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Abstract
We present experiments and their corresponding theory, demonstrating that synaptic neural balancing
can significantly enhance deep learning speed, accuracy, and generalization. Given an additive
cost function (regularizer) of the synaptic weights, a neuron is said to be in balance if the total
cost of its incoming weights is equal to the total cost of its outgoing weights. For large classes of
networks, activation functions, and regularizers, neurons can be balanced fully or partially using
scaling operations that do not change their functionality. Furthermore, these balancing operations are
associated with a strictly convex optimization problem with a single optimum and can be carried out
in any order. In our simulations, we systematically observe that: (1) Fully balancing before training
results in better performance as compared to several other training approaches; (2) Interleaving
partial (layer-wise) balancing and stochastic gradient descent steps during training results in faster
learning convergence and better overall accuracy (with L1 balancing converging faster than L2

balancing; and (3) When given limited training data, neurally balanced models outperform plain or
regularized models regardless of whether they are feedforward or recurrent networks architectures.
In short, the evidence supports that neural balancing operations ought to be added to the arsenal of
methods used to regularize and train neural networks and further work as an effective optimization
method.

1. Introduction

Neural balance refers to the idea of achieving or keeping a certain equilibrium in a neural network
during training or after training, whereby such equilibrium may facilitate better information flow,
or lower energy expenditure [14]. As such, there are different notions of neural balance including,
for example, the notion of balance between excitation and inhibition in biological neural networks
[5–8, 13]. Here we develop the concept of synaptic neural balance which refers to any systematic
relationship between the input and output synaptic weights of individual neurons, or layers of neurons.
Specifically, we consider the case where the cost of the input weights is equal to the cost of the output
weights, where the cost is defined by some regularizer. One of the most basic examples of such a
relationship is when the sum of the squares of the input weights of a neuron is equal to the sum of the
squares of its output weights. In this work, we briefly describe the theory of synaptic neural balance
and demonstrate its applications to deep learning regularization. We now describe the base case of
synaptic neural balance.
Base Case: Consider a neuron with a ReLU activation function inside a network trained to minimize
a regularized error function E = E+R, where E is the data-dependent error and R is the regularizer
(typically L2 regularizer). If we multiply the incoming weights of the neuron by some λ > 0 and
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divide the outgoing weights of the neuron by the same λ, it is easy to see that this scaling operation
does not affect in any way the contribution of the neuron to the rest of the network. Thus, the error E
which depends only on the input-output function of the network is unchanged. However, the value of
the L2 regularizer changes continuously with λ, and the corresponding contribution is given by:∑

i∈IN
(λwi)

2 +
∑

i∈OUT

(wi/λ)
2 = λ2A+

1

λ2
B (1)

where IN and OUT denote the set of incoming and outgoing weights respectively, A =∑
i∈IN w2

i , and B =
∑

i∈OUT w2
i . When λ moves away from 1, the contribution increases in one

direction and decreases in the other. In the direction where it decreases, we can solve for the value
λ∗ associated with the mimimal cost. Without taking derivatives, we note that the product of the
two terms on the right-hand side of Equation 1 is equal to AB and does not depend on λ. Thus, the
minimum is achieved when these two terms are equal, which yields: (λ∗)4 = B/A for the optimal
λ∗. The corresponding new set of weights, vi = λ∗wi for the input weights and vi = wi/λ

∗ for the
outgoing weights, must be balanced:

∑
i∈IN v2i =

∑
i∈OUT v2i . This is because the optimal scaling

factor for the optimal synaptic weights can only be λ∗ = 1.
There have been isolated previous studies of this kind of synaptic balance [4, 15] under special

conditions. Yang et al. [17] proposed to replace the L2 regularization term in the loss with the sum of
products of l2 norms of the input and output weights. Related results are also described in [2]. Saul
[12] computes multiplicative rescaling factors—one at each hidden unit— to balance the weights of
neural networks. Neyshabur et al. [9, 11] shows that training with stochastic gradient descent does
not work well in highly unbalanced neural networks. Others have proposed that learning in neural
networks can be accelerated with rescaling transformations [1, 18] without mentioning balancing the
weights though.

Furthermore, there are many intriguing questions that can be raised. For instance: Why does
balance occur? Does it occur only with ReLU neurons? Does it occur only with L2 regularizers?
Does it occur only in fully connected feedforward architectures? Does it occur only at the end of
training? What happens if we iteratively balance neurons at random in a large network? And can
partial or full balancing, before or during learning, be used as an effective regularization technique?
All these questions, but the last one, are addressed by the theory of synaptic neural balance that we
have developed and briefly describe in the next section. The last question, on using balancing as a
learning regularizer, is the main topic of this paper. Unless otherwise specified, throughout the paper,
terms like “balancing” or “neural balancing” refer to “synaptic neural balancing”.

2. The Theory of Synaptic Neural Balance

We present a brief summary of the main point of the theory. The complete theory is described in the
Appendix with the detailed proofs of all the theorems.
Theorem: (Balance and Regularizer Minimization) Consider a neural network with BiLU activation
functions in all the hidden units and overall error function of the form:

E = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (2)

where each function gw(w) is continuously differentiable, depends on the magnitude |w| alone,
and grows monotonically from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and
any hidden unit i in the network and any λ > 0 we can multiply the incoming weights of i by λ and
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the outgoing weights of i by 1/λ without changing the overall error E. Then, for any neuron, there
exists at least one optimal value λ∗ that minimizes R(W ). Any optimal value must be a solution of
the consistency equation:

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (3)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized
balance equation: ∑

w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (4)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the optimal
value λ∗ is unique and equal to:

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2
(5)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:

∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(6)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (7)

Proof: The proof is given in the Appendix. We use the optimal value λ∗, which we proved how to
find in the Appendix, for our experiments in the next Section.
Network Architectures: Our reasoning behind the base case can be applied to any BiLU neurons
inside any architecture, such a fully connected feedforward, locally connected feedforward, or
recurrent. Again this is because scaling does not change the effect of the neuron on the rest of the
network and therefore we can always scale the neuron in a way that minimizes a particular cost
function or regularizer. This brings us to the main result of the theory which is related to balancing
algorithms. Imagine that we have a neural network containing BiLU (e.g. ReLU) neurons, with
a fixed set of weights W . These could be the weights before learning has started, during learning
(i.e. at a particular epoch), or after learning has finished. Imagine that we start balancing the BiLU
neurons one after the other, in some regular order or, more generally, even in a stochastic order.
Balancing the weights of a neuron may break the balance of another neuron. So while the value
of the regularizer always decreases after each balancing operation, it is not clear what happens to
the weights of the network, whether they converge to a stable value, and if so whether this value is
unique. The main theorem of the theory is the proof that indeed not only the regularizer converges,
but the weights themselves must converge and, most interestingly, they must converge to a unique
point, which depends only on the initial set of weights W .

3. Experiments and Results

In our experiments, we train and compare various neural network architectures using full neural
balancing, partial balancing, and L1 or L2 regularization. The term “plain” is used to refer to training
of neural networks without balancing or regularizers. Full balance is obtained by iteratively balancing
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Type No FB at Start FB at Start
Plain L1 Reg. L2 Reg. Plain L1 Reg. L2 Reg.

2 Layer FCN 90.09% 90.05% 90.062% 91.22% 93.96% 91.18%
3 Layer FCN 89.594% 89.67% 89.70% 90.83% 93.47% 90.79%
5 Layer FCN 89.09% 87.85% 90.3% 91.37% 95.50% 91.59%

Table 1: Test accuracy of Fully Connected Networks trained on MNIST. Full balancing before
training results in faster convergence, as well as universally higher attained test accuracy.

all BiLU neurons in the network until convergence is achieved. Partial balance is implemented by
balancing the neurons in a layer-wise fashion, starting from the input layer and moving towards the
output layer or vice-versa (no significant differences are observed). Due to the gradual nature of
partial balance, the periodicity of the balancing operation is key to its implementation. In partial
balance, the balancing operation can be performed up to once per epoch. Through the use of partial
balancing during training, it has been observed that the ratio of the norms of a neuron’s output to
input weights tends to equalize, irrespective of the periodicity of epochs that we perform partial
balancing operations. We have also observed that partial balancing helps the network converge faster
and achieve a balanced state as is expected in a fully-trained network, same is in full balancing. The
balancing operations for each neuron in each layer take place in parallel so they do not impose a
bottleneck during training. Our results suggest that neural balancing is effective in training various
types of neural networks with limited data. Furthermore, this approach proves beneficial in reducing
overfitting and enhancing generalization in data-scarce environments. To ensure reproducibility and
fairness, experiments comparing training methodologies use the same range of 8 seeds, learning
rates, and train/test splits.

3.1. Assessment of Full Balance Before Training

In table 1, we assess the use of the full balancing operation before the commencement of training.
Compared to a standard initialization, the application of full balancing results in faster convergence,
and higher overall accuracy when using the same model architecture, hyperparameters, and training
methodologies. Larger model sizes tend to exhibit a stronger correlation between the use of neural
balancing, and the model’s rate of convergence. These observations are especially exhibited in the
normally trained models, where the use of full balancing at the start results in much faster convergence,
as well as a higher final accuracy achieved by the model. table 1 displays the comparison between
full balancing and no balancing performed on an FCN on MNIST before training.

3.2. Partial Balance with FCNs on MNIST

We test all forms of neural balancing on the MNIST handwritten digit dataset exclusively through
FCNs. To fully capture the regularization capability of neural balancing, we test on a range of model
architectures. From table 2, we observe that neural partial balancing results in faster convergence
and test accuracy across all model sizes.
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Type Plain L2 NB L1 NB L2 1e-5 L1 1e-5
2-FCN 91.22% 91.19% 94.542% 91.18% 93.96%
3-FCN 90.84% 90.86% 93.94% 90.79% 93.47%
5-FCN 91.37% 91.63% 96.26% 91.59% 95.48%

Table 2: Test accuracy for FCNs of varying sizes on MNIST. We observe that L1 partial balancing
outperforms the other training methodologies on all model sizes

Type Plain L1 Regularization L2 Regularization
No NB at Start 88.26 88.23 88.22
NB at Start 88.64% 88.24% 88.57%

Table 3: Test accuracy for a Recurrent Neural Network trained on the IMDB sentiment analysis
dataset. A full balance before the commencement of training universally results in a higher
test accuracy during training.

3.3. Full Balance with RNNs on IMBD

We continue our assessment of neural balancing with experiments performed on the RNN architecture.
We train a 3-layered RNN on the IMDB sentiment analysis dataset, once again assessing full neural
balancing with a ’plain’, and regularized models. table 3 demonstrates that when full balancing
is performed before training, the model has a better final accuracy when compared to equivalent,
non-balanced methodlologies.

