
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

How Does Critical Batch Size Scale in Pre-training?

Hanlin Zhang HANLINZHANG@G.HARVARD.EDU
Depen Morwani DMORWANI@G.HARVARD.EDU
Nikhil Vyas NIKHIL@G.HARVARD.EDU
Harvard University

Jingfeng Wu UUUJF@BERKELEY.EDU
University of California, Berkeley

Difan Zou DZOU@CS.HKU.HK
The University of Hong Kong

Udaya Ghai UGHAI@AMAZON.COM
Dean Foster FOSTER@AMAZON.COM
Amazon

Sham Kakade SHAM@SEAS.HARVARD.EDU

Harvard University

Abstract
Training large-scale models under given resources requires careful design of parallelism strategies.
In particular, the efficiency notion of critical batch size (CBS), concerning the compromise between
time and compute, marks the threshold beyond which greater data parallelism leads to diminishing
returns. To operationalize it, we propose a measure of CBS and pre-train a series of auto-regressive
language models, ranging from 85 million to 1.2 billion parameters, on the C4 dataset. Through
extensive hyper-parameter sweeps and careful control of factors such as batch size, momentum, and
learning rate along with its scheduling, we systematically investigate the impact of scale on CBS.
Then we fit scaling laws with respect to model and data sizes to decouple their effects. Overall,
our results demonstrate that CBS scales primarily with data size rather than model size, a find-
ing we justify theoretically through the analysis of infinite-width limits of neural networks and
infinite-dimensional least squares regression. Of independent interest, we highlight the importance
of common hyper-parameter choices and strategies for studying large-scale pre-training beyond
fixed training durations.

1. Introduction

Efficient optimization is critical in pre-training large models (LMs) at scale [29, 36, 46]. In par-
ticular, large-batch training is key to accelerating training, as it enables more efficient parallelism
across hardware accelerators [18, 57]. Specifically, understanding the scaling behavior of the crit-
ical batch size (CBS) is essential for optimizing data parallelism, as it defines the point beyond
which increasing the batch size may result in computational efficiency degradation. Below the CBS,
approximately linear scaling is achievable—doubling the batch size can proportionally reduce the
number of optimization steps required to reach a target loss. However, beyond this threshold, further
increases in batch size would lead to diminishing returns, making it essential to balance computa-
tional efficiency with model performance [36, 45]. This trade-off presents a challenge for studying

© H. Zhang, D. Morwani, N. Vyas, J. Wu, D. Zou, U. Ghai, D. Foster & S. Kakade.

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

pre-training given resource constraints as practitioners are compelled to navigate difficult decisions
in balancing compute, data, and training time.
We investigate the scaling laws governing CBS in the context of autoregressive transformer-based
language modeling [42, 51]. Analyzing CBS in pre-training is challenging due to the absence
of a precise formalism relating it to model and data sizes in the literature [29, 36]. Moreover,
the interwined effects of scaling model and data sizes proportionally [24] further complicate this
analysis. Although previous works study the effects of batch size on optimization performance [1, 9,
41], two crucial differences are (1) they do not decouple model size and data size; (2) they focus on
optimal batch size that reaches the minimum loss instead of critical batch size. We measure critical
batch size as a metric, which represents the batch size that results in certain overhead compared to
linear scaling: given a certain target validation loss, we measure the number of steps to reach it for
different batch sizes; we derive the transition points that incur certain overhead when doubling the
batch size; then we fit scaling laws w.r.t. model size and data size to systematically study the scaling
of CBS.

29 210 211 212 213

Batch Size (2x)
4

3

2

1

0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

51
2) Chinchilla Setting

Model Size
(Target Loss)

85M (3.42)
151M (3.24)
302M (3.07)
604M (2.92)
1.2B (2.736)

29 210 211 212 213

Batch Size (2x)

Fixed Data Size 3.07B

Model Size
(Target Loss)

85M (3.37)
151M (3.24)
302M (3.16)
604M (3.10)
1.2B (3.06)

29 210 211 212 213

Batch Size (2x)

Fixed Model Size 302M

Target Loss
(Token Size)

3.27 (0.28x)
3.16 (0.5x)
3.06 (1x)
3.00 (2x)
2.94 (4x)

0 500 1000 1500 2000
Model Size (in M)

1000

2000

3000

Cr
iti

ca
l B

at
ch

 S
ize

Chinchilla Setting
Data Type

Fitted
Forecasted

0 500 1000 1500 2000
Model Size (in M)

Fixed Data Size 3.07B
Data Type

Fitted
Forecasted

0 10 20 30 40
Token Size (in B)

Fixed Model Size 302M
Data Type

Fitted
Forecasted

Figure 1: Optimization efficiency and scaling of critical batch size in Chinchilla (left) and
controlled (middle, right) settings. To study the effect of CBS across different model sizes, we
track the relative number of steps required to reach a certain target validation loss. In the Chinchilla
setting (left), we keep the data-to-model size ratio D/N = CChin constant and observe that CBS
increases with scale. However, when controlling for either model size (middle) or data size (right),
the growth in target losses becomes mostly dependent on data size rather than model size (Section 3).

1.1. Empirical Takeaways
Conceptually, we formalize the notion of critical batch size and examine the independent effects of
both model and data size. We start by scaling up data size in tandem with model size, as suggested
in the Chinchilla compute-optimal framework [24]. Through controlled studies, we propose scal-
ing laws that decouple the growth of critical batch size from model and data size, leading to the
following takeaways — an aspect underexplored in previous research.
Overall, our empirical finding that CBS scales primarily with data size implies that when scaling
up data, one can reduce serial training time through greater data parallelism due to the increase of

2

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Empirical Takeaways :

1. In Chinchilla settings, CBS increases when model size N and data size D (or training duration thereafter,
which we will use interchangeably) are jointly scaled up (Figure 1, left).

2. If we scale up training duration D while keeping N fixed (Figure 1, middle), the critical batch size increases
to a similar degree.

3. However, we find that CBS remains nearly invariant when scaling up N while keeping D fixed (Figure 1,
right), suggesting that CBS weakly depends on model size N but more strongly depends on data size D.

4. Our experiments on small 151M proxy models provide insights into a range of common hyper-parameters
and optimization configurations, including transformer context length adjustments, and scaling strategies
based on width versus depth, among others.

CBS, without a loss in computational efficiency that can be measured by floating point operations
(FLOPs).

1.2. Theoretical Implications

Theoretically, maximal update parameterization suggests that, beyond a certain point, increasing
the width of the neural network (while keeping data size fixed) does not further increase the critical
batch size. In contrast, by analyzing a simple least-squares regression with mini-batch SGD, we
provide a theoretical basis for how the critical batch size continues to scale with increasing data
size. Specifically, we introduce two informal theorems here and refer readers to Appendix A for
more details.

Theorem 1 (Informal version of Theorem 4) In infinite width regimes [54], training dynamics
and performance of the networks become effectively independent of the model size. Consequently,
the critical batch size remains nearly invariant when scaling up the model size beyond this point,
indicating that larger models do not require proportionally larger batch sizes to achieve optimal
training efficiency.

Corollary 2 (Informal version of Theorem 6) Consider mini-batch SGD with D samples in the
least square problems under power-law source and capacity conditions. The CBS, which enables
mini-batch SGD to achieve the minimal expected excess risk while ensuring the fastest possible
serial runtime, is given by B∗(D) = Θ(Dc), where the exponent c ≥ 0 is determined by the
exponents of the source and capacity conditions. In the regime where the variance error tends to be
dominant, we have 0 < c < 1/2, indicating CBS grows with data size.

2. Experimental Design and Empirical Findings

We first describe the experimental settings. Refer Appendix G includes extra details. Throughout
this paper, we use the abbreviations ‘M’ for million, ‘B’ for billion, and ‘T’ for trillion.

2.1. Experimental Settings
Model and training details. We train a series of autoregressive LMs with a context length of 512
in different sizes ranging from 85M, 151M, 302M, 604M to 1.2B (Appendix G Table 2) on C4 [43]
with optimizer-specific hyper-parameters reported in Table 3. We adopt the tokenizer of Eleuther

3

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

AI’s gpt-neox-20b that has a vocabulary of size 50280. We set the micro batch size smaller than
the global one and use gradient accumulation to simulate the effects of large global batch sizes. We
focus on distributed data parallelism scenarios where communication is frequent, which simplifies
the evaluation and abstracts actual wall clock savings into a total number of optimization steps.
More details on optimizer configurations and evaluation strategies are included in Appendix G.
Experimental design and outline. To study CBS in Chinchilla settings, we need to consider target
loss on a holdout validation set and measure the amount of optimization steps required to reach
it. We consider the validation loss of batch size 256 at step tChin = CChin ∗ N/(ctx len ∗ bsz) ≈
N/(25∗bsz) for each model size N in Table 2 (context length ctx len set to be 512 for every model)
(Appendix G Table 1). When scaling up model size jointly with data size, the above implies that
each model size would have a different target loss.
Achieving such a goal through the procedure above is challenging not only due to the combinato-
rially many hyper-parameter combinations but also the unknown training dynamics of each model
size and batch size. In particular, as our focus is on the number of training steps needed to achieve a
target validation loss, traditional learning rate decay strategies typically require predefining the total
training duration [10, 25, 26, 34]. To address this, we propose using exponential weight averaging
(EWA) [40] to achieve the desired target validation loss, a simple approach that outperforms other
popular choices (Figure 4). Below, we outline several key aspects step-by-step to approach the goal:

1. Training beyond fixed durations or token amounts, allowing to resume training from checkpoints
until the target validation loss is achieved (Appendix C.1).

