Doubly Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization with Factorized Data

Adams Wei Yu ${ }^{\dagger}$, Qihang Lin*, Tianbao Yang*
Carnegie Mellon University ${ }^{\dagger}$
The University of Iowa*
weiyu@cs.cmu.edu, \{qihang-lin, tianbao-yang\} @uiowa.edu

Abstract

We proposed a doubly stochastic primal-dual coordinate optimization algorithm for regularized empirical risk minimization that can be formulated as a saddlepoint problem. Different from existing coordinate methods, the proposed method randomly samples both primal and dual coordinates to update solutions, which is a desirable property when applied to data with both a high dimension and a large size. The convergence of our method is established not only in terms of the solution's distance to optimality but also in terms of the primal-dual objective gap. When applied to the data matrix already factorized as a product of two smaller matrices, we show that the proposed method has a lower overall complexity than other coordinate methods, especially, when data size is large.

1 Introduction

Setup We consider the following regularized empirical risk minimization (ERM) problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}}\left\{P(x) \equiv \frac{1}{n} \sum_{i=1}^{n} \phi_{i}\left(a_{i}^{T} x\right)+\sum_{j=1}^{p} g_{j}\left(x_{j}\right)\right\} \tag{1}
\end{equation*}
$$

where $a_{1}, \ldots, a_{n} \in \mathbb{R}^{p}$ are n data points, $\phi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is a convex loss function, and $g_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is a function of x_{j}, the j-th coordinate of x. We further assume that g_{j} is λ-strongly convex for $j=1,2, \ldots, p$ and ϕ_{i} is $(1 / \gamma)$-smooth for $i=1,2, \ldots, n$. The dual problem of (1) is

$$
\begin{equation*}
\max _{y \in \mathbb{R}^{n}}\left\{D(y) \equiv-g^{*}\left(-\frac{A^{T} y}{n}\right)-\frac{1}{n} \sum_{i=1}^{n} \phi_{i}^{*}\left(y_{i}\right)\right\} \tag{2}
\end{equation*}
$$

where $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{T} \in \mathbb{R}^{n \times p}$ is the data matrix, and ϕ_{i}^{*} and g^{*} are the Fenchel's conjugates of ϕ and g, respectively. We denote the i-th row of A by a_{i} and the j-th column of A by A^{j}. Let $\|\cdot\|$ represents ℓ_{2}-norm. The maximum norm of data points is defined as $R=\max _{i=1, \ldots, n}\left\|A_{i}\right\|$. Both (1) and (2) corresponds to the following saddle-point problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}} \max _{y \in \mathbb{R}^{n}}\left\{g(x)+\frac{1}{n} y^{T} A x-\frac{1}{n} \sum_{i=1}^{n} \phi_{i}^{*}\left(y_{i}\right)\right\} . \tag{3}
\end{equation*}
$$

In this paper, we propose an efficient primal dual coordinated descent algorithm for the general problem (3) and also one for a specific problem when the data A is factorized.