3.4. Neural Balance in Limited-data Environments

In data-scarce environments, models employing neural partial balancing techniques demonstrate
accelerated convergence compared to unmodified models. We observe that neural balancing results
in higher accuracy and faster convergence, which could be attributed to better performance in
data-scarce environments.
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Figure 1: A comparison between partial balancing, Plain Accuracy, and L2 Regularization as per-
formed on a 3 Layer RNN using 5% of the available dataset. Neural balancing reports the
best overall performance.
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Type No Full Neural Balance at Start Full Neural Balance at Start
2 Layer FCN 3 Layer FCN 5 Layer FCN 2 Layer FCN 3 Layer FCN 5 Layer FCN

Plain 84.15% 73.49% 88.9% 91.39% 91.42% 90.86%
L1 NB 91.25% 90.57% 92.87% 93.26% 93.3% 92.92%
L2 NB 87.99% 84.53% 91.06% 91.94% 91.37% 90.59%
L1 Reg. 83.92% 72.03% 11.35% 85.99% 81.33% 19.79%
L2 Reg. 83.35% 75.21% 86.81% 91.16% 90.86% 88.78%

Table 4: A comparison of test accuracy during training of various methodologies, using 1% of the
MNIST dataset to simulate a limited data environment. The use of full balancing at the start
of training increases the overall accuracy, as well as the rate of convergence.

fig. 1 contains the comparison between training methodologies using a 3 layer RNN trained on
the IMDB sentiment analysis dataset with 5% of the available training data. Partial balancing has
higher accuracy on average, as well as a faster convergence, hinting at a characteristic of being able
to generalize without a lot of training data.

3.5. Discussion

Summing up our experiments we observe the following quantitative results. In FCNs, Neural Balance
yields a notable improvement in model performance and convergence speed. Specifically, this method
results in a 3-5% performance increase over plain models, and more than a 1% improvement over
optimally L1-regularized models. Additionally, L1 neural balancing facilitates convergence at a
rate 1.5 to 10 times faster, contingent on model size. When trained on limited datasets (1% of the
full data), L1 neural balancing enhances performance by 3-10% compared to plain models, and
by 1-5% relative to models regularized with L1 and L2 techniques. Moreover, it achieves up to a
10-fold increase in convergence speed, depending on model size. In RNNs, L1 neural balancing
contributes to a 2-5% increase in convergence speed, with the application of L2 neural balancing
leading to a more than 15% acceleration in convergence when training on 5% of the data. These
findings underscore the efficacy of L1 neural balancing in optimizing both performance and training
efficiency across different model architectures. We have extended our experiments due to page limits
in the Appendix.

4. Conclusions

Synaptic balancing provides a novel approach to regularization that is supported by an underlying
theory. Synaptic balancing is very general in the sense that it can be applied with all usual cost
functions, including all Lp cost functions. Synaptic balancing can be carried in full or in partial
manner, due to the convexity connection provided by the main theorem. It can be applied at any time
during the learning process: at the start of learning, at the end of learning, or during learning, by
alternating balancing steps with stochastic gradient steps. Given, neural balance has some limitations;
as mentioned earlier it can be applied only to neurons with specific activation functions (BiLU or
slightly more general activation functions as shown in the Appendix). Another limitation is that it
cannot be applied to neurons in Convolution layers due to the nature of the convolution operation with
the kernels. Simulations show that these approaches can improve learning in terms of speed (fewer
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epochs), accuracy or generalization abilities. Finally, a neuron can balance its weights independently
of all other neurons in the network. The knowledge required for balancing is entirely local and
available at each neuron. Thus, in short, balancing is a novel effective approach to regularization that
can be added to the list of tools available to regularize networks, like dropout, and other regularization
tools.
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Appendix A. Appendix

Here we detail the additional theory, datasets, models, and training procedures used in the experiments
in the main paper, separated into subsections which correspond to that of the main paper. We also
included some supplemental experiments that are not present in the main paper.

In order to ensure that our results are reproducible, when we compare training methodologies,
we do so using a sample size of 8 different, and random, seeds per methodology, with those seeds
being shared with the other training methodologies. We train all of our models on a server equipped
with 8 Nvidia RTX A6000 Ada Generation graphics cards, with 384 GB of total memory, run on
CUDA version 12.4.

A.1. Establishing Partial Balancing

In our experiments, we annotate 2 different kinds of neural balancing operations: L1 Neural Balanc-
ing, and L2 Neural Balancing. The names represent the norms used when balancing the input and
output weights, with the L1 norm being used for L1 Neural Balancing, and the L2 norm being used
for L2 Neural Balancing.

A.2. Toy Experiment on a Circle Toy Dataset

To validate our initial hypothesis, which is that the balancing operation results in the equalization of
the norms of the input and output weights for every neuron in a neural network, we observe the ratio
between the aforementioned norms during training. We do this through a toy network trained on a
simple 2-dimensional dataset for a binary classification task, where the limited number of layers and
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’neurons’ allow us to measure weights without the computational intensity attributed to accessing
values from a large network. We compare the use of full balancing with partial balancing during
training. Both methodologies result in the optimal factor λ∗ calculated during balancing to converge
to 1, confirming that the norms of the input and output weights for each neuron equalize through the
use of balancing. fig. 2 contains partial balancing performed every epoch on a 5-neuron toy model
trained on a 2-dimensional concentric circle toy dataset showing that the input and output weight
norms equalize for each neuron.
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Figure 2: Partial balancing performed every
epoch on a 5-neuron toy model
trained on a 2-dimensional dataset
for a binary classification task
showing that the input and out-
put weight norms equalize for each
neuron
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Figure 3: Full balancing performed every
epoch on a 5-neuron toy model
trained on a 2-dimensional dataset
for a binary classification task
showing that the input and out-
put weight norms equalize for each
neuron

To contextualize the rate of convergence of the norms from the partial balancing toy experiment,
we measure the input and output norms of each neuron after a full-balance has been performed on
the network. While the full-balance guarantees that the input and output norms of each neuron will
always be close to each other, since full balancing is performed until that requirement is met, it
remains useful as a benchmark for the rate of convergence of partial-balancing. fig. 3 delineates
the rate of convergence of the input and output norms, doing so almost immediately, due to the
methodology of full balancing. fig. 2 demonstrates the efficacy of partial-balancing, resulting in a
rapid, and computationally less expensive method of ’balancing’ neurons.

A.3. Assessment of Full Balance Before Training

In the main paper, we assess the use of the full balancing operation before the start of training to
demonstrate its efficacy at increasing the rate of convergence and overall test accuracy of various
model architectures and training styles. Partial balancing at every epoch after a full balance results
in the least change due to the fundamentally similar nature of the full balancing operation to the
partial balancing operation, hence its omission from the plots. Repeated partial balancing results in
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Figure 4: A demonstration of the effect of a full neural balance before the start of training on various
sizes of fully connected networks, using various training methodologies. Regardless of L2
Regularization, neural partial balancing, or plain accuracy used in training, a neural full
balance results in faster convergence, and a higher overall accuracy.

Type No FB at Start FB at Start
Plain L1 Reg. L2 Reg. Plain L1 Reg. L2 Reg.

2 Layer FCN 90.09% 90.05% 90.062% 91.22% 93.96% 91.18%
3 Layer FCN 89.594% 89.67% 89.70% 90.83% 93.47% 90.79%
5 Layer FCN 89.09% 87.85% 90.3% 91.37% 95.50% 91.59%

Figure 5: Accompanying fig. 4, Test accuracy during training of Plain, L1 Regularized, and L2
Regularized Fully Connected Networks trained on MNIST, comparing full balancing
before training with no full balance before training. As observed in fig. 4, full balancing
before training results in faster convergence, as well as universally higher attained test
accuracy.

wthe same outcome weights when using the same seed, albeit, over time since those weights aren’t
balanced from the start. In these experiments, we use fully connected neural networks in a few sizes
to demonstrate the range of the balancing operation. Full balance before training is shown to increase
the rate of convergence, as well as the overall accuracy obtainable during training. To assess full
neural balance before training, we performed a full balancing operation on the neurons of the model
after the initialization of the model’s weights, and before the commencement of training.

A.4. Partial Balance with FCNs

In the main paper, we assess the use of the partial balancing operation during training to demon-
strate its efficacy at increasing the rate of convergence and overall test accuracy of various model
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Figure 6: Accompanying table 2, comparison of neural balance, L1 and L2 Regularization on
MNIST. We observe that as the models grow bigger, neural balance helps model converge
faster and perform better than the other techniques.

Type Plain L2 NB L1 NB L2 1e-5 L1 1e-5
2-FCN 91.22% 91.19% 94.542% 91.18% 93.96%
3-FCN 90.84% 90.86% 93.94% 90.79% 93.47%
5-FCN 91.37% 91.63% 96.26% 91.59% 95.48%

Table 5: Test accuracy across training comparisons of partial balancing, L2 Regularization, and
Plain Accuracy for FCNs of varying sizes on MNIST. We observe that L1 partial balancing
outperforms the other training methodologies on all model sizes

architectures and training styles. As included in the main paper in section 3.2, we supplement our
tabular results in fig. 6 with plots that delineate the positive impact of partial and full neural balance
as performed through the balancing operation during/before training. Following the line of inquiry
on the performance of neural balancing on FCNs trained on MNIST, we assess its performance on
FashionMNIST using the same model architectures. We use FCNs of various sizes, and perform a
partial balance on the model at every epoch, identically to the MNIST experiments. We observed
similar results on performance and convergence on FashionMNIST. Regardless of the size of the
model, or the methodology used to train said model, neural balancing significantly increases the rate
of convergence, as well as its overall test accuracy.
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Figure 8: A comparison between partial balancing, L2 Regularization, and Plain Accuracy on a 3
Layer RNN using the IMDB sentiment analysis dataset. We also contrast the standard
initialization with a full neural balancing operation performed before the start of training.
We observe that neural partial balancing performed every epoch, paired with a full balance
before training, results in the best overall accuracy, and convergence speed.
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Figure 7: Test accuracy across training comparisons of partial balancing, L2 Regularization, and
Plain Accuracy for FCNs of varying sizes on Fashion MNIST. We observe that L1 partial
balancing outperforms the other training methodologies on all model sizes.