2. Training with proper hyper-parameters: ensuring proper sweeps of momentum and learning rate
(Appendix D); adopting well-tuned values for the β2 parameter and the exponential weight av-
eraging decay rate τ , tailored to each batch size (Appendix E).

3. Critical Batch Size Scaling Law

3.1. Formal Definition of Critical Batch Size

2
9

2
10

2
11

2
12

2
13

Batch Size

2
10

2
11

2
12

2
13

2
14

#S
te

ps
 to

 R
ea

ch
 T

ar
ge

t L
os

s

Bopt B *

fN, D(B) (Actual)

f *
N, D(B) = D/B (Linear)

1.2f *
N, D(B) (20% Overhead)

Bopt (Optimal Batch Size)

B * (Critical Batch Size)

Figure 2: Illustration of critical batch size, where
B∗ = 211.87 and context length is 512 by default.

Recall that CBS is the transition point where in-
creasing the batch size by a factor of k, leads to
a reduction in the required number of training
steps by a factor that is less than k. We now de-
fine CBS as the batch size that leads to a 20%
overhead compared to linear scaling. First of
all, define R(N,D,B) as the best loss achiev-
able for a model of size N using a single pass
on D tokens with a batch size B. This would be
obtained by optimally tuning all other param-
eters of the optimizer, while keeping N,D,B
fixed. Below is the formal definition of CBS:

Definition 3 Define Ropt(N,D) = minB
R(N,D,B), Bopt(N,D) = argminB R(N,D,B),
as the minimal loss achieved optimizing over
batch size and the optimal batch size respec-
tively. We define fN,D(B) to be the number of

4

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

steps required to reach Ropt(N,D) as a func-
tion of batch size B. Clearly fN,D(Bopt) = D/Bopt. To define the Critical Batch Size, B∗(N,D),
we can define a linear scaling curve f∗

N,D(B) = D/B. f∗ matches f at Bopt and then scales down
linearly as batch size goes up. B∗(N,D) is defined as the maximum batch size B′ > Bopt(N,D)
such that fN,D(B

′) ≤ 1.2f∗
N,D(B

′).

As illustrated in Figure 2, B∗(N,D) is the batch size at which the number of steps is 20% higher
than what is predicted by the linear extrapolation from the optimal batch size. Note here that 20%
can be replaced by any other suitable measure of increase from linear scaling.

3.2. Scaling Laws w.r.t. Model Size for Chinchilla-optimal Pre-training

As observed in all the results above, doubling the batch size for larger models allows them to more
efficiently reduce the relative number of steps needed to reach the target loss. We ask whether those
increased efficiencies can be predicted via a scaling law.
We begin our first step by fitting a power law of batch size (B) to the absolute number of steps
(Y) to reach the target loss log(Y) = log(a + b

Bα) and then derive the critical batch size. Then
we derive the CBS via B∗ = b

5a + 1.2Bopt, which is implied by a transition point where the total
amount of data under this batch size would incur 20% overhead compared to linear scaling: Dtotal =
(a+ b/Bα

opt) ∗ 1.2Bopt = (a+ b/Bα) ∗B , where α = 1, Bopt is set to be 256 chosen to lie within
the linear scaling regime as suggested in Appendix F. We report the parameters fitted to the power
law relationship between the number of steps Y and batch size B in Appendix Table 6. We adopt
the fixed α = 1 solution, as both strategies yield nearly identical forecasting results.
Secondly, we fit a power law log(B∗) = log(c+ d

Nβ) with respect to the model size N (in million).
The constant term c is set to be 0 by default (as B∗ should be 0 at N = 0), which leads to B∗ =
93.20 ∗ N0.47. We visualize the curve fitted in Figure 1 (left) and report more forecasts in Table 7
in the Appendix.
Overall, we observe an increase in CBS when scaling up in compute-optimal training: In Figure 1
(left), we have target losses selected according to chinchilla steps and we fit the power law of critical
batch size with respect to model sizes N (in million) as B∗ = 93.20 ∗ N0.47. Our results suggest
that a critical batch size around 29 to 211 would be helpful to efficiently optimize models below 1B
on Chinchilla-optimal amount of tokens to study other empirical problems. However, it is common
for the number of tokens trained to scale proportionally with the model’s parameter count. So it
is unclear whether the growth of CBS is because of the increase in (1) model size or (2) the data
size/training duration, a question we explore in the next subsection.

3.3. Decoupling CBS Scaling Laws w.r.t. Data Size and Model Size

Controlled comparison with the same data size. Firstly, we use the Chinchilla token size 3.072B
of 151M models tChin to record the target validation loss for each model size and train all the 302M,
604M, 1.2B models with a smaller duration again to reach these target losses. To optimize for
performance when training on fewer tokens, we also tune the warmup steps accordingly. Figure 1
(top right) shows that all the curves behave similarly and we observe almost no increase in CBS
when enlarging the model size. Moreover, we fit a scaling law with respect to model size thereafter
Figure 1 (bottom right): keeping the data size fixed leads to a scaling law B∗ = 621.341 ∗ N0.087

weakly dependent on model size.

5

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Controlled comparison with the same model size. Moreover, focusing on the 302M models, we
conduct additional experiments by selecting target losses at 0.28×, 0.5×, 2×, and 4× the Chinchilla
step for batch size 256 runs. This setup results in two under-training and two over-training config-
urations. To achieve optimal performance in the over-training scenarios, we increase the warm-up
ratio accordingly, while for the under-training cases, we reduce the warm-up ratio proportionally.
Results in Figure 1 (middle) show that as we enlarge the number of tokens being trained on, we see
an increase of CBS, similar to what we have observed for training large models on chinchilla target
loss. This can also be seen in the forecasted CBS curves shown in Figure 1 (middle) which shows
that as we enlarge the number of tokens being trained on, we see an increase of CBS, similar to what
we have observed in the Chinchilla setting where model and data size are scaled up proportionally.
We also plot the results for scaling both N and D (Figure 1, left) and only scaling D (Figure 1,
right) together in Figure 3. In the side-by-side comparison, we observe the following trends: (i) In
the Chinchilla setting (indicated by the first column in the legend), models of various sizes (85M,
151M, 604M, 1.2B) trained on different token amounts exhibit an increase in critical batch size
as scale grows. (ii) Additionally, each pair of curves with the same color overlaps significantly,
indicating that models of different sizes trained on the same token quantity tend to have similar
critical batch sizes. (iii) Finally, when model size is held constant and only the data size (second
column in the legend) varies, we also observe an increase in critical batch size with scale. Therefore,
we can qualitatively understand that the increase of CBS is likely to be agnostic to model sizes but
due to the increase in training duration.

29 210 211 212 213

Batch Size (2x)
4

3

2

1

0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

51
2)

Model Size (Target Loss)
85M (3.42)
151M (3.24)
604M (2.92)
1.2B (2.74)

302M (3.27)
302M (3.16)
302M (3.00)
302M (2.94)

Figure 3: Controlled comparison by training 302M models on varying amounts of tokens and then
comparing with other model sizes trained in similar amounts of tokens. Models with the same color
or positioned in the same row of the legend represent this comparison. For a fixed token count of
3.072B, we measure the target loss at that step for each model size.

Takeaway on scaling laws for critical batch sizes: Based on the scaling laws and controlled comparisons,
we conclude that the increase in CBS in Chinchilla-optimal training is more strongly attributed to extended
data size or training durations rather than the increase of model size.

6

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

References

[1] Tamay Besiroglu, Ege Erdil, Matthew Barnett, and Josh You. Chinchilla scaling: A replication
attempt. arXiv preprint arXiv:2404.10102, 2024.

[2] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language
models with longtermism. arXiv preprint arXiv:2401.02954, 2024.

[3] Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolu-
tion in wide neural networks. 2022.

[4] Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural
scaling laws. In Forty-first International Conference on Machine Learning, 2024.

[5] Blake Bordelon, Hamza Tahir Chaudhry, and Cengiz Pehlevan. Infinite limits of multi-head
transformer dynamics, 2024.

[6] Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. 2024.

[7] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algo-
rithm. Foundations of Computational Mathematics, 7:331–368, 2007.

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shiv-
ani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Ja-
son Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:
Scaling language modeling with pathways, 2022.

[9] DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi
Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao,
Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He,
Wenjie Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng
Liang, Fangyun Lin, A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu
Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui
Qu, Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song,
Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang,
Shiyu Wang, Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie,
Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping

7

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang, Liyue Zhang, Mingchuan Zhang,
Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou,
Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. Deepseek llm: Scaling open-source language
models with longtermism, 2024.

[10] Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al.
The road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

[11] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al.
Scaling vision transformers to 22 billion parameters. In International Conference on Machine
Learning, pages 7480–7512. PMLR, 2023.