Related Works For solving problem (3), efficient deterministic first-order methods have been developed, including smoothing method [15, 3], excessive gap method [14], extragradient method [10, 12], Mirror-Prox method [13] and primal-dual hybrid gradient methods [1, 2, 4]. These approaches

```
Algorithm 1 Doubly Stochastic Primal-Dual Coordinate (DSPDC) Method
Input: \(x^{(-1)}=x^{(0)}=\bar{x}^{(0)} \in \mathbb{R}^{p}, y^{(-1)}=y^{(0)}=\bar{y}^{(0)} \in \mathbb{R}^{n}\), and positive parameters \((\theta, \tau, \sigma)\)
For \(t=0,1,2, \ldots, T-1\)
    Uniformly and randomly choose two sets of indices \(I \subset\{1,2, \ldots, n\}\) and \(J \subset\{1,2, \ldots, p\}\) of
        sizes \(m\) and \(q\), respectively.
\[
\begin{align*}
y_{i}^{(t+1)} & = \begin{cases}\arg \max _{\beta \in \mathbb{R}}\left\{\frac{1}{n}\left\langle A_{i}, \bar{x}^{(t)}\right\rangle \beta-\frac{\phi_{i}^{*}(\beta)}{n}-\frac{1}{2 \sigma}\left(\beta-y_{i}^{(t)}\right)^{2}\right\} & \text { if } i \in I, \\
y_{i}^{(t)} & \text { if } i \notin I,\end{cases}  \tag{4}\\
\bar{y}^{(t+1)} & =y^{(t)}+\frac{n}{m}\left(y^{(t+1)}-y^{(t)}\right),  \tag{5}\\
x_{j}^{(t+1)} & = \begin{cases}\arg \min _{\alpha \in \mathbb{R}}\left\{\frac{1}{n}\left\langle A^{j}, \bar{y}^{(t+1)}\right\rangle \alpha+g_{j}(\alpha)+\frac{1}{2 \tau}\left(\alpha-x_{j}^{(t)}\right)^{2}\right\} & \text { if } j \in J, \\
x_{j}^{(t)} & \text { if } j \notin J,\end{cases}  \tag{6}\\
\bar{x}^{(t+1)} & =x^{(t)}+(\theta+1)\left(x^{(t+1)}-x^{(t)}\right) . \tag{7}
\end{align*}
\]
```

Output: $x^{(T)}$ and $y^{(T)}$
need to evaluate the full (sub)gradient of objective function at each iteration which becomes prohibitive when primal dimension p or dual dimension n are both large. Recent years there have seen an increased interest in stochastic variance reduced gradient methods [8, 24, 17, 9] and incremental gradient methods [19, 6, 11] that makes use of all instances in computing the stochastic gradient, which can accelerate the conventional stochastic gradient decent method. Stochastic coordinate methods work by updating randomly sampled coordinates of decision variables [16, 18, 20]. In [7] the authors showed that randomized (block) coordinate descent methods can be accelerated by parallelization when applied to the problem of minimizing the sum of a partially separable smooth convex function and a simple separable convex function. Shalev-Shwartz \& Zhang [22, 21, 23] proposed stochastic dual coordinate ascent (SDCA) and its mini-batch, accelerated and proximal variants to maximize the dual formulation (2]. Zhang \& Xiao [26] and Dong \& Lan [5] both proposed stochastic primal-dual coordinate method for (3), which alternates between maximizing over a randomly chosen dual variable and minimizing over all the primal variables. However, all these need to update either full primal or full dual coordinates, which can still have a high computational cost in each iteration when data has both a large size and a high dimension.

2 Primal-Dual Algorithm for General Data Matrix

In this section, we propose a doubly stochastic primal-dual coordinate method in Algorithm 1 for problem (3). When ϕ_{i} is a $(1 / \gamma)$-smooth and g is λ-strongly convex, the saddle-point problem (3) has a unique solution denoted by $\left(x^{\star}, y^{\star}\right)$ with x^{\star} and y^{\star} being the optimal primal and dual solutions for (1) and 2), respectively. The condition number of problem (3) is defined as $\kappa=\frac{R^{2}}{\lambda \gamma}$. Algorithm 1 requires three control parameters θ, τ and σ and its convergence is obtained after a proper choice of these parameters as shown in Theorem 1 All the proofs for the theorems here are deferred to our long version manuscript [25].

