
A Multilevel Acceleration for l1-regularized Logistic
Regression

Javier S. Turek
Intel Labs

2111 NE 25th Ave.
Hillsboro, OR 97124

javier.turek@intel.com

Eran Treister
Earth and Ocean Sciences

University of British Columbia
Vancouver, BC, V6T 1Z2, Canada
eran@cs.technion.ac.il

Abstract

Logistic Regression is a well studied classification technique. In some cases, its
l1-regularized version is used to reduce overfitting to the data and obtain a sparse
model. Because this problem is non-differentiable, it requires specialized meth-
ods to solve it, and indeed several iterative methods are available in the literature.
However, these methods typically introduce many non-zero variables in the model
during their first iterations, requiring an extensive number of operations. We de-
velop a multilevel approach to prevent this behavior and accelerate the existing
methods. For that we exploit the sparseness of the model and define a hierarchy of
reduced problems, which are treated in turn to accelerate the optimization process.
Numerical results show an improvement of up to five times in the performance of
the accelerated methods compared to the original ones.

1 Introduction

Logistic Regression is a popular classification method in the machine learning literature. Recently, a
l1-regularized version of the Logistic Regression problem was introduced to obtain a sparse model,
and was shown to be less prone to overfitting [1]. Given a set of samples {xi}li=1 ∈ Rn and their
respective labels {yi}li=1 ∈ {−1,+1}, the l1-regularized Logistic Regression classifier is obtained
by solving the following optimization problem1:

min
w∈Rn

L(w) + ‖w‖1 = min
w∈Rn

C

l∑
i=1

log
(
1 + e−yix

T
i w
)
+ ‖w‖1, (1)

where C is a regularization parameter that balances between the sparsity of the model and the loss
function L(w). Typically, the l1-norm regularization term ‖w‖1 prevents model overfitting and
leads to a sparse solution w. However, this term is not differentiable and the optimization problem
in Equation (1) is non-smooth and convex, and is often treated by specialized iterative methods.
Many such methods are available in the literature – some of these are found in [2, 3, 4, 5, 6, 7] and
references therein.

In this work, we accelerate the existing iterative solvers for (1) by applying a multilevel approach.
This approach was successfully implemented in other domains for accelerating sparse optimization
problems such as LASSO solvers [8] and Sparse Inverse Covariance estimation methods [9]. To
accelerate the convergence of existing methods, this approach defines a hierarchy of smaller versions
of the problem (1). Each of these subproblems is defined by restricting the original problem to

1A bias term b can be added to the loss function. Therefore, xT
i w is replaced with xT

i w + b in the loss
function and the optimization is held over w and b.

1

a subset of the variables, limiting the solution w to a lower dimensional subspace. The subset
of variables is chosen such that the ostensibly irrelevant variables are assigned with a zero value
and essentially ignored. Starting from the smallest subproblem, the approach applies iterations of
existing methods and transfer the solution to the next subproblem in the hierarchy. These iterations,
which are applied on a sequence of gradually higher dimensional problems, aim to activate variables
that are part of the minimizer of (1).

2 Iterative Proximal Newton Methods for l1-regularized Logistic Regression
Current state-of-the-art methods [2, 3, 4] apply a second order approximation to (1) to obtain a
Newton descent direction. In these methods, only the smooth loss function L(w) is replaced with
its second order Taylor approximation, leaving the non-smooth l1 term intact. This approach is
known as “proximal Newton” [10]. For this purpose, the methods require to compute the gradient
and the Hessian of L(w):

∇L(w) = C

l∑
i=1

(
τ(yix

T
i w)− 1

)
yixi, ∇2L(w) = CXDXT , (2)

where τ(s) = 1
1+e−s is the derivative of the logistic loss function log(1 + e−s), D ∈ Rl×l is a

diagonal matrix with elements Dii = τ(yix
T
i w)

(
1− τ(yixT

i w)
)
, and X ∈ Rn×l is a matrix with

all the data samples, i.e., X = [x1, . . . ,xl]. Given the gradient and the Hessian of a current iterate
wk, a Newton direction d is obtained by solving

min
d
L(wk) +∇L(wk)Td+

1

2
dT∇2L(wk)Td+ ‖wk + d‖1. (3)

This derived optimization task in (3) is the widely known LASSO problem [11]. To ensure a reduc-
tion in the objective of (1), a line-search procedure may be used to find a step-size α that updates
the solution in the descend direction d, i.e., wk+1 ← wk + αd.

