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Abstract
Performative prediction is a framework accounting for the shift in the data distribution induced by
the prediction of a model deployed in the real world. Ensuring rapid convergence to a stable solution
where the data distribution remains the same after the model deployment is crucial, especially in
evolving environments. This paper extends the Repeated Risk Minimization (RRM) framework by
utilizing historical datasets from previous retraining snapshots, yielding a class of algorithms that
we call Affine Risk Minimizers and enabling convergence to a performatively stable point for a
broader class of problems. We introduce a new upper bound for methods that use only the final
iteration of the dataset and prove for the first time the tightness of both this new bound and the
previous existing bounds within the same regime. We also prove that utilizing historical datasets
can surpass the lower bound for last iterate RRM, and empirically observe faster convergence to
the stable point on various performative prediction benchmarks. We offer at the same time the first
lower bound analysis for RRM within the class of Affine Risk Minimizers, quantifying the potential
improvements in convergence speed that could be achieved with other variants in our framework.

1. INTRODUCTION

Decision-making systems are increasingly integral to critical judgments in sectors such as public
policy [5], healthcare [1], and education [19]. However, as these systems become more reliant on
quantitative indicators, they become vulnerable to the effects described by Goodhart’s Law: “When
a measure becomes a target, it ceases to be a good measure” [7]. This principle is particularly
relevant when predictive models not only forecast outcomes but also influence the behavior of in-
dividuals and organizations, leading to performative effects that can subvert the original goals of
these systems.

Given these challenges, it is essential to develop predictive models that are not only accurate
but also robust against the performative shifts they may provoke. The work by [21] addresses this
challenge within the framework of Repeated Risk Minimization (RRM), where they explore the
dynamics of model retraining in the presence of performative feedback loops. In their approach,
the authors propose an iterative method that adjusts the predictive model based on the distribu-
tional shifts caused by prior model deployments, aiming to stabilize the model performance despite
the continuous evolution of the underlying data distribution. By characterizing the convergence
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properties of their method, they provide a theoretical guarantee for the stability of the model at a
performative equilibrium.

Our work extends this framework by leveraging the datasets collected at each snapshot during
the retraining process, introducing a new class of algorithms called Affine Risk Minimizers. By
utilizing historical data from previous updates, we show that it is possible to converge to a stable
point for a broader class of problems that were previously unsolvable, extending beyond the bounds
established in prior analyses [17]. We derive a new upper bound under less restrictive assump-
tions than [17] and provide the first tightness analysis for the framework in [21] as well as for our
newly established rate. Our method, which incorporates historical datasets, demonstrates superior
convergence properties both theoretically and experimentally.

Faster convergence is of particular importance in scenarios where the data distribution is subject
to continuous change. By achieving more rapid convergence, our framework ensures that the model
stabilizes more quickly, minimizing the period during which predictions may be unreliable.

Contributions. 1 We establish a new upper bound, enhancing the convergence rate of RRM un-
der less restrictive conditions; 2 We establish the tightness of the analysis in both our framework
and the framework proposed by [21]; 3 We introduce a new class of algorithms, named Affine Risk
Minimizers, that provides convergence for a wider class of problems by utilizing linear combina-
tions of datasets from earlier training snapshots; 4 We provide both theoretical and experimental
enhancements, showcasing scenarios where this framework improves convergence; 5 Finally, we
introduce the first technique for establishing theoretical lower bounds across each framework, de-
tailing the maximum potential improvement in convergence rates achievable through the use of past
datasets.

Code. github.com/pedramkho/bounds_in_performative_prediction

2. REPEATED RISK MINIMIZATION (RRM)

RRM iteratively retrains the model on the distribution it induces until it converges to a performa-
tively stable classifier. Formally, consider a model with parameters θ ∈ Θ, and a distribution D(θ)
that depends on these parameters. The performative risk is defined as:

PR(θ) = Ez∼D(fθ) [ℓ(fθ(x), y)] (1)

where ℓ(fθ(x), y) is the loss function for a data point z = (x, y). A classifier is performatively
stable if it minimizes the performative risk on the distribution it induces:

θPS = argmin
θ∈Θ

Ez∼D(fθPS )
[ℓ(fθ(x), y)] (2)

The RRM framework updates the model parameters by solving:

θt+1 = argmin
θ∈Θ

Ez∼D(fθt )
[ℓ(fθ(x), y))] (3)

until convergence, i.e., θt+1 ≈ θt.
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3. IMPROVED RATES AND OPTIMALITY OF ANALYSIS

Both Perdomo et al. [21] and Mofakhami et al. [17] derive convergence rates for RRM under distinct
assumptions. The assumptions made in these studies reflect the sensitivity of the distribution map
D(.) to changes in the model and the structural properties of the loss function. Specifically, Per-
domo et al. [21] focuses on Wasserstein-based sensitivity and convexity with respect to the model
parameters, while Mofakhami et al. [17] introduces a framework with Pearson χ2-based sensitivity
and strong convexity with respect to the predictions. Building on these foundations, and motivated
by Mofakhami et al. [17] we now outline the assumptions for our framework:

Assumption 1 ϵ-sensitivity w.r.t. Pearson χ2 divergence: The distribution map D(fθ), with pdf
pfθ , maintains ϵ-sensitivity with respect to Pearson χ2 divergence. Formally, for any fθ, fθ′ ∈ F:

χ2(D(fθ′),D(fθ)) ≤ ϵ∥fθ − fθ′∥2fθ , (4)

where
∥fθ − fθ′∥2fθ∗ :=

∫
∥fθ(x)− fθ′(x)∥2pfθ∗(x)dx, (5)

and

χ2(D(fθ′),D(fθ)) :=

∫ (
pfθ′ (z)− pfθ(z)

)2
pfθ(z)

dz . (6)

This assumption, inspired by prior work on Lipschitz continuity on D(.), implies that if two
models with similar prediction functions are deployed, the distributions they induce should also be
similar.

Assumption 2 Norm equivalency: The distribution map D(fθ) satisfies a bounded norm ratio with
parameters C ≥ 1 and c ≤ C. For all fθ, fθ′ ∈ F:

c∥fθ − fθ′∥2fθ∗ ≤ ∥fθ − fθ′∥2 ≤ C∥fθ − fθ′∥2fθ∗ , (7)

where
∥fθ − fθ′∥2 =

∫
∥fθ(x)− fθ′(x)∥2p(x) dx, (8)

and p(x) is the initial distribution, referred to as the base distribution.

Assumption 3 Strong convexity w.r.t. predictions: The loss function ŷ 7→ ℓ(ŷ, y) is γ-strongly
convex. Specifically, for all y, ŷ1, ŷ2 ∈ Y:

ℓ(ŷ1, y) ≥ ℓ(ŷ2, y) + (ŷ1−ŷ2)
⊤∇ŷℓ(ŷ2, y)

+
γ

2
∥ŷ1 − ŷ2∥2.

Assumption 4 Bounded gradient norm: The loss function ℓ(fθ(x), y) has a bounded gradient
norm, with an upper bound M = supx,y,θ ∥∇ŷℓ(fθ(x), y)∥.

Building upon Mofakhami et al. [17], we introduce a new theorem that demonstrates faster linear
convergence for RRM, showing that stability can be achieved under less restrictive conditions.
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Theorem 1 Suppose the loss ℓ(fθ(x), y) is γ-strongly convex with respect to fθ(x) (A3) and that
the gradient norm with respect to fθ(x) is bounded by M = supx,y,θ ∥∇ŷℓ(fθ(x), y)∥ (A4). Let
the distribution map D(·) be ϵ-sensitive with respect to the Pearson χ2 divergence (A1), satisfy a
bounded norm ratio with parameters C ≥ 1 and c ≤ C (A2), and the function space F be convex
and compact under the norm ∥ · ∥.

Then, for G(θt) = argminθ∈Θ Ez∼D(fθt )
ℓ(fθ(x), y), with z = (x, y), we have1:

∥fG(θ) − fG(θ′)∥fθ ≤
√
ϵM

γ
∥fθ − fθ′∥fθ .

By the Schauder fixed-point theorem, a stable classifier fθPS exists, and if
√
ϵM
γ < 1, RRM converges

to a unique stable point fθPS at a linear rate:

∥fθt − fθPS∥fθPS
≤
(√

ϵM

γ

)t

∥fθ0 − fθPS∥fθPS
.

This shows that RRM achieves linear convergence to a stable classifier, provided that
√
ϵM
γ < 1,

ensuring that the mapping is contractive and guarantees convergence. The proof of this theorem is
provided in Appendix D.

This result improves upon Mofakhami et al. [17] by eliminating the constant C from the rate, as
defined in Assumption 2. Additionally, this approach can achieve improved rates of convergence, as
discussed in Theorem 5, where we show how relaxing this assumption along with the new definition
of ϵ-sensitivity leads to faster convergence.

Despite these improvements, the following theorem establishes a lower bound under the given
assumptions, indicating that the convergence rate cannot be further improved without additional
conditions:

Theorem 2 Suppose that Assumptions 1-4 hold, with parameters ϵ, M , and γ such that
√
ϵM
γ ≤ 1.

Under these conditions, there exists a problem instance such that, utilizing RRM, the following
holds:

∥fθt − fθPS
∥fθPS

= Ω

((√
ϵM

γ

)t)
. (9)

If instead
√
ϵM
γ > 1, the bound is Ω(1), indicating non-convergence.

The full proof of this theorem can be found in Appendix F.
This result establishes the tightness of the convergence rate under the specific assumptions out-

lined earlier, demonstrating that the bound cannot be improved without imposing more restrictive
assumptions. A similar tightness analysis for the framework proposed by Perdomo et al. [21] is
provided in Appendix C.

Our theorems show that given the assumptions in either framework, the convergence rate for
RRM reaches a fundamental lower bound. This implies that further improvements in convergence
speed would require either more restrictive assumptions or a novel optimization framework.

In the next section, we present a new approach that surpasses this lower bound by leveraging
data from previous training snapshots, allowing for faster convergence beyond the limits established
by existing methods.