A.5. Full Balance with RNNs on IMDB

In the main paper, we assess the use of the partial balancing operation during training to demonstrate
its efficacy at increasing the rate of convergence and overall test accuracy of a recurrent neural
network architecture, comparing various training styles in the process. For these experiments, we
use the IMDB sentiment analysis dataset. The IMDB dataset is a collection of positively/negatively
labeled text containing movie reviews from the popular movie review website IMDB. We use a
recurrent neural network with 3 hidden layers to demonstrate the efficacy of the partial balancing
operation.
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Type Plain L1 Regularization L2 Regularization
No NB at Start 88.26 88.23 88.22
NB at Start 88.64% 88.24% 88.57%

Table 6: Accompanying fig. 8, Test accuracy for a Recurrent Neural Network trained on the IMDB
sentiment analysis dataset, comparing Plain, L1 Regularized, and L2 Regularized models
with and without a full balance at the start of training. A full balance before the commence-
ment of training universally results in a higher test accuracy during training.
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Figure 9: A comparison between partial balance, standard regularization, and Plain Accuracy, on
various Fully Connected Networks trained on 1% of the MNIST dataset. We observe that
neural balancing consistently has a positive impact on the rate of convergence and overall
accuracy of the model.

A.6. Neural Balance in Limited Data Environments

As mentioned in the main paper, we assess the performance of a full neural balance, as well as
partial balance during training. These experiments are executed by stratifying samples equally
according to their class labels to maintain a balanced distribution of classes within the training data.
Accompanying table 4, we add plots to visualize the tabular information, and to demonstrate the
efficacy of neural balance at incresing the rate of convergence of training. fig. 9 delineates the efficacy
of partial balance at improving overall accuracy and training speed.

A.7. Neural Balancing in Transformers

Transformers models, characterized by their attention mechanism, represent the state of the art in
the field of Natural Language Processing. In our study, neural balancing is only applied to the
feed-forward, linear layers in the transformer block, as any manipulation of the attention matrix
strongly affects the model output. We observe that the best training method is the ’clean’ style, where
neither neural balancing, nor L2 regularization is applied to the model. For these experiments, we
use the IMDB sentiment analysis dataset, and we use a transformer model with 8 attention heads,
and 6 feedforward encoder layers, each with a hidden dimensionality of 2048 units.
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Type Plain L1 Regularization L2 Regularization
No NB at Start 83.66% 81.95% 83.36%
NB at Start 83.52% 81.65% 83.21%

Table 7: Accompanying fig. 10, Test accuracy for a Transformer Network trained on the IMDB
sentiment analysis dataset, comparing Plain, L1 Regularized, and L2 Regularized models
with and without a full balance at the start of training.
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Figure 10: A comparison of various combinations of full balancing and training methodologies
using a transformer model. The combination of L2 regularization and neural balancing
fails after some epochs, and the clean model without any form of balancing performs the
best out of the training styles.

A.8. Neural Balance in Bioplausible Architectures

In the main paper, we detail the use of neural balancing operations in biologically plausible systems.
Specifically, we employ Direct Feedback Alignment (DFA) in place of backpropagation as the
biologically plausible alternative, and perform partial balancing during the training of the model to
achieve neural balance.
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Type Accuracy
clean 97.764%
nb 97.764%
L2 with λ = 1e− 4 97.758%
L2 with λ = 1e− 5 97.764%

Figure 11: Comparison between neural bal-
ancing and L2 with various
lambda values using a ’clean’
model as a benchmark, trained
with DFA on a 2-layer fully con-
nected network

Type Accuracy
clean 97.4525%
nb 97.4525%
L2 with λ = 1e− 4 95.417%
L2 with λ = 1e− 5 97.4525

Figure 12: Comparison between neural bal-
ancing and L2 with various
lambda values using a ’clean’
model as a benchmark, trained
with DFA on a 7-layer fully con-
nected network

Appendix B. Full Proof and Theory

B.1. Homogeneous and BiLU Activation Functions

In this section, we generalize the basic example of the introduction from the standpoint of the
activation functions. In particular, we consider homogeneous activation functions (defined below).
The importance of homogeneity has been previously identified in somewhat different contexts [10].
Intuitively, homogeneity is a form of linearity with respect to weight scaling and thus it is useful to
motivate the concept of homogeneous activation functions by looking at other notions of linearity for
activation functions. This will also be useful for Section B.5 where even more general classes of
activation functions are considered.

B.1.1. ADDITIVE ACTIVATION FUNCTIONS

Definition 1 A neuronal activation function f : R → R is additively linear if and only if f(x+ y) =
f(x) + (f(y) for any real numbers x and y.

Proposition 2 The class of additively linear activation functions is exactly equal to the class of
linear activation functions, i.e., activation functions of the form f(x) = ax.

Proof Obviously linear activation functions are additively linear. Conversely, if f is additively linear,
the following three properties are true:
(1) One must have: f(nx) = nf(x) and f(x/n) = f(x)/n for any x ∈ R and any n ∈ N. As a
result, f(n/m) = nf(1)/m for any integers n and m (m ̸= 0).
(2) Furthermore, f(0 + 0) = f(0) + f(0) which implies: f(0) = 0.
(3) And thus f(x− x) = f(x) + f(−x) = 0, which in turn implies that f(−x) = −f(x).
From these properties, it is easy to see that f must be continuous, with f(x) = xf(1), and thus f
must be linear.

B.1.2. MULTIPLICATIVE ACTIVATION FUNCTIONS

Definition 3 A neuronal activation function f : R → R is multiplicative if and only if f(xy) =
f(x)(f(y) for any real numbers x and y.
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Proposition 4 The class of continuous multiplicative activation functions is exactly equal to the
class of functions comprising the functions: f(x) = 0 for every x, f(x) = 1 for every x, and all the
even and odd functions satisfying f(x) = xc for x ≥ 0, where c is any constant in R.

Proof It is easy to check the functions described in the proposition are multiplicative. Conversely,
assume f is multiplicative. For both x = 0 and x = 1, we must have f(x) = f(xx) = f(x)f(x) and
thus f(0) is either 0 or 1, and similarly for f(1). If f(1) = 0, then for any x we must have f(x) = 0
because: f(x) = f(1x) = f(1)f(x) = 0. Likewise, if f(0) = 1, then for any x we must have
f(x) = 1 because: 1 = f(0) = f(0x) = f(0)f(x) = f(x). Thus, in the rest of the proof, we can
assume that f(0) = 0 and f(1) = 1. By induction, it is easy to see that for any x ≥ 0 we must have:
f(xn) = f(x)n and f(x1/n) = (f(x))1/n for any integer (positive or negative). As a result, for any
x ∈ R and any integers n and m we must have: f(xn/m) = f(x)n/m. By continuity this implies
that for any x ≥ 0 and any r ∈ R, we must have: f(xr) = f(x)r. Now there is some constant c such
that: f(e) = ec. And thus, for any x > 0, f(x) = f(elog x) = [f(e)]log x = ec log x = xc. To address
negative values of x, note that we must have f [(−1)(−1 = f(1) = 1f(−1)2. Thus, f(−1) is either
equal to 1 or to -1. Since for any x > 0 we have f(−x) = f(−1)f(x), we see that if f(−1) = 1
the function must be even (f(−x) = f(x) = xc), and if f(−1) = −1 the function must be odd
(f(−x) = −f(x)).

We will return to multiplicative activation function in a later section.

B.1.3. LINEARLY SCALABLE ACTIVATION FUNCTIONS

Definition 5 A neuronal activation function f : R → R is linearly scalable if and only if f(λx) =
λf(x) for every λ ∈ R.

Proposition 6 The class of linearly scalable activation functions is exactly equal to the class of
linear activation functions, i.e., activation functions of the form f(x) = ax.

Proof Obviously, linear activation functions are linearly scalable. For the converse, if f is linearly
multiplicative we must have f(λx) = λf(x) = xf(λ) for any x and any λ. By taking λ = 1, we get
f(x) = f(1)x and thus f is linear.

Thus the concepts of linearly additive or linearly scalable activation function are of limited
interest since both of them are equivalent to the concept of linear activation function. A more
interesting class is obtained if we consider linearly scalable activation functions, where the scaling
factor λ is constrained to be positive (λ > 0), also called homogeneous functions.

B.1.4. HOMOGENEOUS ACTIVATION FUNCTIONS

Definition 7 (Homogeneous) A neuronal activation function f : R → R is homogeneous if and only
if: f(λx) = λf(x) for every λ ∈ R with λ > 0.

Remark 8 Note that if f is homogeneous, f(λ0) = λf(0) = f(0) for any λ > 0 and thus f(0) = 0.
Thus it makes no difference in the definition of homogeneous if we set λ ≥ 0 instead of λ > 0).

Remark 9 Clearly, linear activation functions are homogeneous. However, there exists also homo-
geneous functions that are non-linear, such as ReLU or leaky ReLU activation functions.

We now provide a full characterization of the class of homogeneous activation functions.
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B.1.5. BILU ACTIVATION FUNCTIONS

We first define a new class of activation functions, corresponding to bilinear units (BiLU), consisting
of two half-lines meeting at the origin. This class contains all the linear functions, as well as the
ReLU and leaky ReLU functions, and many other functions.

Definition 10 (BiLU) A neuronal activation function f : R → R is bilinear (BiLU) if and only if
f(x) = ax when x < 0, and f(x) = bx when x ≥ 0, for some fixed parameters a and b in R.

These include linear units (a = b), ReLU units (a = 0, b = 1), leaky ReLU (a = ϵ; b = 1) units,
and symmetric linear units (a = −b), all of which can also be viewed as special cases of piece-wise
linear units [16], with a single hinge. One advantage of ReLU and more generally BiLU neurons,
which is very important during backpropagation learning, is that their derivative is very simple and
can only take one of two values (a or b).

Proposition 11 A neuronal activation function f : R → R is homogeneous if and only if it is a BiLU
activation function.

Proof Every function in BiLU is clearly homogeneous. Conversely, any homogeneous function f
must satisfy: (1) f(0x) = 0f(x) = f(0) = 0; (2)f(x) = f(1x) = f(1)x for any positive x; and (3)
f(x) = f(−u) = f(−1)u = −f(−1)x for any negative x. Thus f is in BiLU with a = −f(−1)
and b = f(1).

In Appendix A, we provide a simple proof that networks of BiLU neurons, even with a single
hidden layer, have universal approximation properties. In the next two sections, we introduce two
fundamental neuronal operations, scaling and balancing, that can be applied to the incoming and
outgoing synaptic weights of neurons with BiLU activation functions.

B.2. Scaling

Definition 12 (Scaling) For any BiLU neuron i in network and any λ > 0, we let Sλ(i) denote the
synaptic scaling operation by which the incoming connection weights of neuron i are multiplied by λ
and the outgoing connection weights of neuron i are divided by λ.