[12] Nolan Dey, Gurpreet Gosal, Zhiming, Chen, Hemant Khachane, William Marshall, Ribhu
Pathria, Marvin Tom, and Joel Hestness. Cerebras-gpt: Open compute-optimal language mod-
els trained on the cerebras wafer-scale cluster, 2023.

[13] Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang, Ribhu Pathria, Hemant
Khachane, Shaheer Muhammad, Zhiming, Chen, Robert Myers, Jacob Robert Steeves, Na-
talia Vassilieva, Marvin Tom, and Joel Hestness. Btlm-3b-8k: 7b parameter performance in a
3b parameter model, 2023.

[14] Ege Erdil. Data movement bottlenecks to large-scale model training:
Scaling past 1e28 flop, 2024. URL https://epochai.org/blog/
data-movement-bottlenecks-scaling-past-1e28-flop. Accessed: 2024-
11-03.

[15] Oleg Filatov, Jan Ebert, Jiangtao Wang, and Stefan Kesselheim. Time transfer: On optimal
learning rate and batch size in the infinite data limit. arXiv preprint arXiv:2410.05838, 2024.

[16] Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

[17] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge,
Michael W Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch
sizes for stochastic gradient descent. arXiv preprint arXiv:1811.12941, 2018.

[18] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour, 2018.

[19] Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating
the science of language models. arXiv preprint arXiv:2402.00838, 2024.

[20] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Hee-
woo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
generative modeling. arXiv preprint arXiv:2010.14701, 2020.

8

https://epochai.org/blog/data-movement-bottlenecks-scaling-past-1e28-flop
https://epochai.org/blog/data-movement-bottlenecks-scaling-past-1e28-flop
http://distill.pub/2017/momentum

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

[21] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kia-
ninejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

[22] Jacob Hilton, Karl Cobbe, and John Schulman. Batch size-invariance for policy optimization.
Advances in Neural Information Processing Systems, 35:17086–17098, 2022.

[23] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[24] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
An empirical analysis of compute-optimal large language model training. Advances in Neural
Information Processing Systems, 35:30016–30030, 2022.

[25] Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, Zhi
Zheng, Yewei Fang, Yuxiang Huang, Xinrong Zhang, Zhen Leng Thai, Chongyi Wang, Yuan
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng,
dahai li, Zhiyuan Liu, and Maosong Sun. MiniCPM: Unveiling the potential of small language
models with scalable training strategies. 2024.

[26] Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and
Martin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations,
2024.

[27] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

[28] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Par-
allelizing stochastic gradient descent for least squares regression: mini-batching, averaging,
and model misspecification. Journal of machine learning research, 18(223):1–42, 2018.

[29] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

[30] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine.
Analyzing and improving the training dynamics of diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 24174–24184,
2024.

[31] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws
in linear regression: Compute, parameters, and data. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

9

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

[33] Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao,
Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yong-
hao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen,
Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim
Baldwin, and Eric P. Xing. Llm360: Towards fully transparent open-source llms, 2023.

[34] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2022.

[35] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In International Conference on
Machine Learning, pages 3325–3334. PMLR, 2018.

[36] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

[37] Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus,
Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained
language models. arXiv preprint arXiv:2305.16264, 2023.

[38] Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+ 3 phases of
compute-optimal neural scaling laws. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[39] Tim Pearce and Jinyeop Song. Reconciling kaplan and chinchilla scaling laws. arXiv preprint
arXiv:2406.12907, 2024.

[40] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

[41] Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Re-
solving discrepancies in compute-optimal scaling of language models. arXiv preprint
arXiv:2406.19146, 2024.

[42] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. OpenAI Blog Post, 2018. URL https:
//openai.com/index/language-unsupervised/.

[43] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[44] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of math-
ematical statistics, pages 400–407, 1951.

[45] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig,
and George E Dahl. Measuring the effects of data parallelism on neural network training.
Journal of Machine Learning Research, 20(112):1–49, 2019.

10

https://openai.com/index/language-unsupervised/
https://openai.com/index/language-unsupervised/

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

[46] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

[47] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic
gradient descent. arXiv preprint arXiv:1710.06451, 2017.

[48] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning
rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[49] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using
deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language
model. arXiv preprint arXiv:2201.11990, 2022.

[50] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[51] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[52] Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and
Cengiz Pehlevan. Feature-learning networks are consistent across widths at realistic scales.
2023.

[53] Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D.
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-
dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies
for large-scale transformer training instabilities, 2023.

[54] Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. 2021.

[55] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466,
2022.

[56] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning
in infinite depth neural networks. 2024.

[57] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

[58] Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram,
Yizhe Zhang, Jiatao Gu, and Joshua M. Susskind. Stabilizing transformer training by prevent-
ing attention entropy collapse. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International

11

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 40770–40803. PMLR, 23–29 Jul 2023.

[59] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision trans-
formers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pages 12104–12113, 2022.

[60] Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl,
Chris Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes?
insights from a noisy quadratic model. Advances in neural information processing systems,
32, 2019.

[61] Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade. Be-
nign overfitting of constant-stepsize sgd for linear regression. Journal of Machine Learning
Research, 24(326):1–58, 2023.

12

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Appendix A. Theory on Scaling of Critical Batch Size

Our experimental results show that CBS increases with larger data sizes but remains (nearly) invari-
ant when scaling up the model size. We now formally investigate this observation using theoretical
analysis for both scenarios.

A.1. Fixed Data Size and Scaling Up Model Size

Various previous works have established infinite width limits of neural networks [3, 54]. For initial-
izations and architectures that obey these limits, we can theoretically claim, that for a fixed training
duration and batch size, the performance of the neural networks asymptotes with increasing width.
The formal statement is provided below:

Theorem 4 For SGD with a given batch size B (or for gradient descent, i.e., B → ∞), training
iterations t, an error tolerance ϵ > 0, fixed learning rate schedule and data ordering, for any
network and initialization satisfying Master Theorem (Theorem G.4) in Yang and Hu [54], there
exists a width w such that for any two networks M1,M2 having widths w1, w2 > w, |R(M1, t) −
R(M2, t)| ≤ ϵ, where R(M, t) denotes the loss of network M at time t.

Proof [Proof of Theorem 4] The proof follows from the fact that the trajectory of the network
approaches a limit as width tends to ∞, and thus, by definition of limits, there exists a width w,
such that for any two networks with a width greater than w, their loss at time t differs by at most ϵ.

Note that the assumption of a fixed learning rate schedule with increasing width might seem strong,
but recent works [55] have shown, that one of these initializations, termed as Maximal Update
Parameterization (µP), exhibits hyperparameter transfer with width. This initialization scheme has
also recently gained popularity because of this property and has been used by many open-source
implementations [12, 13, 25, 33]. Moreover, works [52, 55] have empirically demonstrated that
with µP, networks start exhibiting consistent loss curves at practical widths.
Moreover, as the above theorem holds for a fixed batch size B as well as B → ∞, we expect that
there exists a finite width w such that the above theorem holds for all batch sizes B. Thus, for fixed
training tokens, we would expect that the critical batch size won’t scale with model width
beyond a point. Although we have mostly talked about scaling model width, note that some recent
results have also established such limits for infinite depth ResNets and transformers [5, 6, 56], and
thus the arguments above also hold for these networks.

A.2. Fixed Model Size and Scaling up Data Size

We now turn to studying the impact of data size in mini-batch SGD for a well-specified Gaussian
linear regression problem. Let (x, y) be a pair of covariates and responses from a population distri-
bution. Let the population risk and the population distribution be

R(w) := E(x⊤w − y)2, x ∼ N (0,H), y|x ∼ N (x⊤w∗, σ2),

where w is the trainable parameter, the expectation is over the population distribution, and (H,w∗, σ2)
specify the population distribution. Given D independent samples (xi, yi)

D
i=1 from the population

13

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

distribution, we consider an estimate given by mini-batch SGD,

w0 = 0, wt+1 = wt − γ
1

B

(t+1)B−1∑
j=tB

(x⊤
j wt − yj)xj , t = 0, . . . , n− 1,

where γ > 0 is a constant learning rate, B is the batch size, n := D/B is the number of steps,
w0 = 0 is the initialization (without loss of generality), and the output is the average of the iterates,
w̄ := 1

n

∑n−1
t=0 wt. Then the following theorem provides a tight bound on the excess risk achieved

by the average of the mini-batch SGD iterates.
We write f(D) ≲ g(D) if there is a positive constant c such that f(D) ≤ cg(D) for every D ≥ 1.
We write f(D) ≂ g(D) if f(D) ≲ g(D) ≲ f(D). The proofs are all deferred to Appendix J.

Theorem 5 Let (λi)i>0 be the eigenvalues of H in nonincreasing order. Assume that ∥w0 −
w∗∥2H ≲ σ2. Then for every γ ≲ min{B/tr(H), 1/∥H∥2}, we have

ER(w̄)− σ2 ≂
(

B

Dγ

)2

∥w0 −w∗∥2
H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+ σ2k
∗ + (Dγ/B)2

∑
i>k∗ λ

2
i

D
,

where k∗ := max{k : λk ≥ B/(Dγ)} and the expectation is over the randomness of w̄.