1. Throughout this work, whenever we refer to fG(θ), it denotes fθ̂ , where θ̂ ∈ G(θ).
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4. USAGE OF OLD SNAPSHOTS

Our method introduces an alternative approach to improve convergence. Instead of relying solely
on the current data distribution induced by D(fθt), we leverage datasets from previous training
snapshots {D(fθi)}t−1

i=0. The updated framework optimizes model parameters over an aggregated
distribution:

θt+1 = argmin
θ∈Θ

E(x, y)∼Dt
[ℓ(fθ(x), y)] (10)

where Dt is an affine combination of previous distributions, formulated as:

Dt =

t−1∑
i=0

α
(t)
i D(fθi), s.t.

t−1∑
i=0

α
(t)
i = 1 (11)

We refer to this class of algorithms as Affine Risk Minimizers. As demonstrated in Appendix ??
(Lemma 8), the set of stable points for this class of algorithms coincides with those obtained through
standard RRM.

The following theorem provides theoretical evidence of improved convergence, which will be
further supported by experiments in Section A.

Although this improvement is based on a more restrictive set of assumptions, these assumptions
still hold for the lower bound described in Theorem 2.

Lemma 1 Consider the class of problems for which Assumptions 1-4 are satisfied, and let the
distribution map D(.) be ϵ

C -sensitive with respect to the base distribution within the convex function
space F . Formally, for any fθ, fθ′ ∈ F ,

χ2(D(fθ′),D(fθ)) ≤
ϵ

C
∥fθ − fθ′∥2,

where ∥fθ − fθ′∥2 :=
∫
∥fθ(x)− fθ′(x)∥2p(x)dx. The distribution at iteration t is given by

Dt =
1

2
D(fθt) +

1

2
D(fθt−1).

Under these conditions, the following convergence property holds for the iterative sequence
generated by Equation 10:

∥fθt+1 − fθt∥ =

(√√
3+2
4

√
ϵM

γ

)
mt, (12)

where mt = max{∥fθt − fθt−1∥, ∥fθt−1 − fθt−2∥}.

The problem class defined here aligns with that in Theorem 2 for the case C ≈ 1.

Theorem 3 If
(√√

3+2
4

√
ϵM
γ

)
< 1, the sequence described in Lemma 1 forms a Cauchy sequence,

converging to a stable point.
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This theorem shows that in the regime where
√
ϵM

γ
<

1√√
3+2
4

≈ 1.035

and C ≈ 1, it is possible to converge to a stable point despite the lower bound in Theorem 2, while
operating under the same conditions as the lower bound. A detailed proof of this theorem, along
with Lemma 1 is provide’d in Appendix G, where we also establish that the algorithm generates a
Cauchy sequence, thereby guaranteeing convergence to the stable point.

In the next section, we explore the lower bound for the convergence rates achievable using any
affine combination of previous snapshots.

5. LOWER BOUNDS FOR AFFINE RISK MINIMIZERS

In the previous section, we established the potential for convergence across a wider class of prob-
lems using Affine Risk Minimizers. This prompts the question of how much the convergence speed
can be improved, which we address in this section.

We propose the first distinct lower bounds for the framework described in Section 3 and that of
Perdomo et al. [21] for the class of Affine Risk Minimizers. The lower bound for our framework is
presented in the following section, while the corresponding result for Perdomo et al. [21] is detailed
in Section C.2.

Theorem 4 Suppose that Assumptions 1-4 hold. Then, there exists a problem instance in this
regime, and for any algorithm in the Affine Risk Minimizers class, such that:

∥fθt − fθPS
∥fθPS

= Ω

((
1

1
e + 2

√
ϵM

γ

)t)
. (13)

This demonstrates that the convergence rate for the class of problems satisfying Assumptions 1-
4 cannot exceed the given lower bound.

CONCLUSION

This work introduces Affine Risk Minimizers, a novel class of algorithms that utilize historical
datasets from retraining snapshots to address convergence challenges in performative prediction.
By deriving a new upper bound and demonstrating its tightness, along with the first lower bound
analysis for this class of methods, we establish theoretical and empirical evidence for improved
convergence under less restrictive assumptions. These results highlight the advantages of aggregat-
ing past data, enabling the resolution of a broader range of performative prediction problems while
improving model stability in evolving environments.
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Appendix A. Experiments

We conduct experiments in two semi-synthetic environments to evaluate whether aggregating past
snapshots improves convergence to the performatively stable point. We present an empirical com-
parison of different aggregation windows for prior snapshots. At each time step t, we form Dt by
aggregating the datasets from the training snapshots as

Dt =
1

τ

t∑
i=t−τ+1

D(fθi),

where we compare methods using various values of τ , including τ = 1, 2, 4, t
2 , and ’all’ (which

includes all snapshots up to time t).
We first begin with a discussion on our evaluation metric, followed by detailed case-studies on

both the credit scoring environment [17] and the rideshare markets [18] in subsequent subsections
(A.1, A.2).

Evaluation Metric. Throughout our experiments, we focus on changes in loss as an effect of
performativity. We define ∆Rt, i.e. the loss shift due to performativity at time t, as the absolute
difference in loss observed by a model before and after the data distribution has changed due to
performative effects while keeping the model’s state constant.

∆Rt =
∣∣Ez∼D(θt)[ℓ(z, θ

t)]− Ez∼D(θt−1)[ℓ(z, θ
t)]
∣∣ (14)

This metric allows for clearer comparisons between methods by minimizing overlap in the plots,
unlike the performative risk (see Eq.1).

A.1. Credit Scoring

Setup. Inspired by [17], we use the Resample-if-Rejected (RIR) procedure to model distribution
shifts in a controlled experimental setting. This methodology involves users strategically altering
their data to influence the classification outcome.

Let us consider a base distribution with probability density function p and a function g :
fθ(x) 7→ g(fθ(x)) indicating the probability of rejection based on the prediction fθ(x) ∈ R. The
modified distribution pfθ , under the RIR mechanism, evolves as follows:

• Sample x from p.

• With probability 1− g(fθ(x)), accept and output x. Otherwise, resample from p.

Our data comes from Kaggle’s Give Me Some Credit dataset2, which includes features x ∈ R11

and labels y ∈ {0, 1}, where y = 1 indicates a defaulting applicant. We partition the features into
two sets: strategic and non-strategic. We assume independence between strategic and non-strategic
features. While non-strategic features remain fixed, the strategic features are resampled using the
RIR procedure with a rejection probability g(fθ(x)) = fθ(x)+ δ. We use a scaled sigmoid function
after the second layer. This scales fθ(x) to the interval [0, 1 − δ], ensuring that g(fθ(x)) ∈ [δ, 1]
remains a valid probability. Further implementation details are available in Appendix K.

2. Give me Some Credit Dataset, 2011: https://www.kaggle.com/c/GiveMeSomeCredit
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Figure 1: Loss shift due to performativity for the credit scoring environment. To accurately measure
Performative Risk we average over 500 runs per method. Increasing the size of aggregation window
τ from 1 → 2 → 4 → t/2 → all reduces the loss shifts and hence, reaches the stable point faster.

Theorem 5 Let fθ(x) ∈ [0, 1 − δ] for all θ ∈ Θ, where 0 < δ < 1 is fixed. Then, for g(fθ(x)) =
fθ(x) + δ, RIR is ϵ-sensitive as defined in Assumption 1 with ϵ = O(δ−

3
2 ).

This result provides an example where our rate surpasses the rate previously derived in [17]
(O(δ−2) within the same framework). Furthermore, for any value of M and γ, our rate can guaran-
tee convergence for a wider class of problems. The proof of this theorem, along with justifications
for the improved rate, is presented in Appendix J.

Results. The outcomes of this case study are shown in Figure 1. For larger window sizes (τ ),
we omit the initial iterations in the figure because they follow the same update rule as smaller τ
methods, leading to identical values.
Figure 1 demonstrates the advantage of using older snapshots in the optimization process. As the
window size increases from 1 to 2, we observe a near-half reduction in the loss shift, particularly in
the early iterations, with the improvement persisting even after 50 iterations. While larger windows
continue to reduce the loss shift, the marginal gains decrease as window size increases. This is
evident from the similarity between the curves for window sizes t/2, and ’all’.
The decreasing marginal gains elicit a trade-off against the time, memory, and resource consump-
tion. As the window size increases, both time per iteration and the memory consumption increase
linearly. Thus, the user has to pick the right aggregation window τ based on the application and
the resources available to achieve the desired convergence speed while respecting the logistical
constraints. The corresponding performative risk plot can also be found in Appendix K.

A.2. Revenue Maximization in Ride Share Market

Setup. This is a two-player semi-synthetic game between two ride-share providers, Uber and
Lyft, both trying to maximize their respective revenues. Each player takes an action in this game by
setting their price for the riders across 11 different locations in the same city of Boston, MA. The
price set by one firm directly influences the demand observed by both firms. The demand constitutes

11
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Figure 2: Loss shift due to performativity
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Figure 3: Performative Risk

Figure 4: The plot shows loss shift due to performativity and performative risk across the iterations
for player 1 in the game between two firms. The values in the plot are means over 200 runs.
Increasing the aggregation window size τ leads to lower loss shifts even in this simple game and
hence, faster convergence than just relying on the dataset from the current timestamp.

the data distribution and at each time step, a total of 25 demand samples are sampled for a firm i and
the optimal response is found by minimizing Equation 16 for a maximum of 40 re-training steps.
The simulations use the publicly available Uber and Lyft dataset from Boston, MA on Kaggle3.

Notations and Equations. Let i = 1, 2 denote the two firms in the game. Inspired by [18], each
firm i observes a demand zi that depends linearly on the firm’s price xi and its opponent’s price x−i

as follows:
zi = Aixi +A−ix−i + ξ, ξ ∼ N (zbase, 1) (15)

where zbase is the mean demand observed at each of the 11 locations, as measured in the kaggle
dataset. Each demand sample is a vector of dimension 11.
Ai and A−i are fixed matrices representing the price elasticity of demand, i.e. the change in de-
mand due to a unit change in price for the player i and −i (opponent) respectively. We introduce
interactions between the ride prices in a location and the demand in a different location within the
same city by making A matrices non-diagonal. Additionally, note that the price elasticities Ai will
always be negative as the firm will experience less demand if it increases its price. Similarly, the
price elasticities A−i will be positive.
Each player observes a revenue of zTi xi. Thus, the loss function that each player i seeks to minimize
in the RRM framework can be described as:

xt+1
i = argmin

xi

Ezi∼Dt

[
−zTi xi +

λ

2
∥xi∥2

]
(16)

where λ is a hyperparameter for the regularization term (= 70 for our experiments). For any player
i, each element of xi is clipped to be between the range of [−30, 30] and the initial price x0

i is
sampled randomly from a uniform distribution on [0, 1].