Note that because of the homogeneous property the scaling operation does not change how
neuron i affects the rest of the network. In particular, the input-output function of the overall network
remains unchanged after scaling neuron i bt any λ > 0. Note also that scaling always preserves the
sign of the synaptic weights to which it is applied, and the scaling operation can never convert a
non-zero synaptic weight into a zero synaptic weight, or vice versa.

As usual, the bias is treated here as an additional synaptic weight emanating from a unit clamped
to the value one. Thus scaling is applied to the bias.

Proposition 13 (Commutativity of Scaling) Scaling operations applied to any pair of BiLU neurons
i and j in a neural network commute: Sλ(i)Sµ(j) = Sµ(j)Sλ(i), in the sense that the resulting
network weights are the same, regardless of the order in which the scaling operations are applied.
Furthermore, for any BiLU neuron i: Sλ(i)Sµ(i) = Sµ(i)Sλ(i) = Sλµ(i).
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This is obvious. As a result, any set I of BiLU neurons in a network can be scaled simultaneously or
in any sequential order while leading to the same final configuration of synaptic weights. If we denote
by 1, 2, . . . , n the neurons in I , we can for instance write:

∏
i∈I Sλi

(i) =
∏

σ(i)∈I Sλσ(i)
(σ(i)) for

any permutation σ of the neurons. Likewise, we can collapse operations applied to the same neuron.
For instance, we can write: S5(1)S2(2)S3(1)S4(2) = S15(1)S8(2) = S8(2)S15(1)

Definition 14 (Coordinated Scaling) For any set I of BiLU neurons in a network and any λ > 0, we
let Sλ(I) denote the synaptic scaling operation by which all the neurons in I are scaled by the same
λ.

B.3. Balancing

Definition 15 (Balancing) Given a BiLU neuron in a network, the balancing operation B(i) is a
particular scaling operation B(i) = Sλ∗(i), where the scaling factor λ∗ is chosen to optimize a
particular cost function, or regularizer, asociated with the incoming and outgoing weights of neuron
i.

For now, we can imagine that this cost function is the usual L2 (least squares) regularizer, but in
the next section, we will consider more general classes of regularizers and study the corresponding
optimization process. For the L2 regularizer, as shown in the next section, this optimization process
results in a unique value of λ∗ such that sum of the squares of the incoming weights is equal to
the sum of the squares of the outgoing weights, hence the term “balance”. Note that obviously
B(B(i)) = B(i) and that, as a special case of scaling operation, the balancing operation does not
change how neuron i contributes to the rest of the network, and thus it leaves the overall input-output
function of the network unchanged.

Unlike scaling operations, balancing operations in general do not commute as balancing opera-
tions (they still commute as scaling operations). Thus, in general, B(i)B(j) ̸= B(j)B(i). This is
because if neuron i is connected to neuron j, balancing i will change the connection between i and j,
and, in turn, this will change the value of the optimal scaling constant for neuron j and vice versa.
However, if there are no non-zero connections between neuron i and neuron j then the balancing
operations commute since each balancing operation will modify a different, non-overlapping, set of
weights.

Definition 16 (Disjoint neurons) Two neurons i and j in a neural network are said to be disjoint if
there are no non-zero connections between i and j.

Thus in this case B(i)B(j) = Sλ∗(i)Sµ∗(j) = Sµ∗(j)Sλ∗(i) = B(j)B(i). This can be extended to
disjoint sets of neurons.

Definition 17 (Disjoint Set of Neurons) A set I of neurons is said to be disjoint if for any pair i and
j of neurons in I there are no non-zero connections between i and j.

For example, in a layered feedforward network, all the neurons in a layer form a disjoint set, as long
as there are no intra-layer connections or, more precisely, no non-zero intra-layer connections. All
the neurons in a disjoint set can be balanced in any order resulting in the same final set of synaptic
weights. Thus we have:
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Proposition 18 If we index by 1, 2, . . . , n the neurons in a disjoint set I of BiLU neurons in a
network, we have:

∏
i∈I B(i) =

∏
i∈I Sλ∗

i
(i) =

∏
σ(i)∈I Sλ∗

σ(i)
(σ(i)) =

∏
σ(i)∈I B(σ(i)) for any

permutation σ of the neurons.

Finally, we can define the coordinated balancing of any set I of BiLU neurons (disjoint or not
disjoint).

Definition 19 (Coordinated Balancing) Given any set I of BiLU neurons (disjoint or not disjoint) in
a network, the coordinated balacing of these neurons, written as Bλ∗(I), corresponds to coordinated
scaling all the neurons in I by the same factor λ∗, Where λ∗ minimizes the cost functions of all the
weights, incoming and outgoing, associated with all the neurons in I .

Remark 20 While balancing corresponds to a full optimization of the scaling operation, it is also
possible to carry a partial optimization of the scaling operation by choosing a scaling factor that
reduces the corresponding contribution to the regularizer without minimizing it.

B.4. General Framework and Single Neuron Balance

In this section, we generalize the kinds of regularizer to which the notion of neuronal synaptic balance
can be applied, beyond the usual L2 regularizer and derive the corresponding balance equations.
Thus we consider a network (feedforward or recurrent) where the hidden units are BiLU units.
The visible units can be partitioned into input units and output units. For any hidden unit i, if we
multiply all its incoming weights IN(i) by some λ > 0 and all its outgoing weights OUT (i) by
1/λ the overall function computed by the network remains unchanged due to the BiLU homogeneity
property. In particular, if there is an error function that depends uniquely on the input-output function
being computed, this error remains unchanged by the introduction of the multiplier λ. However, if
there is also a regularizer R for the weights, its value is affected by λ and one can ask what is the
optimal value of λ with respect to the regularizer, and what are the properties of the resulting weights.
This approach can be applied to any regularizer. For most practical purposes, we can assume that
the regularizer is continuous in the weights (hence in λ) and lower-bounded. Without any loss of
generality, we can assume that it is lower-bounded by zero. If we want the minimum value to be
achieved by some λ > 0, we need to add some mild condition that prevents the minimal value to
be approached as λ → 0), or as λ → +∞. For instance, it is enough if there is an interval [a, b]
with 0 < a < b where R achieves a minimal value Rmin and R ≥ Rmin in the intervals (0, a] and
[b,+∞). Additional (mild) conditions must be imposed if one wants the optimal value of λ to be
unique, or computable in closed form (see Theorems below). Finally, we want to be able to apply the
balancing approach

Thus, we consider overall regularized error functions, where the regularizer is very general, as
long as it has an additive form with respect to the individual weights:

E(W ) = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (8)

where W denotes all the weights in the network and E(W ) is typically the negative log-likelihood
(LMS error in regression tasks, or cross-entropy error in classification tasks). We assume that the gw
are continuous, and lower-bounded by 0. To ensure the existence and uniqueness of minimum during
the balancing of any neuron, We will assume that each function gw depends only on the magnitude
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|w| of the corresponding weight, and that gw is monotonically increasing from 0 to +∞ (gw(0) = 0
and limx→+∞ gw(x) = +∞). Clearly, L2, L1 and more generally all Lp regularizers are special
cases where, for p > 0, Lp regularization is defined by: R(W ) =

∑
w |w|p.

When indicated, we may require also that the functions gw be continuously differentiable, except
perhaps at the origin in order to be able to differentiate the regularizer with respect to the λ’s and
derive closed form conditions for the corresponding optima. This is satisfied by all forms of Lp

regularization, for p > 0.

Remark 21 Often one introduces scalar multiplicative hyperparameters to balance the effect of E
and R, for instance in the form: E = E + βR. These cases are included in the framework above:
multipliers like β can easily be absorbed into the functions gw above.

Theorem 22 (General Balance Equation). Consider a neural network with BiLU activation func-
tions in all the hidden units and overall error function of the form:

E = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (9)

where each function gw(w) is continuous, depends on the magnitude |w| alone, and grows monotoni-
cally from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and any hidden unit i in
the network and any λ > 0 we can multiply the incoming weights of i by λ and the outgoing weights
of i by 1/λ without changing the overall error E. Furthermore, there exists a unique value λ∗ where
the corresponding weights v (v = λ∗w for incoming weights, v = w/λ∗ for the outgoing weights)
achieve the balance equation: ∑

v∈IN(i)

gw(v) =
∑

w∈OUT (i)

gw(v) (10)

Proof Under the assumptions of the theorem, E is unchanged under the rescaling of the incoming and
outgoing weights of unit i due to the homogeneity property of BiLUs. Without any loss of generality,
let us assume that at the beginning:

∑
w∈IN(i) gw(w) <

∑
w∈OUT (i) gw(w). As we increase λ from

1 to +∞, by the assumptions on the functions gw, the term
∑

w∈IN(i) gw(λw) increases continuously
from its initial value to +∞, whereas the term

∑
w∈OUT (i) gw)w/λ) decreases continuously from its

initial value to 0. Thus, there is a unique value λ∗ where the balance is realized. If at the beginning∑
w∈IN(i) gw(w) >

∑
w∈OUT (i) gw(w), then the same argument is applied by decreasing λ from 1

to 0.

Remark 23 For simplicity, here and in other sections, we state the results in terms of a network of
BiLU units. However, the same principles can be applied to networks where only a subset of neurons
are in the BiLU class, simply by applying scaling and balancing operations to only those neurons.
Furthermore, not all BiLU neurons need to have the same BiLU activation functios. For instance, the
results still hold for a mixed network containing both ReLU and linear units.