The proof of Theorem 7 is motivated by Zou et al. [61]. We focus on well-specified Gaussian
data distribution for simplicity, but this can be relaxed to misspecified cases under fourth-moment
conditions following the results in Zou et al. [61]. Theorem 7 suggests that for a fixed data size D,
the excess risk depends on the batch size B and the learning rate γ only through their ratio γ/B.
Moreover, a large γ/B tends to decrease the bias error (the terms depending on w∗) but increase
the variance error (the terms depending on σ2), and vice versa. This observation is exploited in the
following corollary, where we compute the CBS that minimizes the sequential running time without
sacrificing the rate of the attained excess risk.

Corollary 6 Under the settings of Theorem 7, additionally assume σ2 ≂ 1 and the following
capacity and source conditions:

for a, b > 1 : λi ≂ i−a, Eλi⟨vi,w
∗
i ⟩2 ≂ i−b, Eλi⟨vi,w

∗
i ⟩⟨vj ,w

∗
j ⟩ = 0 for i ̸= j,

where (λi,vi)i>0 are the eigenvalues and the corresponding eigenvectors of H, and the expectation
is over a prior of w∗. Then we have

1. When b ≤ a, the optimal hyper-parameters (that minimize the expected excess risk up to constant
factors) are γ∗ ≂ 1 and B∗ = 1.

2. When b > a, the optimal hyper-parameters are γ∗ and B∗ such that

0 < γ∗ ≲ 1, 1 ≤ B∗ ≤ D, γ∗/B∗ ≂ D
a

min{b,2a+1}−1
.

Therefore, the CBS is B∗ ≂ D1−a/min{b,2a+1}, which (along with γ∗ ≂ 1) allows mini-batch
SGD output w̄ to attain the optimal rate of the expected excess risk (as data size D grows) with
the smallest number of steps n.

14

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

The capacity and source conditions are from the nonparametric linear regression literature [7] and
are recently used to study scaling laws theory [4, 32, 38]. According to Theorem 6, when b ≤ a, the
bias error tends to dominate the variance error, in this case, the CBS is B∗ = 1 to allow a maximum
number of optimization steps. when b < a, the variance error tends to dominate the bias error, and
the optimal choices of batch size and learning rate balance these two errors. While one can use
B∗ = 1 and a small γ∗ to achieve the best excess risk rate, this leads to a suboptimal sequential
runtime (n = D/B). In this case, the CBS is B∗ ≂ D1−a/min{b,2a+1}, which achieves the optimal
excess risk rate while minimizing the sequential runtime.

Takeaway on the theory of batch size scaling when scaling up data and model size:

• As we scale up model size while keeping the data size fixed, µP suggests that critical batch size does not
scale with model width beyond a point.

• Fixing the model size, the critical batch size increases with the training duration. In the context of high-
dimensional linear regression, where the variance error dominates the bias error, it is possible to choose a
large batch size (as a function of the data size) for mini-batch SGD, allowing for reduced sequential runtime
without compromising the rate at which excess risk is minimized.

Appendix B. Related Work

Scaling laws. Scaling laws describe the parametric relationships among key factors involved in
training neural networks: model size N , dataset size D, training cost C, and final training loss
R. These laws enable the prediction of training loss R based on available resources, making it
possible to optimize resource allocation for efficient model training. For example, Hestness et al.
[21] found R ∝ D−α, with α ∈ [0.07, 0.35]. Of the factors they varied, only tasks can change
the exponent α. Changing the architecture optimizers, regularizers, and loss functions, would only
change the proportionality factor, not the exponent; Henighan et al. [20] studied statistical relations
between N,D,C,R, over a wide range of values and found similar scaling laws, over the range of
N ∈

[
103, 109

]
, C ∈

[
1012, 1021

]
, and over multiple modalities (text, video, image, text to image,

etc.). [29] states that N should be scaled faster than D. However, Chinchilla scaling [23] found
that models are under-trained, and then suggests that when given an increased budget (in FLOPs),
to achieve compute-optimal, model size N and data size D should scale in approximately equal
proportions. Recent efforts [1, 39, 41] have been made in reproducing the scaling laws from [23]
and the [29]. Different from our focus on measuring the efficiency notion of CBS, most of them
focus on deriving optimal hyper-parameters [2, 41] including learning rate and batch size from
small-scale training given a fixed compute budget FLOPs ≈ 6ND without decoupling the effects
of model size and data size.

Optimization and critical batch size. Previous studies have shown that increasing batch sizes
can be offset by a proportional adjustment to the learning rate in small-scale regimes [29, 36, 60].
McCandlish et al. [36] introduce the gradient noise scale, a measure that captures the variation in
gradients across different training examples, which helps predict the critical batch size (CBS). Their
findings also suggest that small-batch training is more compute-efficient, while large-batch training
requires fewer optimizer steps. Momentum-based methods extend scaling to larger batch sizes but
converge to the performance of standard SGD at smaller batch sizes [45]. Additionally, Zhang et al.
[60] analyze the impact of curvature on CBS using a noisy quadratic model, demonstrating that pre-

15

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

conditioning techniques can increase the CBS. Golmant et al. [17] show that the size of the dataset
plays a smaller role in determining training efficiency compared to factors like model architecture
and data complexity. In contrast, Hilton et al. [22] examine how performance can be maintained at
smaller batch sizes. Meanwhile, Smith and Le [47], Smith et al. [48] empirically investigated how
the optimal learning rate changes based on momentum and training set size. Theoretical work has
further sought to characterize CBS by analyzing SGD behavior in least-squares linear regression,
especially in over-parameterized settings [28, 35]. Filatov et al. [15] concurrently find that opti-
mal batch size and CBS scale with data size. However, they do not explore how CBS scales with
model size for models beyond 354M parameters, nor do they provide theoretical justifications or
address the challenge of selecting optimal runs across a broad range of hyperparameters. Our work
advances the optimization literature by formalizing CBS and quantifying its growth w.r.t. data size
and emphasizing the importance of common hyper-parameter choices. It also provides strategies
for studying large-scale pre-training beyond fixed training durations.

Appendix C. Concluding Remarks

In conclusion, this study provides an extensive examination of the scaling laws for critical batch
size in large-scale autoregressive language model pre-training. By systematically analyzing the re-
lationship between model size, data size, and CBS, we found that while CBS increases with data
size, it remains relatively invariant to model size. This finding suggests training on more data may
enable greater data parallelism in pre-training. We further emphasize the role of key hyperparame-
ters and exponential weight averaging, which can match the performance cosine scheduling without
requiring fixed training durations. These insights offer practical strategies for scaling models while
maintaining efficiency, which is critical in resource-constrained scenarios.

C.1. Training Beyond Fixed Durations for Reaching Target Validation Loss

26 27 28 29 210 211 212 213

Batch Size (2x)
11

12

13

14

15

16

17

lo
g 2

(#
St

ep
s)

Target Validation Loss 3.24
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

Figure 4: Comparing and accounting for train-
ing dynamics. Throughout, we adopt Con-
stant+EWA since it performs the best for large
batch sizes and avoids setting a fixed training du-
ration beforehand for reaching a target loss.

Benchmarking learning rate schedulers. In
practice, LMs are usually trained using fixed to-
ken budgets [24], which can determine the to-
tal number of iterations the training would un-
dergo. This training process can be easily de-
composed into learning rate warmup and decay
phases so that a lower learning rate is kept at
the end of training to enable better optimiza-
tion. However, our goal is to find the optimal
performing run under various hyper-parameters
and optimization conditions. This implies
a non-trivial decision regarding selecting the
maximum training duration [10, 26]. As train-
ing beyond fixed durations is particularly favor-
able in many large-scale pre-training scenarios,
we benchmark recently proposed methods like
schedule-free optimizer [10], cosine, warmup-
stable-decay schedule (WSD) [25] (or trape-
zoidal [59]) and our proposed constant+EWA

16

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

strategy which maintains a running average of model weights ξt+1 = τ · ξt+(1− τ) · θt to improve
optimization, where θt is the actual model parameter at step t and we use ξ for evaluation. We show
that our constant+EWA strategy can match the efficiency of cosine scheduling and WSD, especially
for large batch sizes (Figure 4).
Prior research has shown the generalization [27] and optimization [30] benefits of EWA, our find-
ings further reveal that EWA can trade memory for optimization efficiency in LM pre-training,
especially in large-batch regimes. This is useful in scenarios where a target loss must be achieved,
but practitioners are uncertain of the exact maximum data size to set up the learning rate schedule
for training.

Takeaway on learning rate scheduling: EWA consistently improves model training efficiency compared to
using a constant learning rate without it. EWA proves to be an effective approach compared to other baselines
with decaying schemes, offering competitive performance while eliminating the need to predefine training
durations.

C.2. Ablation on Model Context Length

We adopt 512 as the context length of LMs for all of our experiments but it is unclear how it would
impact the efficiency of training and whether the scaling of CBS would vary when we enlarge the
context length. So we sweep over several larger windows 210, 211, 212 (Appendix C.3) Overall all
models in four different context lengths have very similar relative optimization efficiency across
various batch sizes and thus justifies our use of 512 for all the experiments.

Takeaway on model context length: Different context lengths (29 ∼ 212) have similar scaling w.r.t. batch
size.