Theorem 1. Suppose the parameters θ, τ and σ in Algorithm 1 are chosen so that

$$
\begin{equation*}
\theta=\frac{p}{q}-\frac{p / q}{\frac{R}{\sqrt{\lambda \gamma}} \sqrt{\frac{n}{m}} \frac{p}{q}+\max \left\{\frac{n}{m}, \frac{p}{q}\right\}}, \quad \tau \sigma=\frac{n q}{4 p R^{2}}, \quad \frac{p}{2 q \lambda \tau}+\frac{p}{q}=\frac{n^{2}}{2 m \gamma \sigma}+\frac{n}{m}, \tag{8}
\end{equation*}
$$

where the last two equations are equivalent to

$$
\begin{equation*}
\tau=\frac{p}{q \lambda}\left(\left(\frac{n}{m}-\frac{p}{q}\right)+\sqrt{\left(\frac{n}{m}-\frac{p}{q}\right)^{2}+\frac{4 n p^{2} R^{2}}{m q^{2} \lambda \gamma}}\right)^{-1} \sigma=\frac{n^{2}}{m \gamma}\left(\left(\frac{p}{q}-\frac{n}{m}\right)+\sqrt{\left(\frac{n}{m}-\frac{p}{q}\right)^{2}+\frac{4 n p^{2} R^{2}}{m q^{2} \lambda \gamma}}\right)^{-1} . \tag{9}
\end{equation*}
$$

For each $t \geq 0$, Algorithm 1 guarantees

$$
\begin{aligned}
& \left(\frac{p}{2 q \tau}+\frac{p \lambda}{q}\right) \mathbb{E}\left\|x^{\star}-x^{(t)}\right\|^{2}+\left(\frac{n}{4 m \sigma}+\frac{\gamma}{m}\right) \mathbb{E}\left\|y^{\star}-y^{(t)}\right\|^{2} \\
\leq & \left(1-\frac{1}{\max \left\{\frac{p}{q}, \frac{n}{m}\right\}+\frac{R}{\sqrt{\lambda \gamma}} \sqrt{\frac{n}{m}} \frac{p}{q}}\right)^{t}\left[\left(\frac{p}{2 q \tau}+\frac{p \lambda}{q}\right)\left\|x^{\star}-x^{(0)}\right\|^{2}+\left(\frac{n}{2 m \sigma}+\frac{\gamma}{m}\right)\left\|y^{\star}-y^{(0)}\right\|^{2}\right] .
\end{aligned}
$$

Besides the distance to the saddle-point $\left(x^{\star}, y^{\star}\right)$, a more useful quality measure for the solution $\left(x^{(t)}, y^{(t)}\right)$ is its primal-dual objective gap, $P\left(x^{(t)}\right)-D\left(y^{(t)}\right)$, because it can be evaluated in each iteration and used as a stopping criterion in practice. The next theorem establishes the convergence rate of the primal-dual objective gap ensured by DSPDC.
Theorem 2. Suppose the parameters τ and σ in Algorithm 1 are chosen as (9) and θ is chosen as

$$
\begin{equation*}
\theta=\frac{p}{q}-\frac{p / q}{\frac{2 R}{\sqrt{\lambda \gamma}} \sqrt{\frac{n}{m}} \frac{p}{q}+2 \max \left\{\frac{n}{m}, \frac{p}{q}\right\}} . \tag{10}
\end{equation*}
$$

Algorithm 1 guarantees

$$
\begin{aligned}
& \mathbb{E}\left[P\left(x^{(t)}\right)-D\left(y^{(t)}\right)\right] \\
\leq & \left(1-\frac{1}{2 \max \left\{\frac{n}{m}, \frac{p}{q}\right\}+\frac{2 R}{\sqrt{\lambda \gamma}} \sqrt{\frac{n}{m}} \frac{p}{q}}\right)^{t}\left\{\frac{1}{\min \left\{\frac{p}{q}, \frac{n}{m}\right\}}+\frac{\max \left\{\frac{R^{2}}{2 \gamma}, \frac{R^{2}}{\lambda n}\right\}}{\min \left\{\frac{\lambda p}{q}, \frac{\gamma}{m}\right\}}\right\} \\
& {\left[\left(\frac{p}{2 q \tau}+\frac{p \lambda}{2 q}\right)\left\|x^{(0)}-x^{\star}\right\|^{2}+\left(\frac{n}{2 m \sigma}+\frac{\gamma}{2 m}\right)\left\|y^{(0)}-y^{\star}\right\|^{2}+\max \left\{\frac{p}{q}, \frac{n}{m}\right\}\left(P\left(x^{(0)}\right)-D\left(y^{(0)}\right)\right)\right] . }
\end{aligned}
$$