3. Uber and Lyft dataset from Boston, MA, 2019: https://www.kaggle.com/datasets/brllrb/
uber-and-lyft-dataset-boston-ma
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Results. Figure 4 shows the plot for loss shift due to performativity and the performative risk versus
the iterations averaged over 200 runs. For this plot, we assume player 1 is the player who makes the
predictions and adjusts to the performative effects introduced due to the actions of player 2. It can
be clearly observed that as we increase the aggregation window from 1 → 2 → 4 → t/2 → all, we
get mostly lower loss shifts and hence, an improvement in the convergence rate. Since we start at
random price value, taking the past into account in the beginning makes the algorithm worse but the
effect is neutralized as the data from more time steps is observed. Given the simple linear nature of
the problem, this is a significant improvement and provides evidence for our claims about using the
data from the previous snapshots.
Secondly, performative risk plot in figure 4 also highlights that all methods converge to points having
very close values of performative risk, with the methods having larger τ showing oscillations with
smaller amplitude.

13
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Appendix B. Auxiliary Lemmas and Technical Results

Lemma 2 (Expectation of a Gaussian-Weighted Exponential Function) Let x ∼ N(µ, σ2I). Then
the expected value of x exp

(
− 1

2e∥x∥
2
)

is given by:

E
[
x exp

(
− 1

2e
∥x∥2

)]
= exp

(
−∥µ∥2

2σ2

(
1− 1

σ2
(
1
e +

1
σ2

))) · µ

σ2
(
1
e +

1
σ2

) .
Proof: The expected value is expressed as:

E
[
x exp

(
− 1

2e
∥x∥2

)]
=

∫
Rn

x exp

(
− 1

2e
∥x∥2

)
1

(2πσ2)n/2
exp

(
− 1

2σ2
∥x− µ∥2

)
dx.

Merging the exponentials:

exp

(
−1

2

(
1

e
+

1

σ2

)
∥x∥2 + 1

σ2
xTµ

)
· exp

(
−∥µ∥2

2σ2

)
.

Completing the square yields:

exp

−1

2

(
1

e
+

1

σ2

)∥∥∥∥∥x− µ/σ2

1
e +

1
σ2

∥∥∥∥∥
2
 · exp

(
−∥µ∥2

2σ2

(
1− 1

σ2
(
1
e +

1
σ2

)))

Since the integral is over a Gaussian distribution with mean µ/σ2

1
e
+ 1

σ2
, after multiplying by the constant

term, we obtain:

E[x exp

(
− 1

2e
∥x∥2

)
] = exp

(
−∥µ∥2

2σ2

(
1− 1

σ2
(
1
e +

1
σ2

))) · µ

σ2
(
1
e +

1
σ2

) .
Lemma 3 (Bound on Chi-Square Divergence for Convex Combinations) Let P1 and P2 be proba-
bility distributions on R, and let Q be a reference distribution. For any α ∈ [0, 1] and any a > 0,
the following inequality holds:

χ2(αP1 + (1− α)P2, Q) ≤ (1 + a)α2χ2(P1, Q) +

(
1 +

1

a

)
(1− α)2χ2(P2, Q).

Proof: We begin by expanding the chi-square divergence using its definition, followed by ap-
plying Young’s inequality.

χ2(αP1 + (1− α)P2, Q) =

∫ ∞

−∞

(αp1(x) + (1− α)p2(x)− q(x))2

q(x)
dx

=

∫ ∞

−∞

(α(p1(x)− q(x)) + (1− α)(p2(x)− q(x)))2

q(x)
dx

≤
∫ ∞

−∞

[
(1 + a)α2 (p1(x)− q(x))2

q(x)
+

(
1 +

1

a

)
(1− α)2

(p2(x)− q(x))2

q(x)

]
dx

(by Young’s inequality)

= (1 + a)α2χ2(P1, Q) +

(
1 +

1

a

)
(1− α)2χ2(P2, Q).

(17)
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Lemma 4 (Inverse of an antisymmetric of a Jordan Normal Form Matrix) Let A ∈ Rd×d be defined
as:

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 1

 ,

and let bI − cA be an invertible matrix where c
b ≤ 1

2 and A is as defined above. Then the inverse of
(bI − cA) applied to e1, the first standard basis vector, has the following form for large d:

v = (bI − cA)−1 e1
L

=
1

cL


( bc − 1)−1

( bc − 1)−2

( bc − 1)−3

...
( bc − 1)−d

 .

Moreover, the sum below is:
d∑

i=t

vi = Ω

((c
b

)t)
,

for d ≥ 2T when T is large, and t ≤ T .

Proof: The matrix A has the following form:

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 1

 .

Thus, (bI − cA) takes the form:

bI − cA = c


b
c − 1 0 0 . . . 0

−1 b
c − 1 0 . . . 0

0 −1 b
c − 1 . . . 0

...
...

. . . . . .
...

0 . . . 0 −1 b
c − 1

 .

We continue by computing the inverse of the lower triangular matrix with diagonal entries
λ1, λ2, . . . , λd and subdiagonal entries of −1 as shown below:


λ1 0 0 . . . 0
−1 λ2 0 . . . 0
0 −1 λ3 . . . 0
...

...
. . . . . .

...
0 . . . 0 −1 λd


−1

=


λ−1
1 0 0 . . . 0

λ−1
1 λ−1

2 λ−1
2 0 . . . 0

λ−1
1 λ−1

2 λ−1
3 λ−1

2 λ−1
3 λ−1

3 . . . 0
...

...
. . . . . .

...
λ−1
1 λ−1

2 . . . λ−1
d . . . λ−1

d−1λ
−1
d λ−1

d

 .

15



TIGHT LOWER BOUNDS AND IMPROVED CONVERGENCE IN PERFORMATIVE PREDICTION

Using the formula above (diagonal entries λ1 =
b
c −1, λ2 =

b
c −1, . . . , λd = b

c −1 and subdiagonal
entries of −1) the inverse of bI − cA will have the form:

1

c


( bc − 1)−1 0 0 . . . 0

( bc − 1)−2 ( bc − 1)−1 0 . . . 0

( bc − 1)−3 ( bc − 1)−2 ( bc − 1)−1 . . . 0
...

...
. . . . . .

...
( bc − 1)−d . . . ( bc − 1)−2 ( bc − 1)−1

 .

Now, applying this inverse to the vector e1
L , where e1 =

[
1 0 . . . 0

]T , we get the following:

v = (bI − cA)−1 e1
L

=
1

cL


( bc − 1)−1

( bc − 1)−2

( bc − 1)−3

...
( bc − 1)−d

 .

Sum of the entries from index t to d is:

d∑
i=t

vi =
1

cL

(
(
b

c
− 1)−t + (

b

c
− 1)−t−1 + · · ·+ (

b

c
− 1)−d

)
.

This is a geometric series. The closed form of the sum is:

d∑
i=t

vi =
1

cL
· (b
c
− 1)−t ·

1− ( bc − 1)−(d−t+1)

1− ( bc − 1)−1
.

For large d ≥ 2t and b
c − 1 ≥ 1, this sum can be approximated by the leading term:

d∑
i=t

vi ≈
1

cL
· (b
c
− 1)−t · 1

1− ( bc − 1)−1
.

Thus, applying the inequality 1
1
x
−1

≤ x for all x < 1, we obtain the following lower bound for

the sum:
d∑

i=t

vi = Ω

(
1

cL
·
(c
b

)t)
.

Lemma 5 Let N (µ1,Σ1) and N (µ2,Σ2) be two multivariate normal distributions with means
µ1,µ2 ∈ Rd and covariance matrices Σ1,Σ2 ∈ Rd×d. The squared 1-Wasserstein distance between
these distributions is bounded by:

W 2
1 (N (µ1,Σ1), N (µ2,Σ2)) ≤ ∥µ1 − µ2∥2 + tr

(
Σ1 +Σ2 − 2 (Σ1Σ2)

1/2
)
.

This expression bounds the Wasserstein distance between two multivariate normal distributions, as
shown in Dowson and Landau [4].
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Lemma 6 Let N (µ1,Σ) and N (µ2,Σ) be two multivariate normal distributions with means
µ1,µ2 ∈ Rd and a shared covariance matrix Σ ∈ Rd×d. The χ2-divergence between these distri-
butions is bounded by:

χ2(N (µ1,Σ), N (µ2,Σ)) = 1− e−
1
2
(µ1−µ2)

⊤Σ−1(µ1−µ2) ≤ 1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2).

This provides the χ2-divergence between two multivariate normal distributions, as shown in Nielsen
and Okamura [20].

Lemma 7 Any projection proj(.) from Rd into any convex set C ∈ Rd is a continuous function.

Proof: To prove that the projection is continuous, we need to show that if xn → x in Rd, then
projC(xn) → projC(x).

Let yn = projC(xn) and y = projC(x). Since yn ∈ C and yn minimizes the distance to xn, we
have:

∥xn − yn∥ ≤ ∥xn − y∥ for alln.

As xn → x, the right-hand side ∥xn − y∥ → ∥x − y∥, and thus ∥xn − yn∥ is bounded. Since the
sequence {yn} is bounded and lies in the compact set C, it has a convergent subsequence ynk

→
ȳ ∈ C. By the continuity of the distance function, we have:

∥x− ȳ∥ = lim
k→∞

∥xnk
− ynk

∥.

As y = projC(x) minimizes the distance from x to C, it follows that ȳ = y, and thus yn → y.
Therefore, projC(xn) → projC(x), proving continuity.