Remark 24 In the setting of Theorem 22, the balance equations do not necessarily minimize the
corresponding regularization term. This is addressed in the next theorem.
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Remark 25 Finally, zero weights (w = 0) can be ignored entirely as they play no role in scaling or
balancing. Furthermore, if all the incoming or outgoing weights of a hidden unit were to be zero, it
could be removed entirely from the network

Theorem 26 (Balance and Regularizer Minimization) We now consider the same setting as in
Theorem 22, but in addition we assume that the functions gw are continuously differentiable, except
perhaps at the origin. Then, for any neuron, there exists at least one optimal value λ∗ that minimizes
R(W ). Any optimal value must be a solution of the consistency equation:

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (11)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized balance
equation: ∑

w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (12)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the optimal
value λ∗ is unique and equal to:

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2
(13)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:

∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(14)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (15)

Proof Due to the additivity of the regularizer, the only component of the regularizer that depends on
λ has the form:

R(λ) =
∑

w∈IN(i)

gw(λw) +
∑

w∈OUT (i)

gw(w/λ) (16)

Because of the properties of the functions gw, Rλ is continously differentiable and strictly bounded
below by 0. So it must have a minimum, as a function of λ where its derivative is zero. Its derivative
with respect to λ has the form:

R′(λ) =
∑

w∈IN(i)

wg′w(λw) +
∑

w∈OUT (i)

(−w/λ2)g′w(w/λ) (17)

Setting the derivative to zero, gives:
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λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (18)

Assuming that the left-hand side is non-zero, which is generally the case, the optimal value for λ
must satisfy:

λ =
(∑

w∈OUT (i)wg
′
w(w/λ)∑

w∈IN(i)wg
′
w(λw)

)1/2
(19)

If the regularizing function is the same for all the incoming and outgoing weights (gw = g), then the
optimal value λ must satisfy:

λ =
(∑

w∈OUT (i)wg
′(w/λ)∑

w∈IN(i)wg
′(λw)

)1/2
(20)

In particular, if g(w) = |w|p then g(w) is differentiable except possibly at 0 and g′(w) = s(w)p|w|p−1,
where s(w) denotes the sign of the weight w. Substituting in Equation 20, the optimal rescaling λ
must satisfy:

λ∗ =
(∑

w∈OUT (i)ws(w)|w|p−1∑
w∈IN(i)w|ws(w)|p−1

)1/2p
=

(∑
w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2 (21)

At the optimum, no further balancing is possible, and thus λ∗ = 1. Equation 18 yields immediately
the generalized balance equation to be satisfied at the optimum:∑

w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (22)

In the case of LP regularization, it is easy to check by applying Equation 22, or by direct calculation
that: ∑

w∈IN(i)

|λ∗w|p =
∑

w∈OUT (i)

|w/λ∗|p (23)

which is the generalized balance equation. Thus after balancing neuron, the weights of neuron i
satisfy the Lp balance (Equation 15). The change in the value of the regularizer is given by:

∆R =
∑

w∈IN(i)

|w|p +
∑

w∈OUT (i)

|w|p −
∑

w∈IN(i)

|λ∗w|p −
∑

w∈OUT (i)

|w/λ∗|p (24)

By substituting λ∗ by its explicit value given by Equation 21 and collecting terms gives Equation 14.

Remark 27 The monotonicity of the functions gw is not needed to prove the first part of Theorem 26.
It is only needed to prove uniqueness of λ∗ in the Lp cases.
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Remark 28 Note that the same approach applies to the case where there are multiple additive
regularizers. For instance with both L2 and L1 regularization, in this case the function f has the
form: gw(w) = αw2 + β|w|. Generalized balance still applies. It also applies to the case where
different regularizers are applied in different disconnected portions of the network.

Remark 29 The balancing of a single BiLU neuron has little to do with the number of connections.
It applies equally to fully connected neurons, or to sparsely connected neurons.

B.5. Scaling and Balancing Beyond BiLU Activation Functions

So far we have generalized ReLU activation functions to BiLU activation functions in the context of
scaling and balancing operations with positive scaling factors. While in the following sections we
will continue to work with BiLU activation functions, in this section we show that the scaling and
balancing operations can be extended even further to other activation functions. The section can be
skipped if one prefers to progress towards the main results on stochastic balancing.

Given a neuron with activation function f(x), during scaling instead of multiplying and dividing
by λ > 0, we could multiply the incoming weights by a function g(λ) and divide the outgoing
weights by a function h(λ), as long as the activation function f satisfies:

f(g(λ)x) = h(λ)f(x) (25)

for every x ∈ R to ensure that the contribution of the neuron to the rest of the network remains
unchanged. Note that if the activation function f satisfies Equation 25, so does the activation function
−f . In Equation 25, λ does not have to be positive–we will simply assume that λ belongs to some
open (potentially infinite) interval (a, b). Furthermore, the functions g and h cannot be zero for
λ ∈ (a, b) since they are used for scaling. It is reasonable to assume that the functions g and h are
continuous, and thus they must have a constant sign as λ varies over (a, b).

Now, taking x = 0 gives f(0) = h(λ)f(0) for every λ ∈ (a, b), and thus either f(0) = 0 or
h(λ) = 1 for every λ ∈ (a, b). The latter is not interesting and thus we can assume that the activation
function f satisfies f(0) = 0. Taking x = 1 gives f(g(λ)) = h(λ)f(1) for every λ in (a, b). For
simplicity, let us assume that f(x) = 1. Then, we have: f(g(λ)) = h(λ) for every λ. Substituting in
Equation 25 yields:

f(g(λ)x) = f(g(λ))f(x) (26)

for every x ∈ R and every λ ∈ (a, b). This relation is essentially the same as the relation that
defines multiplicative activation functions over the corresponding domain (see Proposition 4), and
thus we can identify a key family of solutions using power functions. Note that we can define a
new parameter µ = g(λ), where µ ranges also over some positive or negative interval I over which:
f(µx) = f(µ)f(x).

B.5.1. BI-POWER UNITS (BIPU)

Let us assume that λ > 0, g(λ) = λ and h(λ) = λc for some c ∈ R. Then the activation function
must satisfy the equation:

f(λx) = λcf(x) (27)
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for any x ∈ R and any λ > 0. Note that if f(x) = xc we get a multiplicative activation function.
More generally, these functions are characterized by the following proposition.

Proposition 30 The set of activation functions f satisfying f(λx) = λcf(x) for any x ∈ R and
any λ > 0 consist of the functions of the form:

f(x) =

{
Cxc if x ≥ 0

Dxc if x < 0.
(28)

where c ∈ R, C = f(1) ∈ R, and D = f(−1) ∈ R. We call these bi-power units (BiPU). If, in
addition, we want f to be continuous at 0, we must have either c > 0, or c = 0 with C = D.

Given the general shape, these activations functions can be called BiPU (Bi-Power-Units). Note that
in the general case where c > 0, C and D do not need to be equal. In particular, one of them can
be equal to zero, and the other one can be different from zero giving rise to “rectified power units”
(Figure 13).

Linear Leaky ReLU BIPU (D=0,C=1,c=2) BIPU (D=1,C=1,c=2)

Figure 13:

Proof By taking x = 1, we get f(λ) = f(1)λc for any λ > 0. Let f(1) = C. Then we see
that for any x > 0 we must have: f(x) = Cxc. In addition, for every λ > 0 we must have:
f(λ0) = f(0) = λcf(0). So if c = 0, then f(x) = C = f(1) for x ≥ 0. If c ̸= 0, then f(0) = 0. In
this case, if we want the activation function to be continuous, then we see that we must have c ≥ 0. So
in summary for x > 0 we must have f(x) = f(1)xc = Cxc. For the function to be right continuous
at 0, we must have either f(0) = f(1) = C with c = 0 or f(0) = 0 with c > 0. We can now look
at negative values of x. By the same reasoning, we have f(λ(−1)) = f(−λ) = λcf(−1) for any
λ > 0. Thus for any x < 0 we must have: f(x) = f(−1)|x|c = D|x|c where D = f(−1). Thus, if
f is continuous, there are two possibilities. If c = 0, then we must have C = f(1) = D(f −1)− and
thus f(x) = C everywhere. If c ̸= 0, then continuity requires that c > 0. In this case f(x) = Cxc

for x ≥ 0 with C = f(1), and f(x) = Dxc for x < 0 with f(−1) = D. In all cases, it is easy to
check directly that the resulting functions satisfy the functional equation given by Equation 27.
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B.5.2. SCALING BIPU NEURONS

A BiPU neuron can be scaled by multiplying its incoming weight by λ > 0 and dividing its outgoing
weights by 1/λc. This will not change the role of the corresponding unit in the network, and thus it
will not change the input-output function of the network.

B.5.3. BALANCING BIPU NEURONS

As in the case of BiLU neurons, we balance a multiplicative neuron by asking what is the optimal
scaling factor λ that optimizes a particular regularizer. For simplicity, here we assume that the
regularizer is in the Lp class. Then we are interested in the value of λ > 0 that minimizes the
function:

λp
∑

w∈IN
|w|p + 1

λpc

∑
w∈OUT

|w|p (29)

A simple calculation shows that the optimal value of λ is given by:

λ∗ =
(c∑OUT |w|p∑

IN |w|p
)1/p(c+1)

(30)

Thus after balancing the weights, the neuron must satisfy the balance equation:

c
∑
OUT

|w|p =
∑
IN

|w|p (31)

in the new weights w.
So far, we have focused on balancing individual neurons. In the next two sections, we look at

balancing across all the units of a network. We first look at what happens to network balance when a
network is trained by gradient descent and then at what happens to network balance when individual
neurons are balanced iteratively in a regular or stochastic manner.

B.6. Network Balance: Gradient Descent

A natural question is whether gradient descent (or stochastic gradient descent) applied to a network of
BiLU neurons, with or without a regularizer, converges to a balanced state of the network, where all
the BiLU neurons are balanced. So we first consider the case where there is no regularizer (E = E).
The results in [4] may suggest that gradient descent may converge to a balanced state. In particular,
they write that for any neuron i:

d

dt

( ∑
w∈IN(i)

w2 −
∑

w∈OUT (i)

w2
)
= 0 (32)

Thus the gradient flow exactly preserves the difference between the L2 cost of the incoming and
outgoing weights or, in other words, the derivative of the L2 balance deficit is zero. Thus if one were
to start from a balanced state and use an infinitesimally small learning rate one ought to stay in a
balanced state at all times.

However, it must be noted that this result was derived for the L2 metric only, and thus would not
cover other Lp forms of balance. Furthermore, it requires an infinitesimally small learning rate. In
practice, when any standard learning rate is applied, we find that gradient descent does not converge
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to a balanced state (Figure 1). However, things are different when a regularizer term is included in
the error functions as described in the following theorem.

Theorem 31 Gradient descent in a network of BiLU units with error function E = E +R where R
has the properties described in Theorem 26 (including all Lp) must converge to a balanced state,
where every BiLU neuron is balanced.

Proof By contradiction, suppose that gradient descent converges to a state that is unbalanced and
where the gradient with respect to all the weights is zero. Then there is at least one unbalanced
neuron in the network. We can then multiply the incoming weights of such a neuron by λ and the
outgoing weights by 1/λ as in the previous section without changing the value of E. Since the
neuron is not in balance, we can move λ infinitesimally so as to reduce R, and hence E . But this
contradicts the fact that the gradient is zero.

Remark 32 In practice, in the case of stochastic gradient descent applied to E +R, at the end of
learning the algorithm may hover around a balanced state. If the state reached by the stochastic
gradient descent procedure is not approximately balanced, then learning ought to continue. In
other words, the degree of balance could be used to monitor whether learning has converged or not.
Balance is a necessary, but not sufficient, condition for being at the optimum.

