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Abstract

Stochastic Gradient Descent (SGD) is an important algorithm in machine learn-
ing. With constant learning rates, it is a stochastic process that reaches a stationary
distribution. We revisit an analysis of SGD in terms of stochastic differential equa-
tions in the limit of small constant gradient steps. This limit, which we feel is not
appreciated in the machine learning community, allows us to approximate SGD
in terms of a multivariate Ornstein-Uhlenbeck process, and hence to compute sta-
tionary distributions in closed form. This formalism has interesting new impli-
cations for machine learning. We consider the case where the objective has the
interpretation of a log-posterior. Traditional theory suggests choosing the learning
rate such that the stationary distribution approximates a point mass at the opti-
mum, but this can lead to wasted effort and overfitting. When the goal is instead
to approximate the posterior as well as possible, we can derive criteria for optimal
minibatch sizes, learning rates, and preconditioning matrices.

1 Introduction

Stochastic gradient descent (SGD) is one of the most widely used optimization algorithms in ma-
chine learning [1]. Classical SGD involves a decreasing learning rate, which guarantees conver-
gence to an optimum [2]. Recently, however, there has been growing interest in constant learning
rates [3, 4], even though the resulting algorithm does not converge in the classical sense. Rather,
the iterates of SGD with constant learning rates converge in distribution to a stationary density over
parameter space. This stationary distribution has its maximum at the optimum of the objective func-
tion, but has a non-zero variance. If we cannot reliably estimate our parameters beyond the variance
of the stationary distribution, then a sample from this distribution may be adequate [5].

The properties of SGD have traditionally been analyzed using quasi-martingales [6, 7]. In this
paper, we review an alternative perspective on constant-rate SGD and an alternative way to analyze
its properties [8]. We first derive the multivariate Ornstein-Uhlenbeck process [9], a continuous-
time stochastic process that approximates SGD in the vicinity of a local optimum. This allows us to
explicitly calculate stationary distributions. These distributions depend on various parameters of the
optimization problem—the learning rate, the batch size, and optionally preconditioning matrices.
We reinterpret the stationary distribution as an approximation of a posterior distribution [10], where
the parameters play the role of variational parameters. We can tune these parameters to optimally
fit the sampling distribution of the iterates to the posterior. This yields new criteria for setting the
parameters of SGD. As a result, we derive preconditioners that relate to AdaGrad [11] and stochastic
gradient Fisher scoring [12], as well as early stopping criteria. We also show that when using the
formalism of stochastic differential equations, one can give a fast derivation of a result by Polyak [13]
that iterate averaging is unaffected by preconditioning the stochastic gradient.

The approach can be also applied to variations of the SGD algorithm, giving new heuristics for
analyzing asymptotic behavior.

1



Related Work. There is abundant work on the convergence behavior of stochastic gradient de-
scent [1, 7]. Many papers discuss constant step-size SGD. [4, 14] discuss convergence rate of
averaged gradients with constant step size, while [3] analyze sampling distributions using quasi-
martingale techniques. In our paper, we also further investigate results by [13]. Ways of analyzing
SGD in terms of stochastic differential equations and discrete Ornstein-Uhlenbeck processes can be
also found in [8, 15] and are here reviewed and extended. Our theoretical analysis is also related
to Bayesian statistics, in particular Stochastic Gradient Langevin Dynamics (SGLD) by [16, 17],
where posterior sampling is achieved by adding artificial noise to the stochastic gradient. See
also [12, 18, 19] for similar stochastic gradient-based MCMC algorithms. These works focus on
(asymptotically) exact sampling from a Bayesian posterior by averaging away SGD sampling noise.
In contrast, our goal is to explore the properties of the sampling noise and its influence on the station-
ary distribution of SGD. [10] also interpret SGD as a non-parametric variational inference scheme,
but with different goals and in a very different formalism.

2 The Continuous-Time Approximation Revisited

Problem setup and assumptions. The asymptotic properties of stochastic gradient descent can
be analyzed as a continuous-time stochastic process [8]. This formalism is not appreciated in the
machine learning community and shall here be revisited and applied for constant learning rates.
We consider objective functions of the form L(θ) =

∑N
n=1`n(θ). Let S(t) be a set of S random

indices drawn uniformly at random from the set {1, · · · ,N}. S indexes the functions `n(θ) that are
subsampled in each iteration. S is the minibatch size. We can form a stochastic estimate of the
objective and a stochastic gradient,

L̂(θ) = N
S

∑
n∈S `n(θ), ĝS (θ) = ∇θL̂(θ). (1)

In expectation the stochastic gradient is the full gradient, g(θ) = E[ĝS (θ)]. This stochastic gradient
is then used for the SGD update, involving a constant and small learning rate ε:

θ(t + 1) = θ(t) − ε ĝS (θ(t)). (2)

Equations 1 and 2 are the real (discrete time) process that SGD follows. We will approximate it with
a continuous time process and then analyze it. We first state some assumptions.