The GLMNET [3] and its improved version, the newGLMNET [4], are methods that implement the
proximal Newton approach described above. To obtain the the Newton direction, the newGLMNET
method solves (3) using a Coordinate Descent (CD) method. Each CD iteration over all variables
typically requires O (nl) operations for a dense data matrix X , and O (nnz) for a sparse data ma-
trix with nnz non-zeros. On the other hand, solving the line search procedure requires O (n+ l)
operations. The CDN algorithm [2] is a similar approach that solves (1) using a Coordinate Descent
approach. To update each coordinate, CDN solves a one-dimensional proximal Newton problem
with a one-dimensional line-search procedure. This method also requires O (nl) or O (nnz) oper-
ations for a dense or sparse data matrix X , respectively. Although CDN and newGLMNET have
the same complexity, CDN usually requires more iterations to converge. In addition, newGLMNET
applies less line-search computations, requiring less expensive exponential and logarithm computa-
tions.

2.1 Active Set Methods

One way to reduce the number of computations of iterative methods for sparse optimization prob-
lems is to temporarily remove variables that may not participate in the solution [12]. This technique
restricts the minimization at each Newton iteration to a subset of variables while keeping the re-
maining entries to zero. The set of variables that remain fixed at zero is called an active set, while
the set of remaining variables in the minimization is denoted as a “free set” and is defined as

F (w) = {j : wj 6= 0 ∨ |∇jL(w)| ≥ 1} . (4)
Solving (3) only for the elements outside F (w), leads to a zero solution d = 0. Therefore, one can
benefit from restricting the solution of problem (3) to the free set of the current iterate. Computing
F(wk) introduces minimal overhead as it requires the computation of the gradient, which is already
needed for finding a descent direction for (1). A generic proximal Newton method for solving (1),
including a restriction to the free set, is presented in Algorithm 1.

Both CDN and newGLMNET shrink the number of variables in each iteration, hence reducing the
number of computations. In CDN, the times that the line-search procedure is computed decreases
to O (Ml), where M = |F(w)| is the cardinality of the free set. In newGLMNET, the LASSO
problem is solved inO (Ml) (for a dense data matrix), reducing the number of computations for the
Hessian, and the line-search is achieved in O (M + l). However, both methods still require O (nl)
operations to compute the gradient (or O (nnz) for a sparse X).

2

Algorithm: wk+1 ← ProximalNewtonL1LogReg(wk)

Compute the gradient∇L(wk), and define F(wk).
Calculate the Newton direction d by solving (3) restricted to F(wk).
Find a step-size α by line-search and define wk+1 = wk + αd.

Algorithm 1: Proximal Newton iteration for the l1-regularized Logistic Regression.

3 A Multilevel Acceleration for l1-regularized Logistic Regression

In the previous section we described one type of iterative method for solving (1), and the active set
heuristic that aims to reduce their number of computations. However, for an iterate wk far from
the minimizer w∗, the entries of the gradient ∇L(wk) may be very large, yielding a large free set.
In particular, this typically happens during the first steps of most methods, resulting in iterates that
have significantly more non-zeros than the final sparse solution w∗. When such a method advances
through the iterations, many of the gradient entries decrease, reducing the size of the free set and the
number of non-zeros in the solution until it converges to the set of the non-zero indices in w∗. This
same problem is evident also for other sparse optimization problems, and is treated by multilevel
approaches in [8, 9]. In particular, [9] applies it to proximal Newton methods, which include the
active set for the sparse inverse covariance estimation.