Remark 33 If early stopping is being used to control overfitting, there is no reason for the stopping
state to be balanced. However, the balancing algorithms described in the next section could be used
to balance this state.

B.7. Network Balance: Stochastic or Deterministic Balancing Algorithms

In this section, we look at balancing algorithms where, starting from an initial weight configuration
W , the BiLU neurons of a network are balanced iteratively according to some deterministic or
stochastic schedule that periodically visits all the neurons. We can also include algorithms where
neurons are partitioned into groups (e.g. neuronal layers) and neurons in each group are balanced
together.

B.7.1. BASIC STOCHASTIC BALANCING

The most interesting algorithm is when the BiLU neurons of a network are iteratively balanced
in a purely stochastic manner. This algorithm is particularly attractive from the standpoint of
physically implemented neural networks because the balancing algorithm is local and the updates
occur randomly without the need for any kind of central coordination. As we shall see in the
following section, the random local operations remarkably lead to a unique form of global order. The
proof for the stochastic case extends immediately to the deterministic case, where the BiLU neurons
are updated in a deterministic fashion, for instance by repeatedly cycling through them according to
some fixed order.
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B.7.2. SUBSET BALANCING (INDEPENDENT OR TIED)

It is also possible to partition the BiLU neurons into non-overlapping subsets of neurons, and then
balance each subset, especially when the neurons in each subset are disjoint of each other. In this
case, one can balance all the neurons in a given subset, and repeat this subset-balancing operation
subset-by-subset, again in a deterministic or stochastic manner. Because the BiLU neurons in each
subset are disjoint, it does not matter whether the neurons in a given subset are updated synchronously
or sequentially (and in which order). Since the neurons are balanced independently of each other,
this can be called independent subset balancing. For example, in a layered feedforward network with
no lateral connections, each layer corresponds to a subset of disjoint neurons. The incoming and
outgoing connections of each neuron are distinct from the incoming and outgoing connections of
any other neuron in the layer, and thus the balancing operation of any neuron in the layer does not
interfere with the balancing operation of any other neuron in the same layer. So this corresponds to
independent layer balancing,

As a side note, balancing a layer h, may disrupt the balance of layer h+ 1. However, balancing
layer h and h+ 2 (or any other layer further apart) can be done without interference of the balancing
processes. This suggests also an alternating balancing scheme, where one alternatively balances all
the odd-numbered layers, and all the evenly-numbered layers.

Yet another variation is when the neurons in a disjoint subset are tied to each other in the sense
that they must all share the same scaling factor λ. In this case, balancing the subset requires finding
the optimal λ for the entire subset, as opposed to finding the optimal λ for each neuron in the subset.
Since the neurons are balanced in a coordinated or tied fashion, this can be called coordinated or
tied subset balancing. For example, tied layer balancing must use the same λ for all the neurons in a
given layer. It is easy to see that this approach leads to layer synaptic balance which has the form
(for an Lp regularizer): ∑

i

∑
w∈IN(i)

|w|p =
∑
i

∑
w∈OUT (i)

|w|p (33)

where i runs over all the neurons in the layer. This does not necessarily imply that each neuron
in the layer is individually balanced. Thus neuronal balance for every neuron in a layer implies
layer balance, but the converse is not true. Independent layer balancing will lead to layer balance.
Coordinated layer balancing will lead to layer balance, but not necessarily to neuronal balance of
each neuron in the layer. Layer-wise balancing, independent or tied, can be applied to all the layers
and in deterministic (e.g. sequential) or stochastic manner. Again the proof given in the next section
for the basic stochastic algorithm can easily be applied to these cases (see also Appendix B).

B.7.3. REMARKS ABOUT WEIGHT SHARING AND CONVOLUTIONAL NEURAL NETWORKS

Suppose that two connections share the same weight so that we must have: wij = wkl at all times.
In general, when the balancing algorithm is applied to neuron i or j, the weight wij will change
and the same change must be applied to wkl. The latter may disrupt the balance of neuron k or l.
Furthermore, this may not lead to a decrease in the overall value of the regularizer R.

The case of convolutional networks is somewhat special, since all the incoming weights of the
neurons sharing the same convolutional kernel are shared. However, in general, the outgoing weights
are not shared. Furthermore, certain operations like max-pooling are not homogeneous. So if one
trains a CNN with E alone, or even with E+R, one should not expect any kind of balance to emerge
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in the convolution units. However, all the other BiLU units in the network should become balanced
by the same argument used for gradient descent above. The balancing algorithm applied to individual
neurons, or the independent layer balancing algorithm, will not balance individual neurons sharing
the same convolution kernel. The only balancing algorithm that could lead to some convolution layer
balance, but not to individual neuronal balance, is the coordinated layer balancing, where the same λ
is used for all the neurons in the same convolution layer, provided that their activation functions are
BiLU functions.

We can now study the convergence properties of balancing algorithms.

B.8. Convergence of Balancing Algorithms

We now consider the basic stochastic balancing algorithm, where BiLU neurons are iteratively and
stochastically balanced. It is essential to note that balancing a neuron j may break the balance of
another neuron i to which j is connected. Thus convergence of iterated balancing is not obvious.
There are three key questions to be addressed for the basic stochastic algorithm, as well as all the
other balancing variations. First, does the value of the regularizer converges to a finite value? Second,
do the weights themselves converge to fixed finite values representing a balanced state for the entire
network? And third, if the weights converge, do they always converge to the same values, irrespective
of the order in which the units are being balanced? In other words, given an initial state W for the
network, is there a unique corresponding balanced state, with the same input-output functionalities?

B.8.1. NOTATION AND KEY QUESTIONS

For simplicity, we use a continuous time notation. After a certain time t each neuron has been
balanced a certain number of times. While the balancing operations are not commutative as balancing
operations, they are commutative as scaling operations. Thus we can reorder the scaling operations
and group them neuron by neuron so that, for instance, neuron i has been scaled by the sequence of
scaling operations:

Sλ∗
1
(i)Sλ∗

2
(i) . . . Sλ∗

nit
(i) = SΛi(t)(i) (34)

where nit corresponds to the count of the last update of neuron i prior to time t, and:

Λi(t) =
∏

1≤n≤nit

λ∗
n(i) (35)

For the input and output units, we can consider that their balancing coefficients λ∗ are always equal
to 1 (at all times) and therefore Λi(t) = 1 for any visible unit i.

Thus, we first want to know if R converges. Second, we want to know if the weights converge.
This question can be split into two sub-questions: (1) Do the balancing factors λ∗

n(i) converge to
a limit as time goes to infinity. Even if the λ∗

n(i)’s converge to a limit, this does not imply that the
weights of the network converge to a limit. After a time t, the weight wij(t) between neuron j and
neuron i has the value wijΛi(t)/Λj(t), where wij = wij(0) is the value of the weight at the start
of the stochastic balancing algorithm. Thus: (2) Do the quantities Λi(t) converge to finite values,
different from 0? And third, if the weights converge to finite values different from 0, are these values
unique or not, i.e. do they depend on the details of the stochastic updates or not? These questions are
answered by the following main theorem..
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B.8.2. CONVERGENCE OF THE BASIC STOCHASTIC BALANCING ALGORITHM TO A UNIQUE

OPTIMUM

Theorem 34 (Convergence of Stochastic Balancing) Consider a network of BiLU neurons with an
error function E(W ) = E(W )+R(W ) where R satisfies the conditions of Theorem 22 including all
Lp (p > 0). Let W denote the initial weights. When the neuronal stochastic balancing algorithm is
applied throughout the network so that every neuron is visited from time to time, then E(W ) remains
unchanged but R(W ) must converge to some finite value that is less or equal to the initial value,
strictly less if the initial weights are not balanced. In addition, for every neuron i, λ∗

i (t) → 1 and
Λi(t) → Λi as t → ∞, where Λi is finite and Λi > 0 for every i. As a result, the weights themselves
must converge to a limit W ′ which is globally balanced, with E(W ) = E(W ′) and R(W ) ≥ R(W ′),
and with equality if only if W is already balanced. Finally, W ′ is unique as it corresponds to the
solution of a strictly convex optimization problem in the variables Lij = log(Λi/Λj) with linear
constraints of the form

∑
π Lij = 0 along any path π joining an input unit to an output unit and along

any directed cycle (for recurrent networks). Stochastic balancing projects to stochastic trajectories
in the linear manifold that run from the origin to the unique optimal configuration.

Proof Each individual balancing operation leaves E(W ) unchanged because the BiLU neurons are
homogeneous. Furthermore, each balancing operation reduces the regularization error R(W ), or
leaves it unchanged. Since the regularizer is lower-bounded by zero, the value of the regularizer must
approach a limit as the stochastic updates are being applied.

For the second question, when neuron i is balanced at some step, we know that the regularizer R
decreases by:

∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(36)

If the convergence were to occur in a finite number of steps, then the coefficients λ∗
i (t) must become

equal and constant to 1 and the result is obvious. So we can focus on the case where the convergence
does not occur in a finite number of steps (indeed this is the main scenario, as we shall see at the end
of the proof). Since ∆R → 0, we must have:∑

w∈IN(i)

|w|p →
∑

w∈OUT (i)

|w|p (37)

But from the expression for λ∗ (Equation 21), this implies that for every i, λ∗
n(i) → 1 as time

increases (n → ∞). This alone is not sufficient to prove that Λi(t) converges for every i as t → ∞.
However, it is easy to see that Λi(t) cannot contain a sub-sequence that approaches 0 or ∞ (Figure
14). Furthermore, not only ∆R converges to 0, but the series

∑
∆R is convergent. This shows

that, for every i, ∆i(t) must converge to a finite, non-zero value ∆i. Therefore all the weights must
converge to fixed values given by wij(0)Λi/Λj .

