(Us

1, . . . ,Us
ms

) (or Ũ
s
= Us

t for randomly chosen t ∈ {1, . . . ,ms}).
12: option II: Ũ

s
= Us

ms
.

13: end for

where P Us
t−1←Ũs−1

(·) represents a parallel-translation operator from Ũ
s−1

to Us
t−1 on the Grass-

mann manifold. Finally, the update rule of R-SVRG is Us
t = ExpUs

t−1
(−ηξst ).

The overall algorithm with a fixed step-size is summarized in Algorithm 1. Additionally, we propose
a simple modification of R-SVRG, denoted as R-SVRG+, that uses standard SGD updating only for
the first epoch to avoid a bigger overhead at the beginning of the process [17].

For our local convergence rate analysis in Theorem 3.2 (shown later), we use, as option I, the
mean value of Ũ

s
= gms(U

s
1, . . .Us

ms
) as Ũ

s
, where gn(U1, . . . ,Un) is the Karcher mean on the

Grassmann manifold. Another option is to simply choose Ũ
s
= Us

t for t ∈ {1, . . . ,ms} at random.

3 Main result: convergence analysis

The global convergence analysis (Theorem 3.1) is to guarantee convergence globally to a critical
point starting from any initialization point, which is common in a non-convex setting. The local
convergence rate analysis (Theorem 3.2), on the other hand, yields a rate in neighborhood of a local
minimum. This analysis setting is also very common and standard in manifold optimization. The
essential assumptions about Lipschitz smoothness and Hessian are imposed only in this neighbor-
hood. We show that a local linear-convergence rate is achieved under fixed step-size, which is the
same as standard SVRG in the Euclidean space for non-convex problems.

We introduce a global convergence result under a decay step-size and local convergence rate analysis
under a fixed step-size setup. Here, we assume that the functions fn are β-Lipschitz continuously
differentiable in a local neighborhood in the local convergence analysis.
Theorem 3.1. Consider Algorithm 1 on a connected Riemannian manifold M with injectiv-
ity radius uniformly bounded from below by I > 0. Assume that the sequence of step-sizes
(ηst )ms≥t≥1,s≥1 satisfies the condition that

∑
(ηst )

2 < ∞ and
∑

ηst = +∞. Suppose there ex-
ists a compact set K such that ws

t ∈ K for all t ≥ 0. We also suppose that the gradient is bounded
on K, i.e., there exists A > 0 such that for all ws

t ∈ K and ist ∈ Z we have ∥gradf(ws
t )∥ ≤ A/3.

Then f(ws
t ) converges a.s. and gradf(ws

t ) → 0 a.s.
Theorem 3.2. Let M be the Grassmann manifold and U∗ ∈ M be a non-degenerate local mini-
mizer of f (i.e., gradf(U∗) = 0 and the Hessian Hessf(U∗) of f at U∗ is positive definite). Assume
that there exists a convex neighborhood U of U∗ ∈ M and a positive real number σ such that the
smallest eigenvalue of the Hessian of f at each U ∈ U is not less than σ. When each gradfn is β-
Lipschitz continuously differentiable and η > 0 is sufficiently small such that 0 < η(σ−14ηβ2) < 1,
it then follows that for any sequence {Ũ

s} generated by the algorithm converging to U∗, there exists
K > 0 such that for all s > K,

E[(dist(Ũ
s
,U∗))2] ≤ 4(1 + 8mη2β2)

ηm(σ − 14ηβ2)
E[(dist(Ũ

s−1
,U∗))2].
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(a) Test loss (synthetic).
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(b) Test loss (Jester).
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Figure 1: Performance evaluations on low-rank matrix completion problem.

The local convergence analysis above can be extended to other Riemannian manifolds. In fact, if
the curvature is lower bounded and the diameter of domain is upper bounded, the coefficient in
Theorem 3.2 is modified. This slight modification yields a quite similar result for general manifolds.
In addition, we can also provide a linear convergence rate under the decaying step-sizes although it is
worse than the fixed step-size case. This means that we can guarantee global convergence and local
linear convergence even if we use decaying step-sizes from beginning to end. Therefore, we could
analyze a new step-size switching algorithm between decaying and fixed step-sizes. We empirically
evaluate this as hybrid step-sizes in Section 4, but its theoretical analysis is a future research work.

4 Numerical comparisons

The matrix completion problem aims at completing an incomplete matrix X of size d × N from
a small number of entries by assuming a low-rank model for the matrix. If Ω is the set of the
known indices in X, then the rank-r matrix completion problem amounts to minimizing ∥PΩ(UA)−
PΩ(X)∥2F , where U ∈ Rd×r, A ∈ Rr×N , and where the operator PΩ(Xij) = Xij if (i, j) ∈ Ω and
PΩ(Xij) = 0 otherwise. Partitioning X = [x1, . . . ,xn], the problem is equivalent to minimizing∑N

n=1 ∥PΩn(Uan) − PΩn(xn)∥22/N , where U ∈ Rd×r, an ∈ Rr, and where xn ∈ Rd and the
operator PΩn the sampling operator for the n-th column. Given U, an admits a closed-form solution.
Finally, the problem only depends on the column space of U, and hence, is on Gr(r, d) [18].

We compare R-SVRG(+) with R-SGD, R-SD (Riemannian steepest descent algorithm), and Grouse
[18]. We consider both fixed step-size and decay step-size sequence ηk = η0(1 + η0λ⌊k/ms⌋)−1
where k is the number of iterations used and η0 is set through cross validation. We also consider a
hybrid step-size sequence based on our analyses that follows the decay step-size till sTH = 5 epoch,
and subsequently switches to a fixed step-size. ms = 5N is also fixed by following [1], and batch-
size is fixed to 10. In all the figures, the x-axis is the computational cost measured by the number
of gradient computations divided by N . Algorithms are initialized randomly and are stopped when
either the stochastic gradient norm is below 10−8 or the number of iterations exceeds 100. We
first consider a synthetic dataset with N = 1000, d = 500, and r = 5. Algorithms are initialized
randomly as suggested in [18]. This instance considers the loss on a test set Γ, which is different
from the training set Ω. The over-sampling ratio (OS) is 5, where the OS determines the number
of entries that are known. Figure 1(a) shows the superior performance of our proposed algorithms
on Γ. Next, we consider the Jester dataset 1 [19] consisting of ratings of 100 jokes by 24983 users
for r = 5. Figure 1(b) shows the superior performance of R-SVRG(+) on the test set. The final
test compares the algorithms on the MovieLens-1M dataset with a million ratings of 6040 users and
3952 movies. Figure 1(c) shows the results on the test set for all algorithms except Grouse, which
faces issues with convergence. Overall, R-SVRG(+) shows much faster convergence than others.

5 Conclusion

We have proposed a Riemannian stochastic variance reduced gradient algorithm (R-SVRG) for prob-
lems on the Grassmann manifold. We proved that R-SVRG generates globally convergent sequences
with a decay step-size condition and is locally linearly convergent with a fixed step-size under some
natural assumptions. Numerical comparisons on the matrix completion problem suggested the su-
perior performance of R-SVRG on various different benchmarks.
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