We now describe our multilevel approach to accelerate methods for solving (1). Our method avoids
the explosion of non-zeros in the first iterates, and aims to reduce the number of iterations to con-
verge. For this purpose, we define a hierarchy of levels with coarse problems, which are versions of
(1) restricted to a subset of variables. In each multilevel iteration, this hierarchy is traversed starting
from the coarsest level to the finest one, where all variables are considered (no restriction). On each
level we apply one “relaxation”, an iteration of a method like those described in the previous section,
on the restricted subproblem. We refer to this whole process as a ML-cycle and it is repeated until
convergence is achieved. The ML-cycle is summarized in Algorithm 2.

Algorithm: wk+1 ←ML-cycle(wk, Relax(·))
% Relax(): an iterative method for (1).
Calculate∇L(wk), and define the hierarchy {Cp}Pp=0 in (6).
Set ŵ← wk

For p = P...0
Apply ŵ← Relax(ŵ) iteration for problem (5) with Cp.

Set wk+1 ← ŵ

Algorithm 2: ML-cycle for l1-regularized Logistic Regression.

A restricted version of problem (1) in each level is obtained by constraining the non-zero entries in
w to a subset C by

min
w, supp(w)⊆C

L(w) + ‖w‖1, (5)

where supp(w) is the support of a vector w (i.e., the set of non-zero entries). For example, to solve
the subproblem (5) with a method of the form of Algorithm 1, the variables can be restricted to
F(wk) ∩ C. We define the subsets in the hierarchy as

supp(wk) ⊆ CP ⊆ CP−1 ⊆ · · · ⊆ C1 ⊆ C0 = {1, ..., n}. (6)

The coarsest level, CP , is lower bounded by the support of the last iterate so wk is a feasible point for
the restricted problem (5). The finest level C0 introduces no restriction on the variables. Generally,
the size of each level is defined as |Cp+1| = d 12 |Cp|e. However, whenever a free set is used, C1 may
be defined to be of size dF(wk)e [9]. We adopt this choice in this work.

This way, assuming that the cost of a relaxation is proportional to the size of Cp, then the overall
cost for a ML-cycle is similar to two relaxations of the complete problem. Starting from level P ,
each level p in a ML-cycle undergoes a relaxation that treats the restricted problem (5) with Cp.
Because the subsets are nested, the variables in the coarser levels are treated with more relaxations.

3

Table 1: performance results for the original methods and their multilevel accelerated versions.

Dataset n l C ‖w∗‖0 nGLM ML-nGLM CDN ML-CDN
news20 1355191 15997 64 2792 3.52 (13) 1.87 (7) 16.31(182) 7.57 (9)
rcv1 47236 541920 4 10893 37.89 (13) 36.43 (14) 167.54 (86) 90.72 (19)
webspam 16609143 280000 64 7914 122.2 (8) 87.87 (1) 2228.4 (51) 532.0 (1)
epsilon 2000 400000 0.5 1106 196.0 (13) 162.0 (13) 2933.6 (139) 1501.1 (35)
gisette 5000 6000 0.25 554 1.44 (10) 0.92 (4) 19.89 (91) 3.76 (7)

Therefore, we choose for the intermediate levels the variables with the largest gradient magnitude∣∣∇jL(w
k)
∣∣ as they can reduce the objective function in (1) the most.

4 Numerical Results

In this section we compare between the performances of state-of-the-art methods and their acceler-
ated versions. We consider the CDN [2] and the newGLMNET [4] methods, and their multilevel
accelerations: ML-CDN and ML-newGLMNET . The stopping criterion of all methods, suggested
by [4], is ‖∇SL(wk)‖1 ≤ εmin(#pos,#neg)

l ‖∇SL(w1)‖1, where #pos and #neg are the number
of positive and negative labels in the samples, and ∇SL(w) is the minimum norm subgradient. All
the methods were implemented in C++ based on the implementation in LIBLINEAR [13]. All the
experiments were executed on a machine with 2 Intel Xeon2 E5-2699V3 2.30GHz processors with
36 cores, 128GB RAM, and Linux Cent-OS.