Lemma 8 The set of stable points for any method in the class of Affine Risk Minimizers is equiva-
lent to the set of stable points for standard RRM.

Proof: Consider the mapping for an affine risk minimizer using the last τ iterates, defined as:

Gτ (θ
t−1, θt−2, . . . , θt−τ ) = (θt, θt−1, . . . , θt−τ+1),

where
θt = argmin

θ∈Θ
Ez∼Dt [ℓ(fθ(x), y)].

At a stable point, the mapping satisfies:

(θt, θt−1, . . . , θt−τ ) = (θt, θt−1, . . . , θt−τ+1),

which implies that:
θt = θt−1 = · · · = θt−τ .

We now show that every stable point for this mapping is also a stable point for the standard RRM
mapping, defined as:

G(θt−1) = θt.
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From the definition of Dt, we have:

Dt =
t−1∑

i=t−τ

α
(t)
i D(θi) = D(θt−1),

since
∑t−1

i=t−τ α
(t)
i = 1. Therefore:

θt = argmin
θ∈Θ

Ez∼Dt [ℓ(fθ(x), y)] = argmin
θ∈Θ

Ez∼D(θt−1)[ℓ(fθ(x), y)] = G(θt−1),

implying that any stable point for Gτ is also a stable point for G.
Conversely, if θt = θt−1 at a stable point of G, then iterating the mapping Gτ τ times yields the

sequence:
θt = θt+1 = · · · = θt+τ ,

A similar argument shows that this stable point satisfies:

θt+τ = argmin
θ∈Θ

Ez∼D(θt+τ−1)[ℓ(fθ(x), y)] = argmin
θ∈Θ

Ez∼Dt+τ [ℓ(fθ(x), y)],

because:

Dt+τ =
t+τ−1∑
i=t

α
(t)
i D(θi) = D(θt−1).

Which leads to,
Gτ (θ

t, θt+1, . . . , θt+τ ) = (θt−1, θt, . . . , θt+τ−1)

showing that this stable point is also stable for Gτ .
Thus, the set of stable points is equivalent for both mappings.

Lemma 9 Let a, b > 0 with b ≤ 4a. For any integer t ≥ 0, the mixed power term b⌈t/2⌉a⌊t/2⌋ is
upper-bounded as follows:

b⌈t/2⌉a⌊t/2⌋ ≤ 2(ab)t/2.

Proof: We consider two cases based on the parity of t:
1. Case t even: If t is even, then ⌈t/2⌉ = ⌊t/2⌋ = t/2. Thus,

b⌈t/2⌉a⌊t/2⌋ = bt/2at/2 = (ab)t/2 < 2(ab)t/2.

2. Case t odd: If t is odd, then ⌈t/2⌉ = t+1
2 and ⌊t/2⌋ = t−1

2 . Therefore,

b⌈t/2⌉a⌊t/2⌋ = b(t+1)/2a(t−1)/2 = (ab)t/2 ·
(
b

a

)1/2

.

Since b ≤ 4a, it follows that
(
b
a

)1/2 ≤ 2, so

b⌈t/2⌉a⌊t/2⌋ ≤ 2(ab)t/2.

Combining both cases, we conclude that:

b⌈t/2⌉a⌊t/2⌋ ≤ 2(ab)t/2.
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Lemma 10 Let A1 and A2 be two probability distributions and let B1 and B2 be another two
probability distributions. Then, we have

χ2

(
A1 +A2

2
,
B1 +B2

2

)
≤ χ2(A1, B1) + χ2(A2, B2).

Proof:
To compute the χ2 divergence between the averages A1+A2

2 and B1+B2
2 , we start with the defi-

nition:

χ2

(
A1 +A2

2
,
B1 +B2

2

)
=

∫ ∞

−∞

(
pA1 (x)+pA2 (x)

2 − pB1 (x)+pB2 (x)
2

)2
pB1 (x)+pB2 (x)

2

dx.

Simplifying the numerator, we get:

=
1

2

∫ ∞

−∞

(
pA1 (x) + pA2 (x)− pB1 (x)− pB2 (x)

)2
pB1 (x) + pB2 (x)

dx.

Applying the inequality (a+ b)2 ≤ 2a2 + 2b2, we can further bound this as follows:

≤ 1

2

∫ ∞

−∞

2(pA1 (x)− pB1 (x))
2 + 2(pA2 (x)− pB2 (x))

2

pB1 (x) + pB2 (x)
dx.

By distributing the terms, this becomes:

=

∫ ∞

−∞

(pA1 (x)− pB1 (x))
2

pB1 (x) + pB2 (x)
+

(pA2 (x)− pB2 (x))
2

pB1 (x) + pB2 (x)
dx.

Now, since 1
pB1 (x)+pB2 (x)

≤ 1
pB1 (x)

and 1
pB1 (x)+pB2 (x)

≤ 1
pB2 (x)

, we can split the integral as follows:

≤
∫ ∞

−∞

(pA1 (x)− pB1 (x))
2

pB1 (x)
+

(pA2 (x)− pB2 (x))
2

pB2 (x)
dx.

By definition of the χ2 divergence, this final expression is equivalent to:

= χ2(A1, B1) + χ2(A2, B2).

Thus, we have shown that

χ2

(
A1 +A2

2
,
B1 +B2

2

)
≤ χ2(A1, B1) + χ2(A2, B2),

which completes the proof.

Lemma 11 Let η = fG(θ′) − fG(θ). Suppose the function space F is convex, and

G(θ) = arg min
θ′∈Θ

Ez [ℓ(fθ′(x), y)] ,

where z = (x, y) ∼ pfθ represents the distribution induced by the model fθ, and ℓ is a differentiable
loss function. Then the following inequality holds:∫

η(x)⊤∇yℓ(fG(θ)(x), y) pfθ(z) dz ≥ 0.

Refer to Mofakhami et al. [17] for the proof.
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Appendix C. Lower Bounds for Perdomo et al. [21]

C.1. Tightness Analysis in Perdomo et al. [21]’s Framework

In their work, Perdomo et al. [21] make a set of assumptions that differs from Assumption 1-4.
Their ϵ-sensitivity assumption is with respect to the Wasserstein distance, and their strong convexity
assumption is with respect to the parameters. Formally they make the following set of assumptions
to show the convergence of RRM

Assumption 5 The distribution map θ 7→ D(θ) is ϵ-sensitive w.r.t W1:

W1(D(θ),D(θ′)) ≤ ϵ∥θ − θ′∥2,

the loss function θ 7→ ℓ(z : θ) of the performative risk (1) is γ-strongly convex for any z ∈ Z and
z 7→ ∇zℓ(z : θ) is β-Lipschitz for any θ ∈ Θ.

Under these assumptions and for βϵ
γ < 1, Perdomo et al. [21] showed that RRM does converge to

a performatively stable point at a rate:4

∥θt − θPS∥ ≤
(
βϵ

γ

)t

∥θ0 − θPS∥ . (18)

Theorem 6 There exists a problem instance and an initialization θ0 following assumptions 5 such
that employing RRM, we have:

∥θt − θPS∥ = Ω

((
ϵβ

γ

)t

∥θ0 − θPS∥

)
. (19)

The proof of this result is provided in Appendix E.

C.2. Lower Bound with Perdomo et al. [21]’s Assumption

We show that the convergence rate for RRM provided in Equation 18 is optimal among the class of
Affine Risk Minimizers up to a factor 2.

Theorem 7 There exists a problem instance and an initialization θ0 following Assumption 5 such
that for any algorithm in the Affine Risk Minimizers class, we have:

∥θt − θPS∥ = Ω

((
ϵβ

2γ

)t

∥θ0 − θPS∥

)
. (20)

The proof of this result can be found in Appendix H.
To further illustrate this, Figure 5 provides empirical evidence supporting the theoretical lower

bound derived for Perdomo et al. [21]. The figure shows the convergence of ∥θ−θPS∥ over multiple
iterations for various combinations of previous snapshots. As indicated by the dotted line, the lower
bound is never violated, demonstrating that the theoretical result holds in practice. The experimental
setup for these results is also detailed in Appendix H.

4. Note that if βϵ
γ

≥ 1 the convergence rate is vacuous. In that case, a performatively stable point may not even exist.

20



TIGHT LOWER BOUNDS AND IMPROVED CONVERGENCE IN PERFORMATIVE PREDICTION
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Figure 5: Convergence of ∥θt − θPS∥ over iterations t, for different values of τ , where τ defines
the aggregation of datasets from training snapshots, i.e. Dt =

∑t
i=t−τ+1

1
τD(θi). The dotted line

represents our lower bound derived for Perdomo et al. [21], with ϵ = 2.49, β = 1, and γ = 5.0. The
experiment follows the setup across all methods and demonstrates the validity of this lower bound
by showing that ∥θt−θPS∥ does not decay below the lower bound, providing experimental evidence
for our theoretical result.

Appendix D. Proof of Theorem 1

The proof of Theorem 1 largely follows the approach in Mofakhami et al. [17], with some modifica-
tions to remove the need for the bounded norm ratio assumption. To facilitate readability, we have
restated the common parts from the proof in Mofakhami et al. [17].