For strongly convex problem, the convergence of objective value implies that of solution but the opposite is not true. Therefore, Theorem 2 is not a direct consequence of Theorem 1 , especially when $P(x)$ or $D(y)$ contains a non-smooth component or is not defined everywhere in \mathbb{R}^{p} or \mathbb{R}^{n}.

3 Efficient Implementation for Factorized Data Matrix

Now we consider a specific case where the data matrix A in (3) has a factorized structure $A=U V$ where $U \in \mathbb{R}^{n \times d}$ and $V \in \mathbb{R}^{d \times p}$ with $d \ll \min \{n, p\}$. We can maintain the vectors $\bar{u}^{(t)}=U^{T} \bar{y}^{(t)}$ and $\bar{v}^{(t)}=V \bar{x}^{(t)}$ and update them in $O(d m)$ and $O(d q)$ time, respectively, in each iteration. Then, we can obtain $\left\langle A_{i}, \bar{x}^{(t)}\right\rangle$ in 4\rangle in $O(d m)$ time by evaluating $\left\langle U_{i}, \bar{v}^{(t)}\right\rangle$ for each $i \in I$, where U_{i} is the i th row of U. Similarly, we can obtain $\left\langle A_{j}, \bar{y}^{(t+1)}\right\rangle$ in (6) in $O(d q)$ time by taking $\left\langle V^{j}, \bar{v}^{(t)}\right\rangle$ for each $j \in J$, where V^{j} is the j th column of V. This leads to an efficient implementation of DSPDC whose per-iteration cost is $O(d m+d q)$, lower than the $O(m p)$ cost when A is not factorized. The detailed procedure is shown in Algorithm 2. The similar efficient implementation can be also applied to other coordinate methods such as SPDC, SDCA and ASDCA to obtain a lower computation cost in each iteration. To make a clear comparison between DSPDC and other coordinate methods when applied to factorized data, we summarize their numbers of iterations and per-iteration costs in

In this section, we conduct numerical experiments to compare the DSPDC method with other two methods, SPCD [26] and SDCA [22] over several real dataset s^{2}] Covtype, RCV1 and Real-sim. We consider the setting of sparse recovery problem after applying randomized feature reduction to binary classification. In particular, let $X \in \mathbb{R}^{n \times p}$ be the original training data, and $G \in \mathbb{R}^{d \times p}$ a Gaussian random matrix. So now $A=U V$ with $U=X G^{T}, V=G$. The problem of interest is

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}} \max _{y \in \mathbb{R}^{n}}\left\{\frac{\lambda_{2}}{2}\|x\|_{2}^{2}+\lambda_{1}\|x\|_{1}+\frac{1}{n} y^{T} X G^{T} G x-\frac{1}{n} \sum_{i=1}^{n} \phi_{i}^{*}\left(y_{i}\right)\right\} \tag{17}
\end{equation*}
$$