C.3. Ablation on Model Width and Depth

Model sizes can typically be scaled up in two main ways: by increasing the width, which involves
enlarging the hidden size of the multilayer perceptron (MLP), or by increasing the depth, which
entails adding more layers to the network. As the main result in Figure 1 only involves a single way
for scaling up models (Table 2), e.g. 604M model has 2× width than the 151M one. To explore
alternative scaling strategies, we investigate how the model behavior changes when we scale the
604M model by increasing the depth by 4× instead (detailed configurations in Table 5).

29 210 211 212 213
Batch Size (2x)

2 4

2 3

2 2

2 1

20

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

51
2) Width (Target Loss)

4096 (3.24)
8192 (2.92)
10240 (2.82)

29 210 211 212 213
Batch Size (2x)

Depth (Target Loss)
12 (3.24)
24 (3.07)
48 (2.94)

29 210 211 212 213
Batch Size (2x)

Model Size (Target Loss)
151M (3.24)
604M-width (2.92)
604M-depth (2.94)

Figure 5: Scaling up width and depth shares similar efficiency gain for compute-optimal training.

17

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Firstly, as shown in Figure 5 (left, middle), under Chinchilla settings where data and model size are
scaled proportionally, increasing either model depth or width leads to a similar increase in the CBS.

222221220219218217216

Batch Size (#Tokens)

4

3

2

1

0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

216
) Target Validation Loss 3.24

Context Length
512
1024
2048
4096

Figure 6: Ablation results on context
length using 151M models.

Then through controlled comparison (Figure 5, right), we
see that using two different ways to scale 151M models
to 604M ones is equivalent in efficiency since both curves
overlap.
Our findings may offer practical insights for scaling mod-
els under a fixed token budget that is allocated in pro-
portion to model size. This is particularly relevant be-
cause scaling model width is often favored over increas-
ing depth, as wider models tend to be more amenable to
parallelization without incurring additional latency over-
head [14, 46, 50].

Takeaway on scaling transformer width and depth in
compute-optimal regimes: Increasing width and depth has
similar effects in the increase of critical batch size for
compute-optimal pre-training.

Appendix D. Training Dynamics

A simple strategy for setting warmup steps. To
further prove that the critical batch size actually ex-
ists and the flattening of large batch sizes is not an artifact of not training well with
proper hyper-paragrams, we take into account the warmup fraction in training as well:

211 212 213

Batch Size (2x)
11.2

11.4

11.6

11.8

12.0

lo
g 2

(#
St

ep
s)

Target Validation Loss 3.24
Warmup Steps

0.15
0.25
0.35

Figure 7: Ablation of warmup steps
used in the linear LR warmup stage for
large batch sizes.

we sweep over warmup step ratios (how many fraction
of training steps do we need to linearly scale the learn-
ing rate from zero) over 0.25 and 0.1 and find that 0.25
works best for 85M models. Therefore, we fix this num-
ber of warmup steps to be 0.25 of the tChin for future ex-
periments. For 151M models, we sweep over the frac-
tion of warmup steps in {0.15, 0.25, 0.35}. We show in
Figure 7 that using a warmup ratio of 0.25 can be a rea-
sonable design choice as it enjoys consistently better per-
formance than 0.15 yet only slightly underperforms 0.35.
After we found that setting the warmup steps according
to this heuristic, we use the ratio proportionally for all the
other model sizes.
Examining the last part of training. By closely exam-
ining the final stages of the training process (Figure 8), it
becomes apparent that applying Exponentially Weighted
Averages (EWA) can help smooth out noise, allowing the optimization to converge to the target
loss more efficiently. For example, a very high EWA decay rate would be needed even for a 1.2B
model with a moderate batch size of 1024. Moreover, we observe that the optimization process is
notably influenced by the final phase of training. For instance, by step 10,000, most runs achieve a

18

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

validation loss below 3.2 (Figure 8a), and similarly, a loss below 2.8 is reached by step 30,000 (Fig-
ure 8b). However, to reach the target loss of 2.736, the difference between the best and second-best
runs grows substantially, with the best run requiring over 5,000 fewer steps.

0 10000 20000 30000 40000 50000 60000
Training Steps

3

4

5

6

Va
lid

at
io

n
Lo

ss

2.736

Evaluation Trajectories (Batch Size 1024)
EWA

0.9999
0.9995

0.9992
0.998

40000 50000 60000
2.70

2.75

2.80

2.736

(a) EWA Ablation

0 10000 20000 30000 40000 50000 60000
Training Steps

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

2.736

Evaluation Trajectories (Batch Size 1024)
Adam 2

0.95
0.99

0.999
0.9999

40000 45000 50000 55000
2.70

2.75

2.80

2.736

(b) β2 Ablation

Figure 8: A large enough EWA decay rate τ and Adam β2 is important for long-duration
training. We plot the evaluation curves of 1.2B models, as in Chinchilla settings, we scale up data
size proportionally to model size. When increasing the number of training tokens, it is crucial to
carefully set appropriate values for both β2 and τ to effectively account for efficiency.

Scheduler comparison for other batch sizes. In Figure 9, we include more results on comparing
different schedulers for batch sizes smaller than 8192 that are reported in the main text Figure 1.
Overall, our Constant+EWA performs competitively with cosine scheduling and outperforms WSD
scheduling, especially for large batch size regimes. Note that we sweep over the decay steps as
0.1, 0.2, 0.3× total training steps for WSD scheduling. Cosine scheduling also serves as a well-
tuned baseline as we conduct sweeps over various maximum optimization steps to identify the
optimal value, and then rerun the training using this step count. This approach ensures that the
model reaches the target loss near the end of training, optimizing the performance of learning rate
decay. Under small batch sizes, the schedule-free optimizer [10] is a competitive baseline but it is
significantly worse for batch sizes larger than 1024.
Longer training requires higher EWA decay rate τ . Throughout the paper, we adopt a learn-
ing rate of 0.00316 across most experiments, but it is unclear whether that would be sub-optimal,
especially since training with longer duration may require a lower learning rate as suggested in
[9]. Therefore, we justify our design decision on tuning EWA decay rate for simulating learn-
ing rate decay on different training durations by conducting the following experiments on a se-
ries of 151M models with (a) batch size 256, 0.5× Chinchilla tokens; (b) batch size 256, 20×
Chinchilla tokens; (c) batch size 2048, 20× Chinchilla tokens, all with learning rate swept over
{0.00316, 0.00158, 0.01264, 0.00632, 0.00075} and EWA decay rate τ over {0.99, 0.9968, 0.999,
0.99968, 0.9999}. We set the number of warmup steps to be 0.25 of the total steps for (a) and
0.05 for (b) and (c). The results in Figure 10 denote the validation loss at the end of training, which
consistently show that within each group of experiments, a learning rate of 0.00316 we use through-
out the paper is consistently the best. Moreover, when enlarging the training data size from 0.5×
Chinchilla tokens to 20×, the optimal EWA decay rate value τ would increase as well. This is also
justified in the results presented in Figure 8 and Table 4 which indicate that longer training durations
may benefit from a higher EWA decay rate to improve optimization performance.

19

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

0 25000 50000 75000 100000125000150000
Training Steps

3.2

3.4

3.6

3.8

4.0
Va

lid
at

io
n

Lo
ss

3.24

Evaluation Trajectories (Batch Size 64)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(a) Batch size 64

0 10000 20000 30000 40000 50000 60000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 128)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(b) Batch size 128

0 5000 10000 15000 20000 25000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 256)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(c) Batch size 256

0 2500 5000 7500 10000 12500 15000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 512)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(d) Batch size 512

0 2500 5000 7500 10000 12500 15000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 1024)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(e) Batch size 1024

0 2000 4000 6000 8000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss
3.24

Evaluation Trajectories (Batch Size 2048)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(f) Batch size 2048

0 2000 4000 6000 8000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 4096)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(g) Batch size 4096

Figure 9: Scheduler comparison for all the smaller batch sizes. All are with model size 151M.

0.00075 0.00158 0.00316 0.00632 0.01264
Learning Rate

0.
99

0.
99

68
0.

99
9

0.
99

96
8

0.
99

99
EW

A
De

ca
y

Ra
te

3.3984 3.3787 3.3780 3.3905 3.3998

3.3809 3.3605 3.3598 3.3726 3.3822

3.3757 3.3535 3.3521 3.3651 3.3749

3.4138 3.4036 3.4368 3.4184 3.4138

3.5058 3.6024 3.6383 3.6545 3.6274

(a) Batch Size 256, Data Size 0.5CChinN

0.00075 0.00158 0.00316 0.00632 0.01264
Learning Rate

3.0122 3.0333 3.0082 3.0164 3.0157

3.0050 3.0245 3.0015 3.0102 3.0094

2.9972 3.0156 2.9951 3.0032 3.0026

2.9903 3.0114 2.9890 2.9967 2.9962

2.9853 3.0088 2.9842 2.9906 2.9914

(b) Batch Size 256, Data Size 20CChinN

0.00075 0.00158 0.00316 0.00632 0.01264
Learning Rate

2.9934 2.9794 2.9765 2.9791 2.9911

2.9867 2.9729 2.9702 2.9729 2.9849

2.9812 2.9674 2.9648 2.9677 2.9796

2.9785 2.9645 2.9615 2.9648 2.9765

2.9961 2.9763 2.9674 2.9771 2.9910

(c) Batch Size 2048, Data Size 20CChinN

3.40

3.45

3.50

3.55

3.60

3.65

2.99

3.00

3.01

3.02

3.03

2.965

2.970

2.975

2.980

2.985

2.990

2.995

Figure 10: Impact of learning rate and EWA decay rate across various training durations. Validation
loss at the end of training for each hyper-parameter combination. N denotes the model size. The
best loss is marked by a symbol. Longer training durations, as seen in (b) and (c), necessitate a
higher EWA decay rate for a given learning rate.