Fix θ and θ′ in Θ. Let h : F 7→ R and h′ : F 7→ R be two functionals defined as follows:

h(fθ̂) = Ez∼D(fθ)[ℓ(fθ̂(x), y)] =

∫
ℓ(fθ̂(x), y)pfθ(z)dz (21)

h′(fθ̂) = Ez∼D(fθ′ )
[ℓ(fθ̂(x), y)] =

∫
ℓ(fθ̂(x), y)pfθ′ (z)dz (22)

where each data point z is a pair of features x and label y.
For a fixed z = (x, y), due to strong convexity of ℓ(fθ(x), y) in fθ(x) we have:

ℓ(fG(θ)(x), y)− ℓ(fG(θ′)(x), y) ≥
(
fG(θ)(x)− fG(θ′)(x)

)⊤∇ŷℓ(fG(θ′)(x), y)

+
γ

2
∥fG(θ)(x)− fG(θ′)(x)∥2. (23)

Now take integral over z, and define ∥fG(θ) − fG(θ′)∥2fθ =
∫
∥fG(θ)(x)− fG(θ′)(x)∥2pfθ(z)dz:

h(fG(θ))− h(fG(θ′)) ≥
(∫ (

fG(θ)(x)− fG(θ′)(x)
)⊤∇ŷℓ(fG(θ′)(x), y)pfθ(z)dz

)
+

γ

2
∥fG(θ) − fG(θ′)∥2fθ . (24)
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Similarly:

h(fG(θ′))− h(fG(θ)) ≥
(∫ (

fG(θ′)(x)− fG(θ)(x)
)⊤∇ŷℓ(fG(θ)(x), y)pfθ(z)dz

)
+

γ

2
∥fG(θ) − fG(θ′)∥2fθ . (25)

Since fG(θ) minimizes h, the following result can be achieved through the convexity of the
function space,(Lemma 11):∫ (

fG(θ′)(x)− fG(θ)(x)
)⊤∇ŷℓ(fG(θ)(x), y)pfθ(z)dz ≥ 0. (26)

Adding (24) and (25) and using the above inequality, we conclude:

−γ∥fG(θ) − fG(θ′)∥2fθ ≥
∫ (

fG(θ)(x)− fG(θ′)(x)
)⊤∇ŷℓ(fG(θ′)(x), y)pfθ(z)dz. (27)

This is a key inequality that will be used later in the proof.
Now recall that there exists M such that M = supx,y,θ ∥∇ŷℓ(fθ(x), y)∥ and the distribution

map over data is ϵ-sensitive w.r.t Pearson χ2 divergence, i.e.

χ2(D(fθ′),D(fθ)) ≤ ϵ∥fθ − fθ′∥2fθ . (28)

With this in mind, we do the following calculations:∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)
)⊤∇ŷℓ(fG(θ′)(x), y)pfθ(z)dz −

∫ (
fG(θ)(x)− fG(θ′)(x)

)⊤∇ŷℓ(fG(θ′)(x), y)pfθ′ (z)dz

∣∣∣∣
=

∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)
)⊤∇ŷℓ(fG(θ′)(x), y)

(
pfθ(z)− pfθ′ (z)

)
dz

∣∣∣∣
(∗)
≤
∫ ∣∣∣(fG(θ)(x)− fG(θ′)(x)

)⊤∇ŷℓ(fG(θ′)(x), y)
(
pfθ(z)− pfθ′ (z)

)∣∣∣ dz
≤ M

∫ ∣∣∥fG(θ)(x)− fG(θ′)(x)∥
(
pfθ(z)− pfθ′ (z)

)∣∣ dz
= M

∫ ∣∣∣∣∥fG(θ)(x)− fG(θ′)(x)∥
pfθ(z)− pfθ′ (z)

pfθ(z)
pfθ(z)

∣∣∣∣ dz
= M

∣∣∣∣∫ ∣∣∥fG(θ)(x)− fG(θ′)(x)∥
pfθ(z)− pfθ′ (z)

pfθ(z)

∣∣pfθ(z)dz∣∣∣∣
Cauchy-Schwarz Ineq.

≤ M

(∫
∥fG(θ)(x)− fG(θ′)(x)∥2pfθ(z)dz

) 1
2

(∫ (
pfθ(z)− pfθ′ (z)

pfθ(z)

)2

pfθ(z)dz

) 1
2

= M∥fG(θ) − fG(θ′)∥fθ
√

χ2(D(fθ′),D(fθ))

(∗) comes from the fact that
∣∣∫ f(x)dx

∣∣ ≤ ∫
|f(x)|dx, and the Cauchy-Schwarz inequality states

that |E[XY ]| ≤
√

E[X2]E[Y 2].
We conclude from the above derivations that:∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)

)⊤∇ŷℓ(fG(θ′)(x), y)pfθ(z)dz −
∫ (

fG(θ)(x)− fG(θ′)(x)
)⊤∇ŷℓ(fG(θ′)(x), y)pfθ′ (z)dz

∣∣∣∣
≤ M∥fG(θ) − fG(θ′)∥fθ

√
χ2(D(fθ′),D(fθ)). (29)
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Similar to inequality (26), since fG(θ′) minimizes h′, one can prove:∫ (
fG(θ)(x)− fG(θ′)(x)

)⊤∇ŷℓ(fG(θ′)(x), y)pfθ′ (z)dz ≥ 0. (30)

From (27) we know that
∫ (

fG(θ)(x)− fG(θ′)(x)
)⊤∇ŷℓ(fG(θ′)(x), y)pfθ(z)dz is negative, so with

this fact alongside (29) and (30), we can write:∫ (
fG(θ)(x)− fG(θ′)(x)

)⊤∇ŷℓ(fG(θ′)(x), y)pfθ(z)dz ≥ −M∥fG(θ)−fG(θ′)∥fθ
√

χ2(D(fθ′),D(fθ)).

(31)
Combining (27) and (31), we obtain:

γ∥fG(θ) − fG(θ′)∥2fθ ≤ M∥fG(θ) − fG(θ′)∥fθ
√
χ2(D(fθ′),D(fθ))

⇒ ∥fG(θ) − fG(θ′)∥fθ ≤ M

γ

√
χ2(D(fθ′),D(fθ))

(28)

≤
√
ϵM

γ
∥fθ − fθ′∥fθ (32)

To prove the existence of a fixed point, we use the Schauder fixed point theorem. Define

U : f ∈ F → argmin
f ′∈F

E
z∼D(f)

ℓ(f ′(x), y).

For this function, U(fθ) = fG(θ). So instead of Equation 32, we can write:

∥U(fθ)− U(fθ′)∥fθ ≤
√
ϵM

γ
∥fθ − fθ′∥fθ . (33)

Using Assumption 2, we derive the following bound,

∥U(fθ)− U(fθ′)∥ ≤

(√
C

c

) √
ϵM

γ
∥fθ − fθ′∥. (34)

This inequality shows that for any fθ0 ∈ F , if limn→∞ ∥fθn−fθ∥ = 0, then limn→∞ ∥U(fθn)−
U(fθ)∥ = 0, which proves the continuity of U with respect to the norm ∥.∥. Thus, since U is a
continuous function from the convex and compact set F to itself, the Schauder fixed point theorem
ensures that U has a fixed point. Therefore, fθPS exists such that fG(θPS) = fθPS .

If we set θ = θPS and θ′ = θt−1 for θPS being any sample in the set of stable classifiers, we
know that G(θ) = θPS and G(θ′) = θt. So we will have:

∥fθt − fθPS∥fθPS
≤

√
ϵM

γ
∥fθt−1 − fθPS∥fθPS

. (35)

Thus,

∥fθt − fθPS∥fθPS
≤

√
ϵM

γ
∥fθt−1 − fθPS∥fθPS

≤
(√

ϵM

γ

)t

∥fθ0 − fθPS∥fθPS
. (36)

Note that Equation 36 applies to any stable point. Suppose there are two distinct stable points,
fθ1PS

and fθ2PS
. By the definition of stable points and using Equation 33, we have:

23



TIGHT LOWER BOUNDS AND IMPROVED CONVERGENCE IN PERFORMATIVE PREDICTION

∥U(fθ1PS
)− U(fθ2PS

)∥ = ∥fθ1PS
− fθ2PS

∥f
θ1
PS

≤
√
ϵM

γ
∥fθ1PS

− fθ2PS
∥f

θ1
PS

.

Under the assumption that
√
ϵM
γ < 1, the inequality above ensures that fθ1PS

= fθ2PS

5 and the
stable point must be unique. Thus, Equation 36 confirms that RRM converges to a unique stable
classifier at a linear rate.

5. It is important to clarify that fθ1
PS

= fθ2
PS

does not imply ∀x fθ1
PS

(x) = fθ2
PS

(x). Instead, it indicates that
∥fθ1

PS
− fθ2

PS
∥ = 0.
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Appendix E. Proof of Theorem 6

In this section, we examine the tightness of the analysis presented in Perdomo et al. [21] by consid-
ering a specific loss function and designing a particular performativity framework. We focus on the
loss function ℓ(z, θ) = γ

2∥θ−
β
γ z∥

2, which is γ-strongly convex with respect to the parameter θ and
its gradient w.r.t. θ is β-Lipschitz, aligning with the assumptions stipulated in Perdomo et al. [21].

We model performativity through the following distribution: z ∼ N (ϵθ, σ2) . According to
Lemma 5 the 1-Wasserstein distance between two normal distributions is upper bounded by:

W1(N (µ1, σ
2
1),N (µ2, σ

2
2)) ≤

√
(µ1 − µ2)2 = ϵ∥θ1 − θ2∥

it follows that the distribution mapping specified is ϵ-sensitive, as described in Perdomo et al. [21].
Under these conditions, the RRM process results in the following update mechanism:

θt+1 = ϵ
β

γ
θt = (ϵ

β

γ
)tθ0

This arises because:

θt+1 = argmin
θ

Ez∼D(θt)[ℓ(z, θ)] = argmin
θ

Ez∼D(θt)

[
γ

2
θ2 − βθz +

β2

2γ
z2
]

= argmin
θ

Ez∼D(θt)

[γ
2
θ2 − βθz

]
= argmin

θ

γ

2
θ2 − βϵθθt = ϵ

β

γ
θt

This progression directly corresponds to the upper bound suggested by Perdomo et al. [21],
confirming that the analysis is tight. No further refinement of the analytical model would mean a
faster convergence rate for the given set of assumptions as detailed in Perdomo et al. [21].
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Appendix F. Proof of Theorem 2

We define the model fitting function as fθ(x) = θ, and the corresponding loss function is:

ℓ(x, θ) =
1

2γ

∥∥∥γfθ(x)−M proj∥.∥=0.95(x)
∥∥∥2 ,

where proj∥.∥=0.95 denotes the projection onto the surface of a ball with radius 0.95. By setting
θ ∈ Θ = {z | ∥z∥ ≤ 0.05min{M

γ , 1√
ϵ
}}, we ensure that the gradient norm remains smaller than

M . Since the loss function is γ-strongly convex, it satisfies both Assumptions 4 and 3.
Throughout this proof ∥θ1 − θ2∥ = ∥fθ1 − fθ2∥fθ′ for any choice of θ′.
We define the distribution mapping as follows:

D(θ) = N

(√
ϵθ,

1

2

)
,

The χ2-divergence between two distributions D(θ1) = N(µ1, σ) and D(θ2) = N(µ2, σ), where
µ1 =

√
ϵθ1 and µ2 =

√
ϵθ2, with σ = 1

2 , is given by (Lemma 6):

χ2(N(µ1,Σ), N(µ2,Σ)) ≤
1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2) = ϵ∥θ1 − θ2∥2 = ϵ∥fθ1 − fθ2∥2fθ1 .