We use the data sets news20, gisette, webspam, rcv1, and epsilon with values for the regularizerC as
reported in [4]. The ε value for news20 dataset is 1e-4, and for the other data sets it is 1e-3. For ML-
newGLMNET, the number of coordinate descend iterations for the finest and mid-levels are selected
small (one and two respectively) because those relaxations are used for inclusion or correction of
non-zeros in the support. On the coarsest level, a relatively small problem is considered and there
we allow more iterations (up to five). This level aims to determine the values of the non-zeros in the
support [8].

Performance results are presented in Table1. For each method we present the timing results in sec-
onds and the number of iterations in parenthesis. The number of iterations for newGLMNET is for
each proximal Newton update, for CDN accounts for updating all the variables (n one-dimensional
proximal Newton problems), and for the accelerated methods accounts for the number of ML-cycles.
To save space in Table 1, newGLMNET and ML-newGLMNET are denoted by nGLM and ML-
nGLM, respectively.

The multilevel approach shows the best performance and runtime improvement for both methods in
almost all cases. In some cases ML-CDN achieves a runtime reduction of factor 4 or 5 compared
to CDN. This improvement comes from saving several iterations until it achieves a support size
of about the support size of the true solution. This fact is reflected in the number of iterations of
ML-CDN comparing to those of CDN. The reductions in runtime for ML-newGLMNET are more
limited, as newGLMNET usually converges in a few iterations. In particular, in the dataset rcv1,
the support of the solution concentrates 88% of the non-zeros in the matrix X , and the multilevel
acceleration is unable to save computations. Still, the number of iterations is reduced or is similar,
while the runtime decreases by up to 45% in the best case.

5 Conclusions

In this work, we develop a multilevel approach for accelerating iterative solvers for the l1-regularized
Logistic Regression problem. We define a hierarchy of restricted problems using a handful of subsets
of the problem variables. We solve the problem traversing the hierarchy and gradually building the
solution, while avoiding the explosion of non-zeros. Numerical results demonstrate the performance
improvement of our acceleration over the standard versions of existing methods.

2Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

4

References

[1] Andrew Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In Pro-
ceedings of the Twenty-first International Conference on Machine Learning, ICML ’04, pages
78–, New York, NY, USA, 2004. ACM.

[2] Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of opti-
mization methods and software for large-scale l1-regularized linear classification. Journal of
Machine Learning Research, 11:3183–3234, 2010.

[3] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

[4] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved glmnet for l1-regularized
logistic regression. Journal of Machine Learning Research, 13:1999–2030, 2012.

[5] Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale
l1-regularized logistic regression. J. Mach. Learn. Res., 8:1519–1555, December 2007.

[6] Alexander Genkin, David D Lewis, and David Madigan. Large-scale bayesian logistic regres-
sion for text categorization. Technometrics, 49(3):291–304, 2007.

[7] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for l1 regularized loss minimiza-
tion. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pages 929–936, New York, NY, USA, 2009. ACM.

[8] E. Treister and I. Yavneh. A multilevel iterated-shrinkage approach to l1 penalized least-
squares minimization. Signal Processing, IEEE Transactions on, 60(12):6319–6329, 2012.

[9] E. Treister, J.S. Turek, and I. Yavneh. A multilevel framework for sparse optimization. Sub-
mitted to SIAM Scientific Computing, 2015.

[10] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth separa-
ble minimization. Mathematical Programming, 117(1-2):387–423, 2009.

[11] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[12] Simon Perkins, Kevin Lacker, and James Theiler. Grafting: Fast, incremental feature selection
by gradient descent in function space. J. Mach. Learn. Res., 3:1333–1356, March 2003.

[13] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large
linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

5

	Introduction
	Iterative Proximal Newton Methods for l1-regularized Logistic Regression
	Active Set Methods

	A Multilevel Acceleration for l1-regularized Logistic Regression
	Numerical Results
	Conclusions