Appendix E. Additional Ablation Studies on Studying Adam Optimizer

We employ Adam as the default optimizer for large-scale model training throughout the paper. In
this section, we focus on two key hyper-parameters that significantly affect optimization efficiency
and examine their impact in detail.
The effect of momentum β1 of Adam on CBS. We sweep over several momentum β1 values in
Adam for all learning rates and batch sizes: [0, 0.8, 0.9, 0.95, 0.975]. Overall, Figure 11 shows
that language model pre-training may need a large momentum value to be efficient and β1 = 0.95 is
slightly better (<0.02 gain on eval loss) than 0.9 for batch sizes. We observe that in small batch size
regimes like 26, the performance gap between optimizing with and without momentum β1 is small
while the gap increases as we double the batch size [45]. Moreover, we show that momentum 0.9
and 0.975 have similar effects on the number of steps needed to reach a target validation loss and

20

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

critical batch sizes. On the other hand, small momentum, especially no momentum, would hurt the
optimization. This aligns well with the extensively studied acceleration of momentum in SGD with
momentum [16].

26 27 28 29 210 211 212 213

Batch Size (2x)

11

12

13

14

15

16

lo
g 2

(#
St

ep
s)

Target Validation Loss 3.3
Momentum 1

0
0.8
0.9
0.95
0.975

Figure 11: Ablation results on momentum. All data points are trained using 151M models and a
total number of optimization steps to reach a fixed target loss is reported.

The effect of the second moment decay rate β2 in Adam. As reported in Appendix Table 4,
we found that β2 in Adam, the exponential decay rate of the second momentum estimate of gra-
dients to smooth out the model update, also has significant effects on training for small batch
sizes. This might be because gradients in small-batch training are sparser. Specifically, we ab-
late β2 ∈ [0.95, 0.99, 0.999] for all model sizes and batch sizes in [64, 128, 256, 512]. We find
that the default value 0.95 in previous works that are set for millions of tokens batch size training
might be sub-optimal [19, 49, 53]. For large batch sizes [1024, 2048, 4096, 8192], we experiment
with a small β2 = 0.9 with the model size 151M, finding that it is worse than the default 0.95 we
choose. When training a larger model with a longer duration (e.g. Chinchilla settings in Appendix
Figure 8b), a high enough β2 is necessary.

Takeaway on Adam optimizer:

• Momentum β1 is important in improving training efficiency: a value of 0.95 consistently performs well
across various model sizes and batch sizes. However, setting it too high (0.975) or too low (0.8) leads to
sub-optimal results.

• Smaller β2 = 0.95 is helpful for large-batch training over short durations, while a large β2 = 0.99, 0.999

or 0.9995 is helpful for long-duration training and substantially improves small batch size training (<262k
tokens).

Appendix F. Results Including Small Batch Sizes

For completeness, we demonstrate linear scaling behavior in small-batch regimes across all model
sizes (Figure 12). This shows that all models exhibit linear scaling (with reasonable deviations)
with a batch size ranging from 26 to 210, where doubling the batch size roughly halves the number
of steps needed to reach a target validation loss, as determined by the optimal run with a batch size
of 256 at the Chinchilla step.

21

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

26 27 28 29 210

Batch Size (2x)
4

3

2

1

0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

64
) Chinchilla Compute-optimal Target Validation Loss

Model Size (Target Loss)
85M (3.42)
151M (3.24)
302M (3.07)
604M (2.92)
1.2B (2.736)

Figure 12: Linear scaling regimes: doubling the batch size can halve the optimization steps to
reach the target loss.

Moreover, we include all the results that contain the smallest several batch sizes (Figure 13). Note
that the denominator is the number of steps to reach target loss at batch size 64 instead of 256 now.
Now we can observe clear linear scaling of all the model sizes till around 210 for model sizes, while
the largest three model sizes maintain linear scaling till almost 211. There are minor differences
with the main plot in Figure 1 because of the difficulty of optimizing with very small batch sizes
like 64 but it does not affect the conclusions and takeaways we would like to convey. Since our
focus is primarily on large batch sizes, we consistently use 29 as the starting batch size throughout
the main text.

22

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

26 27 28 29 210 211 212 213 214

Batch Size (2x)
7
6
5
4
3
2
1
0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

64
) Chinchilla Compute-optimal Target Validation Loss

Model Size (Target Loss)
85M (3.42)
151M (3.24)
302M (3.07)
604M (2.92)
1.2B (2.736)

Figure 13: Full results for different models in Chinchilla settings. We include both a largest
batch size 214 start the plot from several small batch sizes 26, 27, 28. Relative number of steps w.r.t.
batch size 26 is reported.

Appendix G. Additional Details on Experiments

Optimizer setup. For optimizers, we try both SGD [44] and Adam [31] and find that SGD without
momentum is significantly worse so we use Adam only for all the experiments. We disable weight
decay in Adam. For generality, though the training set C4 might contain low-quality or duplicated
documents that can potentially lead to training instability [37, 53], we observed that these issues
did not affect our primary target of interest—namely, the final optimization efficiency. As a result,
we didn’t explicitly adopt additional normalization like QK normalization [11, 58] or a z-loss [8]
to mitigate loss spikes.1 We set ϵ =1.0e-8 by default, and refer to momentum as β1 in Adam by
default throughout the paper.
Chinchilla steps for batch size 256 that determine the target losses. For each model size, we
aim to establish a target validation loss by training with a global batch size of 256 on a Chinchilla-
optimal amount of tokens. Given the context length of 512 used throughout, we can determine the
number of training steps required based on the following Table 1. We use a token-to-model size
ratio CChin of approximately 20.34 to study the halving effects of doubling the batch size and to
observe its impact on the critical batch size.
Evaluation data size and frequency. As we need to frequently evaluate the model on a holdout
evaluation set, understanding how large evaluation set size can lead to a stable and reliable measure
yet still pertain efficiency of each run can be important. Therefore, we test out the evaluation
variance on 327680 tokens is 2.17e-4, the variance when evaluating on 1638400 tokens is 4.53e-
5, evaluation variance on 3276800 tokens is 7.65e-6. Therefore, we set the number of evaluation

1. We observe irregular loss spikes despite adopting gradient clipping, but most runs can still be optimized well in the
end.

23

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Table 1: Chinchilla steps for determining the target loss for each model size.

Model Size 85M 151M 302M 604M 1.2B
Chinchilla Step 13193 23438 46875 93750 187500

batches to be 100 by default. Note that the total number of training steps vary dramatically across
batch sizes, so we adopt a hybrid evaluation protocol: the model is evaluated every 2i (i ∈ Z), every
1k steps and every 0.7n, 0.75n, 0.8n, . . . , n steps the last 30% of the total steps n. In this way,
evaluation is conducted more frequently during the end of the training, thereby allowing a more
accurate accounting of the total number of training steps required to get to a target evaluation loss.
Hyper-parameter search details. Due to compute constraints, we cannot perform an exhaustive
search over all hyper-parameter configurations. Instead, as suggested by the ablation studies in
the main text, we gain insights into hyper-parameters by training smaller proxy models (151M
parameters). We optimize the following hyper-parameters in sequence: learning rate, momentum
(β1), warmup steps, scheduler, and context length. Additionally, we tune β2 and τ for each model
size and batch size. Specifically, for large batch sizes (>1024), a smaller β2 and larger τ tend to be
more effective, while the opposite holds true for smaller batch sizes.
Below we show the hyper-parameter choices (Table 3) and optimal ones (Table 4) we report in our
main plot for studying CBS with respect to model sizes. Additionally, Table 5 presents various
model size configurations and scaling methods, with models in bold indicating those used in our
controlled experiments.

Table 2: Model architecture details.

Model Size nheads nlayers dmodel Hidden size of MLPs
85M 12 12 768 3072
151M 16 12 1024 4096
302M 16 24 1024 4096
604M 16 12 2048 8192
1.2B 32 24 2048 8192

24

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Table 3: Sweeping experiments settings. Default values after the hyper-parameter search are in
Bold font. Values in the parathesis mean used not for every sweep.

Hyper-parameter Values
Model Size 85M, 151M, 302M, 604M, 1.2B
Batch size 26 ∼ 214

Learning rate (3.16e-4), 1e-3, 3.16e-3, (1e-2)
Learning rate scheduler constant+EWA, cosine, WSD, schedule free

Warmup fraction 0.15, 0.25, 0.35
Momentum β1 0, 0.8, 0.9, 0.95, 0.975

Adam β2 0.95, 0.99, 0.995, 0.999, 0.9995
EWA decay rate τ 0.95, 0.98, 0.99, 0.995, 0.998, 0.999, 0.9995, (0.99995)

Context Length 512, 1024, 2048, 4096
Grad clipping norm 1.0

Table 4: Optimal hyper-parameters for different model sizes. The optimal means the number of
steps to reach a target validation loss. We refer β2 as the exponential decay rate for the second-
moment estimates in Adam, τ as the interpolation parameters in EWA (ξt+1 = τ · ξt+(1− τ) · θt).
All the optimal runs are trained with momentum β1 = 0.95 and learning rate 3.16e-3.