Thus, the χ2-divergence between the distributions is bounded by ϵ∥θ1 − θ2∥2, making it ϵ-
sensitive according to Assumption 1. Note that

With this set up one would derive the update rule:

θt+1 = projΘ

(
M

γ
E [proj(x)]

)
= projΘ

(
M

γ
erf
(
2E [x]√

2

))
Using,

erf
(
2x√
2

)
≥ x ∀x ≤ 0.05,

and given that E[x] =
√
ϵθ ≤ 0.05min

{√
ϵM
γ , 1

}
by the definition of Θ, the condition holds.

θt+1 ≥ projΘ

(
M

γ
E [x]

)
= projΘ

(
M

√
ϵ

γ
θt
)

Assuming we start with θ0 in the feasible set and operate in the regime where M
√
ϵ

γ ≤ 1, the
projection into the feasible set can be omitted. Therefore, we have:

θt ≥
(
M

√
ϵ

γ

)t

θ0.

It is clear that θ = 0 is the stable point in this setup, so:

∥θt − θPS∥ = Ω

((
M

√
ϵ

γ

)t
)
.

In other words:

∥fθt − fθPS
∥fθPS

= Ω

((
M

√
ϵ

γ

)t
)
.

For the case where M
√
ϵ

γ > 1, the projection remains constrained to the surface of the ball Θ,
preventing convergence to the stable point.
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Appendix G. Proof of Lemma 1 and Theorem 3

This proof is heavily inspired by the proof of Theorem 1 in Appendix D. We start by prescribing
stronger assumptions that imply this paper’s set of assumptions.

Assumption 6 ϵ-sensitivity with respect to Pearson χ2 divergence (version 2): The distribution
map D(fθ) maintains ϵ-sensitivity with respect to Pearson χ2 divergence. For all fθ, fθ′ ∈ F:

χ2(D(fθ′),D(fθ)) ≤
ϵ

C
∥fθ − fθ′∥2, (37)

where ∥fθ − fθ′∥2 is defined in Equation 8.

Note that, combining Assumptions 2 and 6, we can infer Assumption 1:

χ2(D(fθ′),D(fθ)) ≤
ϵ

C
∥fθ − fθ′∥2 ≤ ϵ∥fθ − fθ′∥2fθ∗ .

Following the methodology described for Theorem 2 in Mofakhami et al. [17], we begin by
defining the functional evaluations at consecutive time steps as follows:

ht(fθ̂) = Ez∼Dt [ℓ(fθ̂, z)] =

∫
ℓ(fθ̂, z)pt(z) dz,

ht−1(fθ̂) = Ez∼Dt−1 [ℓ(fθ̂, z)] =

∫
ℓ(fθ̂, z)pt−1(z) dz,

where pt(z) denotes the probability density function of sample z from the distribution Dt.
Utilizing the convexity of ℓ and Lemma 1 from Mofakhami et al. [17], following the line of

argument in equation 17 of Mofakhami et al. [17], we establish the following inequality:

−γ∥fθt+1 − fθt∥2pt ≥
∫

(fθt+1(x)− fθt(x))
⊤∇ŷℓ(fθt(x), y)pt(z) dz, (38)

where ∥fθt+1 − fθt∥2pt represents the squared norm, calculated as:

∥fθt+1 − fθt∥2pt =
∫

∥fθt+1(x)− fθt(x)∥2pt(z) dz.

and pt(x) =
1
2pfθt (x) +

1
2pfθt−1 (x), Using the bounded gradient assumption, we deduce:∫

(fθt+1(x)− fθt(x))
⊤∇ŷℓ(fθt(x), y)pt(z) dz ≥ −M∥fθt+1 − fθt∥pt

√
χ2(Dt,Dt−1). (39)

Now combining equations 38 and 39 we get,

γ∥fθt+1 − fθt∥pt ≤ M
√
χ2(Dt,Dt−1). (40)

Note that Equation 40, is a direct consequence of Assumptions 3-4, 6, and doesn’t rely on definition
of Dt (refer to Equation 32 for the proof). In other words, if we define our method as the mapping

U(fθ1 , fθ2) = argmin
f∈F

E(x, y)∼D(fθ1 , fθ2 )
[ℓ(f(x), y)] ,
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where D(fθ1 , fθ2) =
D(fθ1 )+D(fθ2 )

2 , then,

γ∥U(fθ1 , fθ2)− U(fθ′1 , fθ′2)∥pd ≤ M
√
χ2(D(fθ1 , fθ2), D(fθ′1 , fθ′2)), (41)

where, pd is probability density function of distribution D(fθ1 , fθ2). We use this information further
on in the proof.

The remaining task is to bound the χ2 divergence as follows:

χ2(Dt−1,Dt) ≤ (1 + a)α2χ2(D(fθt−1), αD(fθt) + (1− α)D(fθt−1))

+

(
1 +

1

a

)
(1− α)2χ2(D(fθt−2), αD(fθt) + (1− α)D(fθt−1))

(by Lemma 3)

≤ (1 + a)α3χ2(D(fθt−1), D(fθt))

+

(
1 +

1

a

)
(1− α)2αχ2(D(fθt−2), D(fθt))

+

(
1 +

1

a

)
(1− α)3χ2(D(fθt−2), D(fθt−1))

(by Proposition 6.1 of Goldfeld et al. [6], convexity of f -divergence with respect to its arguments)

≤ ϵ

C
(1 + a)α3∥fθt−1 − fθt∥2

+
ϵ

C

(
1 +

1

a

)
(1− α)2α∥fθt−2 − fθt∥2

+
ϵ

C

(
1 +

1

a

)
(1− α)3∥fθt−1 − fθt−2∥2

(by ϵ-sensitivity)

≤ ϵ

C

(
(1 + a)α3 + 2

(
1 +

1

a

)
(1− α)2α+

(
1 +

1

a

)
(1− α)3

)
m2

t ,

where m2
t = max{∥fθt−1 − fθt∥2, ∥fθt−2 − fθt−1∥2}.

In conclusion, we derive the following bound:

∥fθt+1 − fθt∥pt ≤
√
ϵMmt√
Cγ

√(
(1 + a)α3 + 2

(
1 +

1

a

)
(1− α)2α+

(
1 +

1

a

)
(1− α)3

)
.

Using Assumption 2, we further obtain:

C∥fθt+1 − fθt∥2pt : = C

∫
∥fθt+1(x)− fθt(x)∥2pt(x)dx

=
C

2

∫
∥fθt+1(x)− fθt(x)∥2pfθt (x)dx+

C

2

∫
∥fθt+1(x)− fθt(x)∥2pfθt−1 (x)dx

=
C

2
∥fθt+1 − fθt∥2fθt +

C

2
∥fθt+1 − fθt∥2fθt−1

≥ ∥fθt+1 − fθt∥2
(42)
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Substituting this back into the previous inequality, we finally get:

∥fθt+1 − fθt∥ ≤
√
ϵMmt

γ

√(
(1 + a)α3 + 2

(
1 +

1

a

)
(1− α)2α+

(
1 +

1

a

)
(1− α)3

)
.

By setting α = 1
2 , minimizing over a > 0, we have:

∥fθt+1 − fθt∥ ≤

√√
3 + 2

4

 √
ϵMmt

γ
. (43)

Convergence to a Stable Point. By expanding the max term in Equation 43 we establish the
following bound:

∥fθt+1 − fθt∥ ≤

√√
3 + 2

4

⌊ t
2⌋(√

ϵM

γ

)⌈ t
2⌉

∥fθ1 − fθ0∥.

Combining this inequality with Lemma 9 and assuming
√
ϵM
γ ≤ 4

√√
3+2
4 , we obtain:

∥fθt+1 − fθt∥ ≤ 2

√√
3 + 2

4

√
ϵM

γ


t
2

∥fθ1 − fθ0∥. (44)

For clarity, let α =

(√√
3+2
4

√
ϵM
γ

) 1
2

, resulting in:

∥fθt+k − fθt∥ ≤
k−1∑
i=0

∥fθt+i+1 − fθt+i∥ ≤ 2αt∥fθ1 − fθ0∥

(
k−1∑
i=0

αi

)

= 2αt

(
1− αk−1

1− α

)
∥fθ1 − fθ0∥

(assuming α<1)

≤ 2

(
αt

1− α

)
∥fθ1 − fθ0∥.

Notice that the right-hand side of this inequality is independent of k. With α =

(√√
3+2
4

√
ϵM
γ

) 1
2

<

1, for any δ > 0, there exists t > 1 such that for all m > t, ∥fθm − fθt∥ ≤ δ. Thus, the sequence is
Cauchy with respect to the norm ∥ · ∥; and by the compactness (and therefore completeness) of F ,
it converges to a point f∗.

To show that f∗ is a stable point, we start by showing the continuity of the mapping

U(fθ1 , fθ2) = argmin
f∈F

E(x,y)∼D(fθ1 ,fθ2 )
[ℓ(f(x), y)] ,

where D(fθ1 , fθ2) =
D(fθ1 )+D(fθ2 )

2 . Applying Lemma 10 and Assumption 6, we obtain:

χ2(D(fθ1 , fθ2), D(fθ′1 , fθ′2)) ≤ χ2(D(fθ1), D(fθ′1))+χ2(D(fθ2), D(fθ′2)) ≤
ϵ

C
∥fθ1−fθ′1∥

2+
ϵ

C
∥fθ2−fθ′2∥

2.
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Combining this with equations 41 and 42, we derive:

γ2∥U(fθ1 , fθ2)−U(fθ′1 , fθ′2)∥
2 ≤ C2M2χ2(D(fθ1 , fθ2), D(fθ′1 , fθ′2)) ≤ ϵM2(∥fθ1−fθ′1∥

2+∥fθ2−fθ′2∥
2).