A1 Assume that the gradient noise ĝS (θ) − g(θ) is Gaussian distributed.
A2 Assume that the iterates θ(t) are constrained to a small enough region in parameter space

that the sampling noise covariance of the stochastic gradients is constant.
A3 Assume that the step size is small enough that we can approximate the discrete-time

Markov chain defined by the SGD algorithm with a continuous-time Markov process.

Below, we will use these assumptions to derive a class of stochastic processes that approximate
stochastic gradient descent. We will also discuss the plausibility of these assumptions.

Mapping to stochastic differential equations. Starting with Eq. 2, we first approximate the sam-
pling noise. Assumption [A1] is based on idea that the stochastic gradient is an average of S in-
dependent random contributions. If S is sufficiently large, the central limit theorem should apply,
making ĝS Gaussian with variance ∝ 1/S . Hence, we can write the stochastic gradient as

ĝS (θ) ≈ g(θ) + ξ̂S (θ), ξ̂S (θ) ∼ N(0,C(θ)/S ). (3)

This involves the stochastic gradient noise covariance C(θ)/S ≡ E
[
(ĝS (θ) − g(θ))(ĝS (θ) − g(θ))>

]
.

The covariance matrix C, that we assumed to be independent of θ in the region of interest [A2], is
positive definite and symmetric, and has a square root decomposition C = BB>. We introduced a
rescaled noise covariance matrix Bε/S =

√
ε/S B. We can now write the stochastic process as

θ(t + 1) − θ(t) = −ε g(θ(t)) +
√
ε Bε/S W(t), W(t) ∼ N(0, I). (4)

We have re-written Eq. 2 in such a way that it assumes the form of a time discretization of a
continuous-time stochastic differential equation. Based on assumption [A3] we can derive

dθ(t) = −∇θL(θ)dt + Bε/S dW(t) (5)
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Figure 1: Left: Posterior distribution f (θ) ∝ exp{−L(θ)} (blue) and sampling distribution q(θ) of
SGD (yellow) for a linear regression model as discussed in Section 3.3. The plot shows that the
sampling distribution is approximately Gaussian and approximately centered around the maximum
of the posterior. Right: Same experiments in 10 dimensions, where we checked the relation between
the covariance of the sampling distribution and its prediction in terms of the Ornstein-Uhlenbeck
process (Eq. 7). The good agreement between the middle and right plots supports our modeling
assumptions.

as an approximation to SGD. This can be considered a generalized Langevin equation, and therefore
we renamed g(θ) back into ∇θL(θ). But note the usual Langevin equation assumes isotropic noise.

Above, we have performed the conventional substitution rules when discretizing a continuous-time
stochastic process θ(t+1)−θ(t)→ dθ(t), ε → dt and

√
ε W → dW, see e.g. [20]. The last substitution

is required to respect the Wiener noise relation E[dW(t)dW(t′)>] = I δ(t − t′)dt, which for finite ε
corresponds to E[

√
εW(t)

√
εW(t′)>] = I δ(t − t′)ε. This equation is still not tractable because the

noise is non-isotropic. We need a further assumption:

A4 Assume that the stationary distribution of the iterates is constrained to a region within
which the objective is well approximated by a quadratic function.

Multivariate Ornstein-Uhlenbeck process. Assumptions [A1-A4] induce a multivariate
Ornstein-Uhlenbeck process [9], which is our core modeling framework. Without loss of gener-
ality, assume the minimum is at θ = 0, so L(θ) = 1

2θ
>Aθ. This yields

dθ(t) = −Aθ(t)dt + Bε/S dW(t) (6)

This process has an analytic solution in terms of the stochastic integral [20], θ(t) = exp(−At)θ(0) +∫ t
0 exp[−A(t − t′)]Bε/S dW(t′). It has a Gaussian stationary distribution. To calculate the Gaussian

covariance Σ = E[θ(t)θ(t)] we use a result from [20] (also contained in the appendix of [15]):

q(θ) ∝ exp
{
− 1

2θ
>Σ−1θ

}
, ΣA> + AΣ = ε

S BB>. (7)

This distribution depends on the parameters of SGD and on properties of the objective and noise
covariance. We can thus use it to analyze the behavior of SGD under our assumptions.

3 Implications for Machine Learning

3.1 Stochastic gradient as approximate inference

Let us assume that our optimization problem arises from fitting a joint distribution p(θ, x), involving
data x and parameters θ. Hence L(θ) ≡ − log p(θ, x). This is the case for many models, including
neural networks. According to assumption [A4], the corresponding posterior f (θ) ≡ p(θ|x) is

f (θ) ∝ exp
{
− 1

2θ
>Aθ

}
. (8)

The classical goal of SGD, namely to minimize the objective, would lead to a point estimate θ∗ = 0
of the posterior. To avoid overfitting, an alternative goal could be to instead tune the parameters of
SGD such that the stationary distribution approximates the posterior:

{ε∗, S ∗,H∗} = min
ε,S ,H

KL(q(θ)|| f (θ)). (9)
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This involves the learning rate ε, minibatch size S , and preconditioning matrix H. We first consider
the basic SGD update (without preconditioning). Since f (θ) and q(θ) both are Gaussian with means
0, we can compute their KL divergence analytically:

KL(q|| f ) = Eq(θ)[log f (θ)] − Eq(θ)[log q(θ)] = 1
2
(
Tr(AΣ) − log |A| − log |Σ| − d

)
.