Batch Size β2 τ

85M
64 0.999 0.9995

128 0.999 0.9995
256 0.999 0.9995
512 0.999 0.998
1024 0.95 0.99
2048 0.95 0.99
4096 0.95 0.99
8192 0.95 0.98
16384 0.95 0.98

Batch Size β2 τ

151M
64 0.99 0.998
128 0.99 0.998
256 0.99 0.998
512 0.99 0.998
1024 0.95 0.95
2048 0.99 0.99
4096 0.99 0.99
8192 0.95 0.95
16384 0.99 0.99

Batch Size β2 τ

302M
64 0.999 0.9995

128 0.999 0.9995
256 0.995 0.9995
512 0.99 0.9995
1024 0.99 0.999
2048 0.95 0.998
4096 0.95 0.995
8192 0.95 0.99
16384 0.99 0.99

Batch Size β2 τ

604M
64 0.9995 0.9995
128 0.9995 0.9995
256 0.9995 0.9995
512 0.9995 0.9995

1024 0.999 0.999
2048 0.998 0.998
4096 0.995 0.995
8192 0.99 0.99
16384 0.99 0.995

Batch Size β2 τ

1.2B
64 0.999 0.9995
128 0.999 0.9995
256 0.995 0.9995
512 0.99 0.9995

1024 0.99 0.999
2048 0.95 0.998
4096 0.95 0.995
8192 0.95 0.99
16384 0.95 0.99

25

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Table 5: Model architectures of the ablation study on the scaling of Depth and Width. Only models
highlighted in bold are used, as they are more comparable in terms of model size.

Model Size nheads nlayers dmodel MLPhidden

151M 16 12 1024 4096
302.09M 16 24 1024 4096
604.18M 16 48 1024 4096
1.208B 16 96 1024 4096

Model Size nheads nlayers dmodel MLPhidden
151M 16 12 1024 4096

339.81M 24 12 1536 6144
604.08M 32 12 2048 8192
943.84M 40 12 2560 10240

26

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Appendix H. Additional Details on Scaling Laws

We first present the fitted power law relationship between the number of optimization steps required
to reach the target loss and the batch size (Table 6)

Table 6: Fitted scaling law parameters for Chinchilla settings when fixing α = 1: log(Y) = log(a+
b

Bα), where Y is the number of steps to reach Chinchilla target loss, B denotes the batch size, and
the critical batch size is solved as B∗ = (

b+5a×1.2×Bopt
5a)

1
α , Bopt = 256.

(a) Fixed α = 1 (default)

Model Size a b α log2(B
∗)

85M 1293.83 2834258.08 1 9.54
151M 1752.42 5677478.78 1 9.90
302M 2095.35 11383269.89 1 10.44
604M 2459.93 19449688.59 1 10.88
1.2B 3897.31 43381130.22 1 11.31

(b) Fitted α

Model Size a b α log2(B
∗)

85M 1348.31 3386537.23 1.03 9.34
151M 1943.53 8259867.95 1.07 9.51
302M 2281.48 13977184.09 1.04 10.20
604M 2733.81 23738850.26 1.04 10.62
1.2B 3388.53 36748556.71 0.97 11.62

We report forecasting results for various model and token sizes, extending beyond the plots pre-
sented in the main text (Table 7). For each row, increasing either model size or token size shows
that the forecasting results remain comparable.

Table 7: Additional forecasted CBS results for larger scale. Recall that we fit B∗ = 93.20×N0.47,
B∗ = 22.91×D0.47 where model size N is in millions and data size D is in billions.

Model Size Forecasted CBS log2(B
∗)

1.5B 2862.17 11.48
2B 3274.93 11.68

2.5B 3635.65 11.83
3B 3959.69 11.95

3.5B 4256.09 12.06
4B 4530.72 12.15

4.5B 4787.63 12.23
5B 5029.77 12.30

5.5B 5259.34 12.36
6B 5478.06 12.42

Token Size Forecasted CBS log2(B
∗)

30B 2833.31 11.47
40B 3240.99 11.66
50B 3597.20 11.81
60B 3917.12 11.94
70B 4209.70 12.04
80B 4480.76 12.13
90B 4734.29 12.21

100B 4973.22 12.28
110B 5199.73 12.34
120B 5415.52 12.40

Note that our definition of CBS and its scaling law have a similar interpretation with the one in
[29, 36] as Emin

Smin
, Smin denotes the minimum possible number of steps taken to reach target loss

and Emin is the minimum possible number of training examples processed to reach target loss. In
particular, recall that critical batch size can be analytically derived as B∗ = b

5a + 1.2Bopt. This
relationship reflects the point where batch size scaling incurs a 20% overhead when the batch size
is doubled while [36]. Here, the parameter b plays a role analogous to Emin, while a corresponds
to Smin, depending on the specific overhead chosen to characterize the diminishing returns from
increasing the batch size.

27

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

Appendix I. Reproducibility

In our training environment, we verify that, across multiple model sizes (2.4M, 9.4M, 19M, 42M,
85M, 151M, 302M), we can (approximately) reproduce the final evaluation loss of Figure 1 in [53].
We use nodes equipped with 8 A100 GPUs, each with 80GiB of memory, for model training. We
built our training framework using the Olmo training suite [19].

Appendix J. Complete Proofs in Appendix A.2

Theorem 7 Assume that x ∼ N (0,H) and y|x ∼ N (x⊤w∗, σ2). Let (λi)i>0 be the eigen-
values of H in nonincreasing order. Assume that ∥w0 − w∗∥2H ≲ σ2. Then for every γ ≲
min{B/tr(H), 1/∥H∥2}, we have

ER(w̄)− σ2 ≂
(

B

Dγ

)2

∥w0 −w∗∥2
H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+ σ2k
∗ + (Dγ/B)2

∑
i>k∗ λ

2
i

D
,

where k∗ := max{k : λk ≥ B/(Dγ)} and the expectation is over the randomness of w̄ and a ≂ b
means that a and b are equal up to a universal constant factor.

Proof [Proof of Theorem 7] The work by Zou et al. [61] studied SGD with batch size 1 for linear
regression and established matching (up to a constant factor) upper and lower bounds on the excess
risk. Our theorem generalizes theirs by further considering the effect of batch size. Our analysis
uses their intermediate results through appropriate reductions. We first define a set of operations on
PSD matrices as follows:

I = I⊗ I, MB = E
[(

1

B

∑
i∈I

xix
⊤
i

)
⊗
(
1

B

∑
i∈I

xix
⊤
i

)]
, M̃ = H⊗H,

T B = H⊗ I+ I⊗H− γMB, T̃ = H⊗ I+ I⊗H− γH⊗H,

where I is an index set of B independent data. Note that

(
MB − M̃

)
◦A = Cov

(
1

B

∑
i∈I

xix
⊤
i A

1/2

)
=

1

B
Cov(xx⊤A1/2).

For Gaussian data x ∈ N (0,H), we have

Cov(xx⊤A1/2) = Ex∈N (0,H)

[
xx⊤Axx⊤]−HAH = 2tr(HA)H.

Together, we obtain (
MB − M̃

)
◦A =

2

B
tr(HA)H.

Now we compute the error propagation along the SGD steps. Let ηt = wt−w∗ be the error vector.
For convenience, let Gt = 1

B

∑
i∈It xix

⊤
i be the empirical covariance of an independent batch.

Then we can define the bias and variance iterates as

ηbias
t =

(
I− γGt

)
ηbias
t−1 , t = 1, . . . , n− 1, ηbias

0 = w0 −w∗,

28

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

and

ηvariance
t =

(
I− γGt

)
ηvariance
t−1 + γ · 1

B

∑
i∈It

ξixi, t = 1, . . . , n− 1, ηvariance
0 = 0,

where ξi = yi − x⊤
i w

∗ ∼ N (0, σ2). We then compute the covariance matrices of these two error
iterates

BB
t := E[ηbias

t ⊗ ηbias
t], CB

t := E[ηvariance
t ⊗ ηvariance

t].

Using the operators, these covariance matrices take the following iterative updates:

BB
0 = η0 ⊗ η0, BB

t = EGt

[
(I− γGt)B

B
t−1(I− γGt)

]
=

(
I − γT B

)
◦BB

t−1,

CB
0 = 0, CB

t = EGt

[
(I− γGt)C

B
t−1(I− γGt)

]
+

γ2

B2
E
[(∑

i∈It

ξixi

)(∑
i∈It

ξixi

)⊤]

=
(
I − γT B

)
◦CB

t−1 +
γ2σ2

B
H,

where the last equation is because

E
[(∑

i∈It

ξixi

)(∑
i∈It

ξixi

)⊤]
= E

[∑
i∈It

ξ2i xix
⊤
i

]
= σ2BH.