(45)
Thus, for any sequence limn→∞(fθ1n , fθ2n) = (fθ1 , fθ2),

lim
n→∞

∥U(fθ1n , fθ2n)− U(fθ1 , fθ2)∥ ≤ lim
n→∞

ϵM2

γ2
(∥fθ1n − fθ1∥2 + ∥fθ2n − fθ2∥2) = 0.

This implies that if limn→∞(fθ1n , fθ2n) = (fθ1 , fθ2), then limn→∞ ∥U(fθ1n , fθ2n)−U(fθ1 , fθ2)∥ = 0.
By the continuity of U , we conclude:

f∗ = lim
t→∞

fθt+1 = lim
t→∞

U(fθt , fθt−1) = U
(
lim
t→∞

fθt , lim
t→∞

fθt−1

)
= U(f∗, f∗).

This establishes that f∗ = fθPS
is a stable point.

30



TIGHT LOWER BOUNDS AND IMPROVED CONVERGENCE IN PERFORMATIVE PREDICTION

Appendix H. Lower bound in Perdomo et al. [21] Framework

In this proof, we begin by considering a loss function defined as follows:

ℓ(z, θ) =
γ

2
∥θ − β

γ
z∥2. (46)

This function is γ-strongly convex for the parameter θ and its gradient with respect to θ is β-
Lipschitz in sample space. The necessary assumptions on the loss function, as outlined in Perdomo
et al. [21], are satisfied by this formulation.

We define the matrix A within Rd×d as:

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 1

 .

The critical property of this matrix is that if a vector b The key property of this matrix is that if a
vector b ∈ span{ei | i ≤ t}, then Ab ∈ span{ei | i ≤ t + 1}, where each ei ∈ Rd is a standard
basis vector with all coordinates zero except for the i-th coordinate, which is 1. This structure
enables the introduction of a new dimension only at the end of each RRM iteration. With the correct
initialization, this ensures that the updates remain within a minimum distance from the stable point
due to undiscovered dimensions.

We define D(θ) as the distribution of z given by:

z ∼ N
( ϵ
2
Aθ + e1, σ

2
)
.

Note that since spectral radius A is 2, the mapping D(.) defined as above would be ϵ-sensitive.
Under this setting, the first-order Repeated Risk Minimization (RRM) update, starting with θ0 = e1,
is described by:

θt+1 =
β

γ

( ϵ
2
Aθt + e1

)
,

Due to the properties of matrix A, we conclude that θt+1 ∈ span{ei | ∀i ≤ t+ 1}.
The stationary point θPS of this setup is located at:

θPS =

(
γ

β
I − ϵ

2
A

)−1

e1,

Note that at time step t the best model within the feasible set is θt ∈ span{ei|∀i ≤ t}. Given that
one can conclude that the best L1-distance to stationary point achievable at time step t is lower
bounded by the sum over the last d− t entries of θPS . Setting d = 2T and using Lemma 4 we get

∥θt − θPS∥ = Ω

(
(
ϵβ

2γ
)t
)
.

Similar to Repeated Risk Minimization (RRM), the Repeated Gradient Descent (RGD) method
introduces a new dimension in each iteration step. Specifically, the gradient update rule in RGD is
given by:

Ez∼D(θt)∇θℓ(z, θ) = γθt + β
( ϵ
2
Aθt + e1

)
,
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This formulation ensures that each step effectively augments the dimensionality of the parameter
space being explored only by a single dimension. Consequently, the lower bound established for
RRM also applies to these RGD settings.
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Appendix I. Lower Bound for Mofakhami et al. [17] Framework

We define the model fitting function as fθ(x) = θ, and the corresponding loss function is:

ℓ(x, θ) =
1

2γ

∥∥∥γfθ(x)−M(1− δ)xe−
1
2e

∥x∥2
∥∥∥2 .

This loss is γ-strongly convex, ensuring unique minimizers and stable convergence properties. Ad-
ditionally, we assume θ ∈ Θ = {z|∥z∥ ≤ δM

γ }, ensuring that the gradient norm ∥γθ − M(1 −
δ)xe−

1
2e

∥x∥2∥ remains bounded by M . This holds because the mapping f(x) = xe−
1
2e

∥x∥2 is cho-
sen such that, f : R → [0, 1].

Observe that, for all fθ∗, fθ, fθ′ ∈ F , we have ∥θ − θ′∥ = ∥fθ − fθ′∥fθ∗ :

∥fθ − fθ′∥2fθ∗ =

∫
∥fθ(x)− fθ′(x)∥2pfθ∗(x) dx =

∫
∥θ − θ′∥2pfθ∗(x) dx = ∥θ − θ′∥2.

We define the distribution mapping as follows:

D(θ) = N

(√
σ2ϵ

2
Aθ +

e1
L
, σ2I

)
,

where A is a lower triangular matrix:

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 1

 .

Matrix A has the property that if b is in the span of {e1, . . . , ei}, then Ab will be in the span of
{e1, . . . , ei+1}. Here, ei denotes the standard basis vector, where its i-th element is 1 and all other
elements are 0. This makes A crucial for ensuring that each update step involves interactions that
span progressively larger subspaces.

The χ2-divergence between two distributions D(θ1) = N(µ1,Σ) and D(θ2) = N(µ2,Σ),

where µ1 =
√

σ2ϵ
2 Aθ + e1

L and µ2 =
√

σ2ϵ
2 Aθ′ + e1

L , with Σ = σ2I , according to Lemma 6:

χ2(N(µ1,Σ), N(µ2,Σ)) ≤
1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2) =
1

σ2
(

√
σ2ϵ

2
A)2∥θ1 − θ2∥2.

Since the spectral norm of matrix A is 2, we have:

χ2(D(θ1), D(θ2)) ≤ ϵ∥θ1 − θ2∥2 = ϵ∥fθ − fθ′∥fθ .

Thus, the χ2-divergence between the distributions is bounded by ϵ∥θ − θ′∥2, ensuring that the
divergence scales with the difference between θ and θ′.

The update rule for θ is:

θt+1 = projΘ

(
M

γ
(1− δ)E

[
xe−

1
2e

∥x∥2
])

= projΘ

(
M

γ
(1− δ) exp

(
−∥E[x]∥2

2σ2

(
1− 1

σ2

e + 1

))
· E[x]
σ2

e + 1

)
.
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This is the unique minimizer of the loss function due to the γ-strong convexity. Additionally, this is
a continuous mapping from a compact convex set Θ to itself. By Schauder ’s fixed-point theorem,
there exists a stable fixed point, denoted as θPS , satisfying:

θPS = projΘ

(
Mcσ2,θPS

γ
(1− δ)E[x]

)
= projΘ

(
Mcσ2,θPS

γ
(1− δ)

(√
σ2ϵ

2
AθPS +

e1
L

))
,

where cσ2,θPS
=

exp

(
− ∥E[x]∥2

2σ2

(
1− 1

σ2
e +1

))
σ2

e
+1

≤ 1. Assuming M
√
ϵ

γ ≤ 1 and σ ≤
√
2
2 we get that,

∥
Mcσ2,θPS

γ
(1− δ)

(√
σ2ϵ

2
AθPS +

e1
L

)
∥ ≤ ∥

Mcσ2,θPS

γ
(1− δ)

√
σ2ϵ

2
AθPS∥+

Mcσ2,θPS

γ
(1− δ)

1

L

≤ ∥1
2
(1− δ)θPS∥+

M

γ
(1− δ)

1

L

≤ 1

2
(1− δ)δ +

M

γ
(1− δ)

1

L

Choosing L ≥ 2M(1−δ)
γ(δ+δ2)

one can guarantee the term in the projection operation would have a norm
smaller than δ, i.e. it would be in Θ. So you can drop the projection operation from the equality
above.

Thus, the stable point would hold true in the following equality:

θPS =

(
I − (1− δ)

cσ2,θPS√
2

√
σ2ϵM

γ
A

)−1
e1
L
.

The same assumptions stated above would allow us to use Lemma 4:

∥θt − θPS∥ = Ω

((
(1− δ)

cσ2,θPS√
2

√
σ2ϵM

γ

)t)
.

To lower bound cσ2,θPS
, we note that ∥E[x]∥ ∈ [0, ϵ

2δ + γ(δ+δ2)
2M(1−δ) ] and minimize the exponential

term with respect to σ2:

exp

(
−∥E[x]∥2

2σ2

(
1− 1

σ2

e + 1

))
≥ exp (−cδ) ,

Where c > 0 is a constant independent of δ. Setting σ =
√
2
2 to maximise σ

σ2

e
+1

, and lim δ → 0, we

achieve:

∥θt − θPS∥ = Ω

((
1

1
e + 2

√
ϵM

γ

)t)
.

Hence,

∥fθt − fθPS
∥fθPS

= Ω

((
1

1
e + 2

√
ϵM

γ

)t)
.
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Appendix J. Proof of Theorem 5

Consider a feature vector x divided into strategic features xs and non-strategic features xf , so that
x = (xs, xf ). We resample only the strategic features with probability g(fθ(x)), representing the
probability of rejection for x. The pdf of the modified distribution pfθ is:

pfθ(x) = p(x) (1− g(fθ(x))) +

∫
x′
s

p(x′s, xf ) g(fθ(x
′
s, xf )) p(xs)dx

′
s,

where the integral is over all possible values of x′s with xf held constant, since only the strategic
features are resampled. The first term represents the option that we accept the first sample at x;
the second term represents the possibility that we reject the first sample at x′ = (x′s, xf ) and then
resample at xs to obtain x as well.