Above, | · | denotes the determinant. We can use Eq. 7 to simplify this expression which leads to
KL(q|| f ) = ε

2S Tr(BB>) − log(ε/S ) + const. Minimizing KL divergence over ε/S , we find ε∗ =

2S/Tr(BB>) for the optimal learning rate, which tells us that the constant learning rate should be
inversely proportional to the sampling noise. This results gets more interesting if we precondition the
stochastic gradient with a diagonal matrix H as a substitute for a scalar learning rate. Up to constants,
the modified KL divergence is KL(q|| f ) = ε

2S Tr(BB>H) + 1
2 log

(
ε
S |HΣ−1H|

)
= ε

2S Tr(BB>H) +

Tr log(H) + 1
2 log ε

S − log |Σ|. If we constrain ourselves to diagonal preconditioners, we find

H∗k ∝ 1
2(BB>)kk

(10)

to be optimal. Hence, the optimal diagonal preconditioner is the inverse of the diagonal part of the
noise matrix. This result relates to AdaGrad [11], which also adjusts the preconditioner to diagonal
entries of the noise covariance, but note there are differences, e.g. our result does not suggest taking
square roots. It also relates closely to stochastic gradient Fisher scoring [12], but does not require
dense preconditioners, and applies to misspecified models.

3.2 Optimality of iterate averaging

One of the most important strategies for improving convergence rates in SGD is iterate averag-
ing [13]. If our goal is to estimate the minimum of L using a sequence of stochastic gradients, then
a natural approach is to compute an average of the iterates. After T steps of size ε and assuming
[A3], this average is

µ̂ ≡ 1
T
∑T

t=1 θ(tε) ≈
1

T ε

∫ T ε
0 θ(t)dt ≡ µ̂′ (11)

The average µ̂ and its approximation µ̂′ are random variables whose expected value is the minimum
of the objective. The accuracy of this estimator µ̂′ after a fixed amount of iterations T is determined
by its covariance matrix. We can calculate this covariance using stochastic calculus and find

E
[
µ̂′µ̂′>

]
≈ 1

TS A−1BB>(A−1)>. (12)

This covariance depends only on the number of iterations T times the minibatch size S , not on
the step size ε. Since TS is the total number of examples that are processed, this means that this
iterate averaging scheme’s efficiency does not depend on either the minibatch size or the step size,
proven first in [13]. We can make a slightly stronger statement. If we precondition the stochastic
gradients with a positive-definite matrix H, it turns out that the covariance of the estimator remains
unchanged. The resulting process dθ = −HAθ(t)dt + HBε/S dW(t) is again of Ornstein-Uhlenbeck
type. When replacing A′ ≡ HA and B′ ≡ HB and using Eq. 11, we see that H cancels out and the
resulting distribution is the same. The stochastic formalism offers an explanation. Preconditioning
can make the stationary distribution of SGD more isotropic. However, it also enhances the mixing
times in the directions that are problematic. These effects exactly cancel each other.

3.3 Experiments

We generated N = 10000 data points from a linear regression model in D = 10 dimensions. We then
ran SGD for 50, 000 iterations on a linear regression model with a quadratic penalty of 1

20000 ||θ||
2, a

constant learning rate of ε = 0.01, and a minibatch size of S = 500.

Fig. 1 (left) shows a two-dimensional projection of the sampling distribution (yellow) and samples
from the model posterior (blue). The plot reveals that the sampling distribution is indeed approx-
imately Gaussian and centered around the maximum of the posterior. To check our theoretical
assumptions, we compared the covariance of the sampling distribution against its predicted value
based on the Ornstein-Uhlenbeck process (Eq. 7). This is also shown in Fig. 1 (right). The two
plots that compare the entries of the covariance matrices on a color scale show that the prediction is
satisfied to a very good extent. This suggests that the assumptions of modeling SGD as an Ornstein-
Uhlenbeck process are indeed satisfied for small learning rates. We saw similar behavior for logistic
regression and linear regression on real-world data (not shown here).
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[16] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
681–688, 2011.

[17] Issei Sato and Hiroshi Nakagawa. Approximation analysis of stochastic gradient langevin
dynamics by using fokker-planck equation and ito process. In Proceedings of the 31st Inter-
national Conference on Machine Learning (ICML-14), pages 982–990, 2014.

[18] Tianqi Chen, Emily B Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo.
arXiv preprint arXiv:1402.4102, 2014.

[19] Yi-An Ma, Tianqi Chen, and Emily B Fox. A complete recipe for stochastic gradient mcmc.
arXiv preprint arXiv:1506.04696, 2015.

[20] Crispin W Gardiner et al. Handbook of stochastic methods, volume 4. Springer Berlin, 1985.

5


	Introduction
	The Continuous-Time Approximation Revisited
	Implications for Machine Learning
	Stochastic gradient as approximate inference
	Optimality of iterate averaging
	Experiments