Finally, we prove that given an initial set of weights W , the final balanced state is unique and
independent of the order of the balancing operations. The coefficients Λi corresponding to a globally
balanced state must be solutions of the following optimization problem:

min
Λ

R(Λ) =
∑
ij

|Λi

Λj
wij |p (38)
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ȿ1(t)=1 ȿ2(t) ȿ3(t) ȿ4(t) ȿ5(t)=1
ȿ2(t)/ȿ1(t) ȿ3(t)/ȿ2(t) ȿ4(t)/ȿ3(t) ȿ5(t)/ȿ4(t)

Input Unit Output Unit

Figure 14: A path with three hidden BiLU units connecting one input unit to one output unit. During
the application of the stochastic balancing algorithm, at time t each unit i has a cumulative
scaling factor Λi(t), and each directed edge from unit j to unit i has a scaling factor
Mij(t) = Λi(t)/Λj(t). The λi(t) must remain within a finite closed interval away from
0 and infinity. To see this, imagine for instance that there is a subsequence of Λ3(t) that
approaches 0. Then there must be a corresponding subsequence of Λ4(t) that approaches
0, or else the contribution of the weight w43Λ4(t)/Λ3(t) to the regularizer would go
to infinity. But then, as we reach the output layer, the contribution of the last weight
w54Λ5(t)/Λ4(t) to the regularizer goes to infinity because Λ5(t) is fixed to 1 and cannot
compensate for the small values of Λ4(t). And similarly, if there is a subsequence of
Λ3(t) going to infinity, we obtain a contradiction by propagating its effect towards the
input layer.

under the simple constraints: Λi > 0 for all the BiLU hidden units, and Λi = 1 for all the visible
(input and output) units. In this form, the problem is not convex. Introducing new variables
Mj = 1/Λj is not sufficient to render the problem convex. Using variables Mij = Λi/Λj is
better, but still problematic for 0 < p ≤ 1. However, let us instead introduce the new variables
Lij = log(Λi/Λj). These are well defined since we know that Λi/Λj > 0. The objective now
becomes:

minR(L) =
∑
ij

|eLijwij |p =
∑
ij

epLij |wij |p (39)

This objective is strictly convex in the variables Lij , as a sum of strictly convex functions (exponen-
tials). However, to show that it is a convex optimization problem we need to study the constraints
on the variables Lij . In particular, from the set of Λi’s it is easy to construct a unique set of Lij .
However what about the converse?

Definition 35 A set of real numbers Lij , one per connection of a given neural architecture, is
self-consistent if and only if there is a unique corresponding set of numbers Λi > 0 (one per unit)
such that: Λi = 1 for all visible units and Lij = logΛi/Λj for every directed connection from a unit
j to a unit i.
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Λ1 Λ2 Λ3 Λ4 Λ5Λ2/Λ1 Λ3/Λ2 Λ4/Λ3 Λ5/Λ4

Input Unit Output Unit

Figure 15: A path with five units. After the stochastic balancing algorithm has converged, each unit
i has a scaling factor Λi, and each directed edge from unit j to unit i has a scaling factor
Mij = Λi/Λj . The products of the Mij’s along the path is given by: Λ2

Λ1

Λ3
Λ2

Λ4
Λ3

Λ5
Λ4

= Λ5
Λ1

.
Accordingly, if we sum the variables Lij = logMij along the directed path, we get
L21+L32+L43+L54 = logΛ5− log Λ1. In particular, if unit 1 is an input unit and unit
5 is an output unit, we must have Λ1 = Λ5 = 1 and thus: L21 + L32 + L43 + L54 = 0.
Likewise, in the case of a directed cycle where unit 1 and unit 5 are the same, we must
have: L21 + L32 + L43 + L54 + L15 = 0.

Λ1

Λ6

Λ2 Λ3 Λ4

Λ7

Λ5

Λ2/Λ1

Λ3/Λ2 Λ4/Λ3

Λ7/Λ4

Λ6/Λ5

Λ7/Λ6

Figure 16: Two hidden units (1 and 7) connected by two different directed paths 1-2-3-4-7 and 1-5-6-
7 in a BiLU network. Each unit i has a scaling factor Λi, and each directed edge from unit
j to unit i has a scaling factor Mij = Λi/Λj . The products of the Mij’s along each path
is equal to: Λ2

Λ1

Λ3
Λ2

Λ4
Λ3

Λ7
Λ4

= Λ5
Λ1

Λ6
Λ5

Λ7
Λ6

= Λ7
Λ1

. Therefore the variables Lij = logMij must
satisfy the linear equation: L21+L32+L43+L74 = L51+L65+L76 =log Λ7− log Λ1.

Remark 36 This definition depends on the graph of connections, but not on the original values of
the synaptic weights. Every balanced state is associated with a self-consistent set of Lij , but not
every self-consistent set of Lij is associated with a balanced state.

Proposition 37 A set Lij associated with a neural architecture is self-consistent if and only if∑
π Lij = 0 where π is any directed path connecting an input unit to an output unit or any directed

cycle (for recurrent networks).
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Figure 17: Consider two paths α+β and γ+δ from the input layer to the output layer going through
the same unit i. Let us assume that the first path assigns a multiplier Λi to unit i and
the second path assigns a multiplier Λ′

i to the same unit. By assumption we must have:∑
α Lij+

∑
β Lij = 0 for the first path, and

∑
γ Lij+

∑
δ Lij = 0. But α+δ and γ+β

are also paths from the input layer to the output layer and therefore:
∑

α Lij+
∑

δ Lij = 0
and

∑
γ Lij +

∑
β Lij = 0. As a result,

∑
α Lij = log Λi =

∑
γ Lij = Λ′

i. Therefore
the assignment of the multiplier Λi must be consistent across different paths going
through unit i.

Remark 38 Thus the constraints associated with being a self-consistent configuration of Lij’ s
are all linear. This resulting linear manifold L depends only on the architecture, i.e., the graph of
connections, but not on the actual weight values. The strictly convex function R(Lij) depends on
the actual weights W . Different sets of weights W produce different convex functions over the same
linear manifold. If E denotes the total number of connections, then obviously dimL ≤ E. In order
to infer all the Λi, there must exist at least one constrained path going through each node i. Thus, in
a layered feedforward network, the dimension of L is given by: dimL = E −M , where here M
denotes the size of the largest layer.

Remark 39 One could coalesce all the input units and all output units into a single unit, in which
case a path from an input unit to and output unit becomes also a directed cycle. In this representation,
the constraints are that the sum of the Lij must be zero along any directed cycle. In general, it is not
necessary to write a constraint for every path from input units to output units. It is sufficient to select
a representative set of paths such that every unit appears in at least one path.

Proof If we look at any directed path π from unit i to unit j, it is easy to see that we must have:
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C

B
A

Figure 18: The problem of minimizing the strictly convex regularizer R(Lij) =
∑

ij e
pLij |wij |p

(p > 0), over the linear (hence convex) manifold of self-consistent configurations defined
by the linear constraints of the form

∑
π Lij = 0, where π runs over input-output paths.

The regularizer function depends on the weights. The linear manifold depends only on the
architecture, i.e., the graph of connections. This is a strictly convex optimization problem
with a unique solution associated with the point A. At A the corresponding weights
must be balanced, or else a self-consistent configuration of lower cost could be found by
balancing any non-balanced neuron. Finally, any other self-consistent configuration B
cannot correspond to a balanced state of the network, since there must exist balancing
moves that further reduce the regularizer cost (see main text). Stochastic balancing
produces random paths from the origin, where Lij= logMij = 0, to the unique optimum
point A.

∑
π

Lkl = logΛi − log Λj (40)

This is illustrated in Figures 15 and 16. Thus along any directed path that connects any input unit
to any output unit, we must have

∑
π Lij = 0. In addition, for recurrent neural networks, if π is a

directed cycle we must also have:
∑

π Lij = 0. Thus in short we only need to add linear constraints
of the form:

∑
π Lij = 0. Any unit is situated on a path from an input unit to an output unit. Along

that path, it is easy to assign a value Λi to each unit by simple propagation starting from the input unit
which has a multiplier equal to 1. When the propagation terminates in the output unit, it terminates
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consistently because the output unit has a multiplier equal to 1 and, by assumption, the sum of the
multipliers along the path must be zero. So we can derive scaling values Λi from the variables
Lij . Finally, we need to show that there are no clashes, i.e. that it is not possible for two different
propagation paths to assign different multiplier values to the same unit i. The reason for this is
illustrated in Figure 17.

We can now complete the proof Theorem 34. Given a neural network of BiLUs with a set
of weights W , we can consider the problem of minimizing the regularizer R(Lij over the self-
admissible configuration Lij . For any p > 0, the Lp regularizer is strictly convex and the space of
self-admissible configurations is linear and hence convex. Thus this is a strictly convex optimization
problem that has a unique solution (Figure 18). Note that the minimization is carried over self-
consistent configurations, which in general are not associated with balanced states. However, the
configuration of the weights associated with the optimum set of Lij (point A in Figure 18) must be
balanced. To see this, imagine that one of the BiLU units–unit i in the network is not balanced. Then
we can balance it using a multiplier λ∗

i and replace Λi by Λ′
i = Λiλ

∗. It is easy to check that the new
configuration including Λ′

i is self-consistent. Thus, by balancing unit i, we are able to reach a new
self-consistent configuration with a lower value of R which contradicts the fact that we are at the
global minimum of the strictly convex optimization problem.

We know that the stochastic balancing algorithm always converges to a balanced state. We need
to show that it cannot converge to any other balanced state, and in fact that the global optimum
is the only balanced state. By contradiction, suppose it converges to a different balanced state
associated with the coordinates (LB

ij) (point B in Figure 18). Because of the self-consistency, this
point is also associated with a unique set of (ΛB

i ) coordinates. The cost function is continuous and
differentiable in both the Lij’s and the Λi’s coordinates. If we look at the negative gradient of the
regularizer, it is non-zero and therefore it must have at least one non-zero component ∂R/∂Λi along
one of the Λi coordinates. This implies that by scaling the corresponding unit i in the network, the
regularizer can be further reduced, and by balancing unit i the balancing algorithm will reach a
new point (C in Figure 18) with lower regularizer cost. This contradicts the assumption that B was
associated with a balanced stated. Thus, given an initial set of weights W , the stochastic balancing
algorithm must always converge to the same and unique optimal balanced state W ∗ associated with
the self-consistent point A. A particular stochastic schedule corresponds to a random path within the
linear manifold from the origin (at time zero all the multipliers are equal to 1, and therefore for any i
and any j: Mij = 1 and Lij = 0) to the unique optimum point A.

Remark 40 From the proof, it is clear that the same result holds also for any deterministic balancing
schedule, as well as for tied and non-tied subset balancing, e.g., for layer-wise balancing and tied
layer-wise balancing. In the Appendix, we provide an analytical solution for the case of tied
layer-wise balancing in a layered feed-forward network.