Assuming the strategic and non-strategic features are independent, we can rewrite this expres-
sion as:

pfθ(x) =p(x)(1− g(fθ(x))) +

∫
x′
s

p(x′s, x
′
f = xf ) g(fθ(x

′)) p(xs)dx
′
s

= p(x)(1− g(fθ(x))) +

∫
x′
s

g(fθ(x
′))pXs(x

′
s)pXf

(xf )pXs(xs)dx
′
s

= p(x)(1− g(fθ(x))) +

∫
x′
s

g(fθ(x
′))pXs(x

′
s)p(x)dx

′
s

= p(x)
(
(1− g(fθ(x))) +

∫
x′
s

g(fθ(x
′))pXs(x

′
s)dx

′
s

)
= p(x) (1− g(fθ(x)) + Cθ(xf )) ,

(47)

where pXs and pXf
are the marginal distributions of the strategic and non-strategic features, respec-

tively, and we define:

Cθ(xf ) =

∫
x′
s

pXs(x
′
s) g(fθ(x

′
s, xf )) dx

′
s.

Since 0 ≤ fθ(x) ≤ 1− δ for some δ > 0, it follows that δ ≤ g(fθ(x)) ≤ 1 for every x. Therefore,
δ ≤ Cθ(xf ) ≤ 1.

In the RIR procedure, the distribution of the label y given x is not affected by the predictions
so for every z = (x, y) we have pfθ(z) = pfθ(x)p(y|x) for any fθ. This results in the following
equality:

χ2(D(fθ′),D(fθ)) =

∫
(pfθ′ (z)− pfθ(z))

2

pfθ(z)
dz =

∫
(pfθ′ (x)− pfθ(x))

2

pfθ(x)
dx

We prove that this mapping is ϵ-sensitive with respect to χ2 divergence, where ϵ =
1

δ

(
1 +

1− δ

2
√
δ

)
.
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χ2(D(fθ′),D(fθ)) =

∫ (
pfθ′ (x)− pfθ(x)

)2
pfθ(x)

dx

=

∫
p(x)2 [fθ(x)− fθ′(x)− (Cθ(xf )− Cθ′(xf ))]

2

p(x) (1− fθ(x)− δ + Cθ(xf ))
dx

≤ 1

δ

∫
p(x)

[
(fθ(x)− fθ′(x))

2 + (Cθ(xf )− Cθ′(xf ))
2

− 2 (fθ(x)− fθ′(x)) (Cθ(xf )− Cθ′(xf ))

]
dx

This inequality follows from the fact that δ ≤ Cθ(xf ) and 1 − g(fθ(x)) ≥ 0, therefore
1

1−g(fθ(x))+Cθ(xf )
≤ 1

δ .
Continuing, we have:

=
1

δ

[ ∫
p(x) (fθ(x)− fθ′(x))

2 dx

+

∫
xf

pXf
(xf ) (Cθ(xf )− Cθ′(xf ))

2 dxf

− 2

∫
xf

pXf
(xf ) (Cθ(xf )− Cθ′(xf ))

∫
xs

pXs(xs) (fθ(x)− fθ′(x)) dxs dxf

]

=
1

δ

[∫
p(x) (fθ(x)− fθ′(x))

2 dx−
∫
xf

pXf
(xf ) (Cθ(xf )− Cθ′(xf ))

2 dxf

]

≤ 1

δ

∫
p(x) (fθ(x)− fθ′(x))

2 dx

This comes from the fact that
∫
x′
s
pXs(x

′
s)(fθ((x

′
s, xf ))− fθ′((x

′
s, xf )))dx

′
s = Cθ(xf )− Cθ′(xf ).

We use equation 47 to replace p(x).

=
1

δ

∫
(pfθ(x) + p(x) (fθ(x) + δ − Cθ(xf ))) (fθ(x)− fθ′(x))

2 dx

=
1

δ
∥fθ − fθ′∥2fθ +

1

δ

∫
p(x) (fθ(x) + δ − Cθ(xf )) (fθ(x)− fθ′(x))

2 dx

Cauchy-Schwarz Ineq.
≤ 1

δ
∥fθ − fθ′∥2fθ +

1

δ

(∫
p(x) (fθ(x) + δ − Cθ(xf ))

2 dx

)1/2(∫
p(x) (fθ(x)− fθ′(x))

4 dx

)1/2

≤ 1

δ
∥fθ − fθ′∥2fθ +

1

δ

(∫
xf

pXf
(xf )V arxs [g(fθ(x))] dxf

)1/2(∫
p(x) (fθ(x)− fθ′(x))

4 dx

)1/2

Since g(fθ(x)) is a bounded random variable in [δ, 1], its variance is less than (1−δ)2

4 , according to
Popoviciu’s inequality. Also since for any θ ∈ Θ we have fθ(x) ≤ 1 we can infer |fθ(x)−fθ′(x)| ≤

36



TIGHT LOWER BOUNDS AND IMPROVED CONVERGENCE IN PERFORMATIVE PREDICTION

1

≤ 1

δ
∥fθ − fθ′∥2fθ +

1− δ

2δ

(∫
p(x) (fθ(x)− fθ′(x))

4 dx

)1/2

≤ 1

δ
∥fθ − fθ′∥2fθ +

1− δ

2δ

(∫
p(x) (fθ(x)− fθ′(x))

2 dx

)1/2

≤ 1

δ
∥fθ − fθ′∥2fθ +

1− δ

2δ
∥fθ − fθ′∥

From Appendix A.3 in Mofakhami et al. [17], we know that ∥fθ − fθ′∥2 ≤ 1
δ∥fθ − fθ′∥2fθ . Hence,

χ2(D(fθ′),D(fθ)) ≤
1

δ

(
1 +

1− δ

2
√
δ

)
∥fθ − fθ′∥2fθ

Rate Improvement Arguments: By using Assumptions 4 and 6 from Mofakhami et al. [17], it
can be shown that the method is Cϵ-sensitive as defined in Assumption 1. Specifically,

χ2(D(fθ′),D(fθ)) ≤ ϵ∥fθ − fθ′∥2 ≤ Cϵ∥fθ − fθ′∥2fθ .

In this case, our rate aligns with the rate from Mofakhami et al. [17], demonstrating that in all cases
where their rate holds, our approach offers at least an equivalent or faster rate. However, there are
instances where our rate results in a smaller constant than Cϵ. As outlined in Appendix A.3 of
Mofakhami et al. [17], the same RIR framework derives C = 1

δ under Assumption 2 and ϵ = 1
δ

with respect to Assumption 6, yielding Cϵ = 1
δ2

. We show that instead of Cϵ = 1
δ2

, we obtain
1
δ

(
1 + 1−δ

2
√
δ

)
, which is strictly smaller for any 0 ≤ δ < 1. This shows that this rate is a strict

improvement over Mofakhami et al. [17].
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Appendix K. Performative Risk for Credit-Scoring

8 16 24 32 40 48
t (Iterations)

1.72 × 10 2

1.722 × 10 2

1.724 × 10 2

1.726 × 10 2

1.728 × 10 2

1.73 × 10 2

1.732 × 10 2

1.734 × 10 2

1.736 × 10 2
PR

(
t)

 = 1
 = 2
 = 4
 = t/2
 = all

Figure 6: Log performative risk for the credit scoring environment across the RRM iterations. The
numbers in the plot are averaged over 500 runs. Increasing the size of aggregation window τ
from 1 → 2 → 4 → t/2 → all reduces the oscillations in the risk and converges to the same
point. Note that the plot starts from iteration 5 for better readability as the initial risk values were
very high.

Figure 6 shows the log performative risk for the credit-scoring environment. This metric has
been adapted from Mofakhami et al. [17]. Figure 6 further substantiates our claims as we see lower
oscillations in the risk for larger aggregation windows. Furthermore, another important conclusion
is that most methods converge to roughly the same/very close performatively stable point as the
difference in log performative risk at the end of 50 iterations is negligible between all the methods.
However, as pointed out in section A, all methods oscillate in a similar range, thus hindering the
readability of the plot.

Hyper-parameters. For our experiments, we fix the value of δ = 0.55. The RRM procedure is
carried out for a maximum of 50 iterations with a learning rate of 3e-4 and Adam optimizer. Further,
all the experimental results and plots are averaged over 500 runs, where each run for each method
has the same model initialization. Thus, the only source of randomization is the sampling under RIR
mechanism where the sampling changes across different runs but is the same for all the methods
given a specific run.
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Appendix L. Related Work

Performative prediction introduces a framework for learning under decision-dependent data [21],
and has been widely studied in various aspects, from stochastic optimization methods to find stable
classifiers [12, 14] to approaches that focus on performative optimal solutions, the minimizer of
performative risk [11, 13, 16]. In this work, we focus our analysis on performative stable solutions,
whose deployment removes the need for repeated retraining in changing environments [2, 10, 14].

One of the main applications of this framework is strategic classification [8] which involves
deploying a classifier interacting with agents who strategically manipulate their features to alter the
classifier’s predictions and achieve their favorable outcomes. Strategic Classification has served as
a benchmark in the literature of performative prediction [14, 16–18, 21], and we adopt this setting
in our experiments to empirically demonstrate our theoretical contributions.

Prior work in performative prediction either assumes the data distribution is a function of the
parameters modeled as D(θ) [3, 9, 21], or more realistically dependent on the predictions as in
D(fθ) [15, 17]. Although existing work only assumes one of these settings, our work adheres to
both, by providing a tightness analysis of the rates proposed in Perdomo et al. [21] and Mofakhami
et al. [17] and showcasing scenarios where we can provide a faster convergence rate by considering
the history of distributions. To the best of our knowledge, we are first to provide a lower bound on
the converge rates achievable using any such affine combination of previous snapshots.

Most related to our idea of using previous distributions are works that study gradually shifting
environments considering history dependence [2, 12, 22]. Brown et al. [2] brought up the notion of
stateful performative prediction studying problems where the distribution depends on the classifier
and the previous state of the population. This is modeled by a transition function that is fixed
but a priori unknown and they show that by imposing a Lipschitz continuity assumption similar
to ϵ-sensitivity to the transition map, they can prove the convergence of RRM to an equilibrium
distribution-classifier pair. In our work, we consider a specific dependence on history, by using an
affine combination of previous distributions, and show that this can lead to an improved convergence
than prior work without imposing any additional assumption.
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