Recall that w̄ = 1
n

∑n−1
t=0 wt. First, using Lemmas B.3 and C.1 in [61], we get the following

bias-variance decomposition (note that our setting is well-specified):

E[R(w̄)]−minR(·) = bias + variance,

where

bias :=
1

2
⟨H,E[η̄bias ⊗ η̄bias]⟩

≤ 1

n2

n−1∑
t=0

n−1∑
k=t

〈
(I− γH)k−tH,BB

t

〉
,

≥ 1

2n2

n−1∑
t=0

n−1∑
k=t

〈
(I− γH)k−tH,BB

t

〉
,

variance :=
1

2
⟨H,E[η̄variance ⊗ η̄variance]

≤ 1

n2

n−1∑
t=0

n−1∑
k=t

〈
(I− γH)k−tH,CB

t

〉
,

≥ 1

2n2

n−1∑
t=0

n−1∑
k=t

〈
(I− γH)k−tH,CB

t

〉
,

where

η̄bias :=
1

n

n−1∑
t=0

η̄biast , η̄variance :=
1

n

n−1∑
t=0

η̄variancet .

29

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

The remaining efforts are to characterize BB
t and CB

t for a batch size B. For the bias part, we have

BB
t =

(
I − γT B

)
◦BB

t−1

=
(
I − γT̃

)
◦BB

t−1 + γ2
(
MB − M̃

)
◦BB

t−1

=
(
I − γT̃

)
◦BB

t−1 +
2γ2

B
tr
(
HBB

t−1

)
H, t = 1, . . . , n− 1.

For the variance part, we have

CB
t = (I − γT B) ◦CB

t−1 +
γ2σ2

B
H

= (I − γT̃) ◦CB
t−1 + γ2

(
MB − M̃

)
◦Ct−1 +

γ2σ2

B
H

= (I − γT̃) ◦CB
t−1 +

2γ2

B
tr
(
HCB

t−1

)
H+

γ2σ2

B
H, t = 1, . . . , n− 1.

To obtain an upper bound on excess risk, we replace α in Assumption 2.2 of Zou et al. [61] with
2/B, the number of steps with n := D/B, and the noise level σ2 with σ2/B, then apply the proof
of Theorem 2.1. Similarly, for a lower bound on excess risk, we replace β in Assumption 2.4 with
2/B, the number of steps with n := T/B, and the noise level σ2 with σ2/B, and apply the proof
of Theorem 2.2. By doing the above, we obtain the following matching up to constant factors upper
and lower bounds on the excess risk for mini-batch SGD:

ER(w̄)−minR(·) ≂
(

1

nγ

)2

∥w0 −w∗∥2
H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+
1/B

(
∥w0 −w∗∥2I0:k∗ + nγ∥w0 −w∗∥2Hk∗:∞

)
nγ

·
k∗ + (nγ)2

∑
i>k∗ λ

2
i

n

+
σ2

B
·
k∗ + (nγ)2

∑
i>k∗ λ

2
i

n
,

where k∗ = max{k : λk ≥ 1/(nγ)}, and a sufficient stepsize condition (see Lemma 4.1, Theorems
2.1 and 2.2 in Zou et al. [61]) is

0 < γ ≲ min

{
1

αtr(H)
,

1

∥H∥2

}
≂ min

{
B

tr(H)
,

1

∥H∥2

}
.

The assumption ∥w0 −w∗∥2H ≲ σ2 implies

∥w0 −w∗∥2I0:k∗ + nγ∥w0 −w∗∥2Hk∗:∞

nγ
≤ ∥w0 −w∗∥2H ≲ σ2,

which further simplifies the excess risk bounds to

ER(w̄)−minR(·) ≂
(

1

nγ

)2

∥w0 −w∗∥2
H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+
σ2

B
·
k∗ + (nγ)2

∑
i>k∗ λ

2
i

n
.

Finally, replacing n = D/B in the bounds completes our proof.

30

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

In Theorem 7. we focus on well-specified Gaussian data distribution for simplicity, but this can be
relaxed to misspecified cases under fourth-moment conditions following the results in [61]. The-
orem 7 suggests that for a fixed data size D, the excess risk depends on the batch size B and the
learning rate γ only through their ratio γ/B. Moreover, a large γ/B tends to decrease the bias error
(the terms depending on w∗) but increase the variance error (the terms depending on σ2), and vice
versa. This observation is exploited in the following corollary, where we compute the CBS that
minimizes the sequential running time without sacrificing the rate of the attained excess risk.

Corollary 8 Under the setting of Theorem 7, without loss of generality assume w0 = 0 and σ2 ≂ 1.
Additionally, assume the following capacity and source conditions:

for a, b > 1 : λi ≂ i−a, Eλi⟨vi,w
∗
i ⟩2 ≂ i−b, Eλi⟨vi,w

∗
i ⟩⟨vj ,w

∗
j ⟩ = 0 for i ̸= j,

where (λi,vi)i>0 are the eigenvalues and the corresponding eigenvectors of H, and the expectation
is over a prior of w∗. Then we have

1. When b ≤ a, the optimal hyper-parameters (that minimize the expected excess risk up to constant
factors) are γ∗ ≂ 1 and B∗ = 1.

2. When b > a, the optimal hyper-parameters are γ∗ and B∗ such that

0 < γ∗ ≲ 1, 1 ≤ B∗ ≤ D, γ∗/B∗ ≂ D
a

min{b,2a+1}−1
.

Therefore, B∗ ≂ D1−a/min{b,2a+1} gives the CBS, which (along with γ∗ ≂ 1) allows mini-batch
SGD to attain the smallest sequential runtime while minimizing the excess risk rate.

Proof [Proof of Theorem 8] By λi ≂ i−a, we can solve for k∗ to obtain k∗ ≂ (Dγ/B)1/a. We then
calculate the expected excess risk by Theorem 7 using the capacity and source conditions:

ER(w̄)− σ2 ≂ E
((

B

Dγ

)2

∥w∗∥2
H−1

0:k∗
+ ∥w∗∥2Hk∗:∞

)
+

k∗ + (Dγ/B)2
∑

i>k∗ λ
2
i

D

≂
(

B

Dγ

)2 ∑
i≤k∗

i−b+2a +
∑
i>k∗

i−b +
1

D

(
k∗ +

(
Dγ

B

)2 ∑
i>k∗

i−2a

)

≂
(

B

Dγ

)2

max
{
(k∗)1−b+2a, 1}+ (k∗)1−b +

1

D

(
k∗ +

(
Dγ

B

)2

(k∗)1−2a

)
≂ max

{(
Dγ

B

)(1−b)/a

,

(
Dγ

B

)−2}
+

1

D

(
Dγ

B

)1/a

.

We then discuss three cases.

1. When b ≤ a, we have

ER(w̄)− σ2 ≂
(
Dγ

B

)(1−b)/a

+
1

D

(
Dγ

B

)1/a

≂
(
Dγ

B

)(1−b)/a

,

where the last equality is because γ/B ≲ 1 so the first term dominates the second term. So the
optimal hyper-parameters are γ∗ ≂ 1 and B∗ = 1.

31

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-TRAINING?

2. When a < b < 2a+ 1, we have

ER(w̄)− σ2 ≂
(
Dγ

B

)(1−b)/a

+
1

D

(
Dγ

B

)1/a

,

so the optimal hyper-parameters are

0 < γ∗ ≲ 1, 1 ≤ B∗ ≤ D, γ∗/B∗ ≂ Da/b−1.

3. When b > 2a+ 1, we have

ER(w̄)− σ2 ≂
(
Dγ

B

)−2

+
1

D

(
Dγ

B

)1/a

,

so the optimal hyper-parameters are

0 < γ∗ ≲ 1, 1 ≤ B∗ ≤ D, γ∗/B∗ ≂ Da/(2a+1)−1.

Combining the second and third cases completes the proof.

We compute the CBS in Theorem 8 for mini-batch SGD to solve linear regression under capacity
and source conditions [7]. According to Theorem 8, when b ≤ a, the bias error tends to dominate
the variance error, in this case, the CBS is B∗ = 1 to allow a maximum number of optimization
steps. When b < a, the variance error tends to dominate the bias error, and the optimal choices of
learning rate and batch size balance these two errors. While one can use B∗ = 1 and a small γ∗

to achieve the best excess risk rate, this leads to a suboptimal sequential runtime (n = D/B). In
this case, the CBS is B∗ ≂ D1−a/min{b,2a+1}, which achieves the optimal excess risk rate while
minimizing the sequential runtime.

32

	Introduction
	Empirical Takeaways
	Theoretical Implications

	Experimental Design and Empirical Findings
	Experimental Settings

	Critical Batch Size Scaling Law
	Formal Definition of Critical Batch Size
	Scaling Laws w.r.t. Model Size for Chinchilla-optimal Pre-training
	Decoupling CBS Scaling Laws w.r.t. Data Size and Model Size

	Theory on Scaling of Critical Batch Size
	Fixed Data Size and Scaling Up Model Size
	Fixed Model Size and Scaling up Data Size

	Related Work
	Concluding Remarks
	Training Beyond Fixed Durations for Reaching Target Validation Loss
	Ablation on Model Context Length
	Ablation on Model Width and Depth

	Training Dynamics
	Additional Ablation Studies on Studying Adam Optimizer
	Results Including Small Batch Sizes
	Additional Details on Experiments
	Additional Details on Scaling Laws
	Reproducibility
	Complete Proofs in Section 5.2