[^0]```
Algorithm 2 Efficient Implementation of Algorithm 1 for Factorized Data (\(A=U V\))
Input: \(x^{(-1)}=x^{(0)}=\bar{x}^{(0)} \in \mathbb{R}^{p}, y^{(-1)}=y^{(0)}=\bar{y}^{(0)} \in \mathbb{R}^{n}\), and positive control parameters \((\theta, \tau, \sigma)\)
Initialize: \(u^{(0)}=U^{T} y^{(0)}, v^{(0)}=V x^{(0)}, \bar{u}^{(0)}=U^{T} \bar{y}^{(0)}, \bar{v}^{(0)}=V \bar{x}^{(0)}\)
Iterate:
```

For $t=0,1,2, \ldots, T-1$
Uniformly and randomly choose two sets of indices $I \subset\{1,2, \ldots, n\}$ and $J \subset\{1,2, \ldots, p\}$ of
sizes $m$ and $q$, respectively.

$$
\begin{align*}
y_{i}^{(t+1)} & = \begin{cases}\arg \max _{\beta \in \mathbb{R}}\left\{\frac{1}{n}\left\langle U_{i}, \bar{v}^{(t)}\right\rangle \beta-\frac{\phi_{i}^{*}(\beta)}{n}-\frac{1}{2 \sigma}\left(\beta-y_{i}^{(t)}\right)^{2}\right\} & \text { if } i \in I, \\
y_{i}^{(t)} & \text { if } i \notin I,\end{cases}  \tag{11}\\
u^{(t+1)} & =u^{(t)}+U^{T}\left(y^{(t+1)}-y^{(t)}\right),  \tag{12}\\
\bar{u}^{(t+1)} & =u^{(t)}+\frac{n}{m} U^{T}\left(y^{(t+1)}-y^{(t)}\right),  \tag{13}\\
x_{j}^{(t+1)} & = \begin{cases}\arg \min _{\alpha \in \mathbb{R}}\left\{\frac{1}{n}\left\langle V^{j}, \bar{u}^{(t+1)}\right\rangle \alpha+g_{i}(\alpha)+\frac{1}{2 \tau}\left(\alpha-x_{i}^{(t)}\right)^{2}\right\} & \text { if } j \in J, \\
x_{j}^{(t)} & \text { if } j \notin J,\end{cases}  \tag{14}\\
v^{(t+1)} & =v^{(t)}+V\left(x^{(t+1)}-x^{(t)}\right),  \tag{15}\\
\bar{v}^{(t+1)} & =v^{(t)}+(\theta+1) V\left(x^{(t+1)}-x^{(t)}\right) . \tag{16}
\end{align*}
$$

Output: $x^{(T)}$ and $y^{(T)}$

| Algorithm | Number of Iterations | Per-Iteration Cost | Overall Complexity when <br> $m=q=1$ |
| :---: | :---: | :---: | :---: |
| DSPDC | $\left(\frac{n}{m}+\sqrt{\frac{\kappa n}{m}} \frac{p}{q}\right) \log \left(\frac{1}{\epsilon}\right)$ | $q d+m d$ | $(n d+\sqrt{\kappa n} p d) \log \left(\frac{1}{\epsilon}\right)$ |
| SPDC | $\left(\frac{n}{m}+\sqrt{\frac{\kappa n}{m}}\right) \log \left(\frac{1}{\epsilon}\right)$ | $p d+m d$ | $(n p d+\sqrt{\kappa n} p d) \log \left(\frac{1}{\epsilon}\right)$ |
| SDCA | $(n+\kappa) \log \left(\frac{1}{\epsilon}\right)$ | $p d$ | $(n p d+\kappa p d) \log \left(\frac{1}{\epsilon}\right)$ |
| ASDCA | $(n+\sqrt{\kappa n}) \log \left(\frac{1}{\epsilon}\right)$ | $p d$ | $(n p d+\sqrt{\kappa n} p d) \log \left(\frac{1}{\epsilon}\right)$ |

Table 1: The complexity to find an $\epsilon$-optimal solution when $A=U V$ and $\frac{n}{m} \geq \frac{p}{q}$.


Figure 1: Left: Covtype ( $n=581012, p=54$ ). Middle: RCV1 ( $n=20242, p=47236$ ). Right: Real-sim ( $n=72309, p=20958$ ).

We consider problem (17) with smoothed hinge loss

$$
\phi_{i}(z)= \begin{cases}0 & \text { if } b_{i} z \geq 1  \tag{18}\\ \frac{1}{2}-b_{i} z & \text { if } b_{i} z \leq 0 \\ \frac{1}{2}\left(1-b_{i} z\right)^{2} & \text { otherwise }\end{cases}
$$

where $b_{i} \in\{1,-1\}$ is the class label for the $i$ th instance. In all experiments, we choose $d=20$ and set $\lambda_{1}=10^{-4}, \lambda_{2}=10^{-2}$ in 17 . Since these three sets data are real data, their sizes and dimensions are not in whole thousands. We choose $m$ and $q$ so that $n$ and $p$ can be either dividable by them or has a small division remainder. The numerical performances of the three methods are showed in Figure 1 with the values of $m$ and $q$ stated below. In these three examples, SPDC and DSPDC both outperform SDCA significantly. DSPDC has as similar performance to SPDC on RCV1 Real-sim but has a better performance than SPDC when applied to Covtype. The complementary results could be found in the full version manuscript [25].