Remark 41 The same convergence to the unique global optimum is observed if each neuron, when
stochastically visited, is partially balanced (or favorably scaled) rather than fully balanced, i.e., it is
scaled with a factor that reduces R but not necessarily minimizes R. Stochastic balancing can also
be viewed as a form of EM algorithm where the E and M steps can be taken fully or partially.
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Figure 19: SGD applied to E alone, in general, does not converge to a balanced state, but sGD
applied to E +R converges to a balanced state. (A-C) Simulations use a deep fully
connected autoencoder trained on the MNIST dataset. (D-F) Simulations use a deep
locally connected network trained on the CIFAR10 dataset. (A,D) Regularization leads
to neural balance. (B,E) The training loss decreases and converges during training (these
panels are not meant for assessing the quality of learning when using a regularizer).
(C,F) Using weight regularization decreases the norm of weights. (A-F) Shaded areas
correspond to one s.t.d around the mean (in some cases the s.t.d. is small and the shaded
area is not visible).

B.8.3. CONVERGENCE TO A UNIQUE OPTIMUM FOR BIPU STOCHASTIC BALANCING

We have seen that a generalized form of scaling and balancing can be defined for more general units
than BiLUs, in particular for BiPUs. Thus now we consider a network of units with activations
functions f satisfying the relationship: f(λx) = λcf(x) (note that this includes BiLU units for
c = 1). We even allow c to vary from unit to unit.

It is easy to see that most of the analyses above done for BiLU units apply to this generalization.
In particular, if we apply stocahstic generalized balancing, in the limit the positive multipliers of each
connection wij must satisfy:

Mij = Λi/Λ
cj
j (41)

As above, we can define a new set of variables Lij = logMij and, for any p > 0, the regularizer
R(L) =

∑
ij e

pLij |wij |p is strictly convex. What is different, however, is the set of constraints on
the variables Lij . These are the constraints that allow one to compute the variables Λi uniquely from
the variables Lij (or, equivalently, the variables Mij). This is addressed by the following theorem.
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Figure 20: Even if the starting state is balanced, SGD does not preserve the balance unless
the learning rate is infinitely small. (A-C) Simulations use a deep fully connected
autoencoder trained on the MNIST dataset. (D-F) Simulations use deep locally connected
network trained on the CIFAR10 dataset. (A-F) The initial weights are balanced using
the stochastic balancing algorithm. Then the network is trained by SGD. (A,D) When
the learning rate (lr) is relatively large, without regularization, the initial balance of the
network is rapidly disrupted. (B,E) The training loss decreases and converges during
training (these panels are not meant for assessing the quality of learning when using a
regularizer). (C,F) Using weight regularization decreases the norm of the weights. (A-F)
Shaded areas correspond to one s.t.d around the mean (in some cases the s.t.d. is small
and the shaded area is not visible).

Theorem 42 Under the same conditions of Theorem 34, but using activation functions that satisfy
for each unit i the relationship f(λx) = λcif(x), the corresponding stochastic generalized balancing
algorithm converges to the unique minimum of a strictly convex optimization problem in the variables
Lij . The strictly convex objective function is given by R(L) =

∑
ij e

pLij |wij |p. The constraints are
linear and of the form:

∑
i∈π

(
n∏

k=i

ck

)
Lii−1 = 0 (42)

for each path π from an input unit to an output unit, going sequentially through the units 0, 1, . . . , n,
where 0 corresponds to the input unit, and n corresponds to the output unit of the path. The set of
paths in the constraints must cover all the units in the network.

Proof Let us assume that there is a consistent set of multipliers Λ0, . . . ,Λn associated with the
coefficients Lii−1 = logMii−1 along the path π, with Λ0 = Λn = 1. Since Mii−1 = Λi/Λ

ci−1

i−1 , we
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can derive the multipliers Λi iteratively by propagating information from the input unit to the output
unit, in the form:

Λi = Mii−1Λ
ci−1

i−1 or log Λi = Lii−1 + ci−1 log Λi−1 (43)

Using the boundary conditions Λ0 = Λn = 1 gives the formula in Theorem 42. The same arguments
given for BiLU units can be used to complete the proof.

Remark 43 Note that if all the units have the same exponent c associated with the scaling of their
activation functions, then the linear constraints have the simplified form:∑

i∈π
cn+1−iLii−1 = 0 (44)

Universal Approximation Properties of BiLU Neurons

Here we show that any continuous real-valued function defined over a compact set of the Euclidean
space can be approximated to any degree of precision by a network of BiLU neurons with a single
hidden layer. As in the case of the similar proof given in [3] using linear threshold gates in the hidden
layer, it is enough to prove the theorem for a continuous function f : 0, 1 → R.

Theorem 44 (Universal Approximation Properties of BiLU Neurons) Let f be any continuous
function from [0, 1] to R and ϵ > 0. Let gλ be the ReLU activation function with slope λ ∈ Rs. Then
there exists a feedforward network with a single hidden layer of neurons with ReLU activations of the
form gλ and a single output linear neuron, i.e., with BiLU activation equal to the identity function,
capable of approximating f everywhere within ϵ (sup norm).

Proof To be clear, gλ(x) = 0 for x < 0 and gλ(x) = λx for 0 ≤ x. Since f is continuous over a
compact set, it is uniformly continuous. Thus there exists α > 0 such that for any x1 and x2 in the
[0, 1] interval:

|x2 − x1| < α =⇒ |f(x2)− f(x1)| < ϵ (45)

Let N be an integer such that 1 < Nα, and let us slice the interval [0, 1] into N consecutive slices of
width h = 1/N , so that within each slice the function f cannot jump by more than ϵ. Let us connect
the input unit to all the hidden units with a weight equal to 1. Let us have N hidden units numbered
1, . . . , N with biases equal to 0, 1/N, 2/N, ...., N1/N respectively and activation function of the
form gλk

. It is essential that different units be allowed to have different slopes λk. The input unit
is connected to all the hidden units and all the weights on these connections are equal to 1. Thus
when x is in the k-th slice, (k − 1)/N ≤ x < k/N , all the units from k + 1 to N have an output
equal to 0, and all the units from 1 to k have an output determined by the corresponding slopes. All
the hidden units are connected to the output unit with weights β1, . . . , βN , and β0 is the bias of the
output unit. We want the output unit to be linear. In order for the ϵ approximation to be satisfied,
it is sufficient if in the (k − 1)/N ≤ x < k/N interval, the output is equal to the line joining the
point f((k − 1)/N) to the point f(k/N). In other words, if x ∈ [(k − 1)/N, k/N), then we want
the output of the network to be:
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β0 +
k∑

i=1

βiλi(x− (i− 1)h) =

f(
k − 1

N
) +

f( k
N )− f(k−1

N )

h
(x− (k − 1)h)

(46)

By equating the y-intercept and slope of the lines on the left-hand side and the righ- hand side of
Equation 46, we can solve for the weights β’s and the slopes λ’s.

As in the case of the similar proof using linear threshold functions in the hidden layer (see [3],)
this proof can easily be adapted to continuous functions defined over a compact set of Rn, even with
a finite number of finite discontinuities, and into Rm.

Analytical Solution for the Unique Global Balanced State

Here we directly prove the convergence of stochastic balancing to a unique final balanced state, and
derive the equations for the balanced state, in the special case of tied layer balancing (as opposed to
single neuron balancing). The Proof and the resulting equations are also valid for stochastic balancing
(one neuron at a time) in a layered architecture comprising a single neuron per layer. Let us call tied
layer scaling the operation by which all the incoming weights to a given layer of BiLU neurons are
multiplied by λ > 0 and all the outgoing weights of the layer are multiplied by 1/λ, again leaving the
training error unchanged. Let us call layer balancing the particular scaling operation corresponding
to the value of λ that minimizes the contribution of the layer to the L2 (or any other Lp) regularizer
vaue. This optimal value of λ∗ results in layer-wise balance equations: the sum of the squares of all
the incoming weights of the layer must be equal to the sum of the squares of all the outgoing weights
of the layer in the L2 case, and similarly in all LP cases.

Theorem 45 Assume that tied layer balancing is applied iteratively and stochastically to the layers
of a layered feedforward network of BiLU neurons. As long as all the layers are visited periodically,
this procedure will always converge to the same unique set of weights, which will satisfy the layer-
balance equations at all layers, irrespective of the details of the schedule. Furthermore, the balance
state can be solved analytically.

Proof Every time a layer balancing operation is applied, the training error remains the same, and the
L2 (or any other Lp) regularization error decreases or stays the same. Since the regularization error
is always positive, it must converge to a certain value. Using the same arguments as in the proof of
Theorem 34, the weights must also converge to a stable configuration, and since the configuration
is stable all its layers must satisfy the layer-wise balance equation. The key remaining question is
why is this configuration unique and can we solve it analytically? Let A1, A2, . . . AN denote the
matrices of connections between the layers of the network. Let Λ1,Λ2, . . . ,ΛN−1 be N − 1 strictly
positive multipliers, representing the limits of the products of the corresponding λ∗

i associated with
each balancing step at layer i, as in the proof of Theorem 34. In this notation, layer 0 is the input
layer and layer N is the output layer (with Λ0 = 1 and ΛN = 1).

After converging, each matrix Ai becomes the matrix Λi/Λi−1Ai = MiAi for i = 1 . . . N , with
Mi = λi/Λi−1. The multipliers Mi must minimize the regularizer while satisfying M1 . . .MN = 1
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to ensure that the training error remains unchanged. In other words, to find the values of the Mi’s we
must minimize the Lagrangian:

L(M1, . . . ,MN ) =
N∑
i=1

||MiAi||2 + µ(1−
N∏
i=1

Mi) (47)

written for the L2 case in terms of the Frobenius norm, but the analysis is similar in the general Lp

case. From this, we get the critical equations:

∂L
∂Mi

= 2Mi||Ai||2 − µM1 . . .Mi−1Mi+1 . . .MN = 0

for i = 1, . . . , N and
N∏
i=1

Mi = 1

(48)

As a resut, for every i:

2Mi||Ai||2 −
µ

Mi
= 0 or µ = 2M2

i ||Ai||2 (49)

Thus each Mi > 0 can be expressed in a unique way as a function of the Lagrangian multiplier µ as:
Mi = (µ/2||Ai||2)1/2. By writing again that the product of the Miis equal to 1, we finally get:

µN = 2N
N∏
i=1

||Ai||2 or µ = 2

N∏
i=1

||Ai||2/N (50)

Thus we can solve for Mi:

Mi =
µ

2||Ai||2
=

∏N
i=1 ||Ai||2/N

||Ai||2
for i = 1, . . . , N (51)

Thus, in short, we obtain a unique closed-form expression for each Mi. From there, we infer the
unique and final state of the weights, where A∗

i = MiAi = ΛiAl/Λl−1. Note that each Mi depends
on all the other Mj’s, again showcasing how the local balancing algorithm leads to a unique global
solution.
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