## References

[1] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120-145, 2011.
[2] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal-dual algorithm. Technical report, CMAP, Ecole Polytechnique, CNRS, 2014.
[3] X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. Xing. Smoothing proximal gradient method for general structured sparse regression. The Annals of Applied Statistics, 6(2):719-752, 2012.
[4] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle point problems. SIAM Journal on Optimization, 24(4):1779-1814, 2014.
[5] C. Dang and G. Lan. Randomized first-order methods for saddle point optimization. Technical report, University of Florida, 2014.
[6] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems, 2014.
[7] O. Fercoq and P. Richtrik. Accelerated, parallel and proximal coordinate descent. CoRR, abs/1312.5799, 2013.
[8] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In NIPS, pages 315-323. 2013.
[9] J. Konečný, J. Liu, P. Richtárik, and M. Takáč. Mini-batch semi-stochastic gradient descent in the proximal setting. Technical report, the School of Mathematics, University of Edinburg, 2014.
[10] G. Korpelevic. The extragradient method for finding saddle points and other problems. Ekonomika $i$ Matematcheskie Metody, 12:747-756, 1976.
[11] G. Lan. An optimal randomized incremental gradient method. Technical report, Department of Industrial and Systems Engineering, University of Florida, 2015.
[12] R. D. C. Monteiro and B. F. Svaiter. Complexity of variants of tseng's modified f-b splitting and korpelevich's methods for hemivariational inequalities with applications to saddle-point and convex optimization problems. SIAM J. on Optimization, 21(4):1688-1720.
[13] A. Nemirovski. Prox-method with rate of convergence $o(1 / t)$ for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle-point problems. SIAM Journal on Optimization, 15(1):229-251, 2004.
[14] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Jorunal on Optimization, 16(1):235-249, 2005.
[15] Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103:127-152, 2005.
[16] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization, 22(2):341-362, 2012.
[17] A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Neural Information Processing Systems (NIPS), 2014.
[18] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Mathematical Programming, 144(1):1-38, 2014.
[19] M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. Technical Report HAL 00860051, INRIA, Paris, France, 2013.
[20] S. Shalev-Shwartz and A. Tewari. Stochastic methods for 11 regularized loss minimization. In International Conference on Machine Learning (ICML), volume 382, 2009.
[21] S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch stochastic dual coordinate ascent. In NIPS, pages 378-385. 2013.
[22] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Journal of Machine Learning Research, 14:567-599, 2013.
[23] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. In ICML, pages 567-599, 2013.
[24] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. arXiv:1403.4699.
[25] A. W. Yu, Q. Lin, and T. Yang. Doubly stochastic primal-dual coordinate method for regularized empirical risk minimization with factorized data. CoRR, abs/1508.03390, 2015.
[26] Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical risk minimization. In ICML, 2015.


[^0]:    ${ }^{1}$ If $\frac{n}{m} \leq \frac{p}{a}$, we can apply the dual version of DSPDC by switch the updating schemes for $x$ and $y$.
    2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

