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Abstract
Learning methods for optimizing strategies in very large multi-agent settings (a.k.a. games) often
abstract the space of all possible strategies of the opponents to a small portfolio. Existing scalable
methods for constructing these portfolios are either hand-designed for specific domains or heuris-
tics without understood guarantees. To enable a more fundamental approach, this paper studies
the problem in small normal form games. We formally define the optimization problem of finding
the optimal portfolio for approximating the Nash equilibrium in two-player zero-sum games. We
propose a method to approximate the optimal solution in small games. Even though this approx-
imation is provably suboptimal, it is enough to demonstrate that the portfolios constructed by a
recent scalable heuristic are very far from the optimum. We study the reasons and propose some
improvements, but we are still far from closing the gap.

1. Introduction

Imperfect information extensive form games (IIGs) such as Dark Chess, Stratego, or Poker are
relevant [3, 17] not only because these games are popular but also because they resemble real-world
problems more than perfect information games. However, these games present greater challenges
than perfect information games due to the complexity of hidden information [4]. Additionally, it
is difficult to impossible to compute Nash Equilibrium in the domain of large games. Even though
for the zero-sum games there exists a polynomial algorithm [7] the games are so large that it is
intractable. Therefore many solutions are approximating the Nash Equilibrium, very often through
abstractions [6, 9, 19]. Recently, a method called Multi-Valued States (MVS) [3, 4, 10] is used to
solve large IIGs effectively. It uses a portfolio of strategies of the opponent to be able to adjust
the player’s strategy to a potentially changing opponent. While portfolios have appeared in various
research works [1, 2, 10, 18] of competitive games, they have not been thoroughly studied. In these
works, portfolios are found relying on heuristic methods or even crafted by hand.

In this paper, we explore the role of portfolios in optimizing strategies for large IIGs, with a
focus on the theoretical foundations behind their use. Specifically, we investigate portfolios for
strategy optimization in the context of the MVS approach. MVS leverages portfolios to enhance
strategy robustness and efficiency, and we delve into this optimization process in detail. To better
understand this issue, we transition to zero-sum normal form games, where we formally define a
portfolio and introduce a relevant optimization metric. This allows us to frame the task of finding
the optimal portfolio as an optimization problem. We systematically study this issue and propose
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an algorithm for finding the optimal portfolio and evaluating it. Additionally, we benchmark exist-
ing heuristic methods, analyzing their approximation quality and assessing the effectiveness of the
portfolios they generate.

2. Related Work

An important portfolio searching algorithm is Double Oracle (DO) [14]. It generates subsets of
strategies for each player by iteratively adding best responses to the opponent’s current subset of ac-
tions. Lanctot et al. [11] introduced Policy-Space Response Oracles (PSRO), a generalized version
of DO. Brown et al. [4] modified DO to be used in extensive form games and depth-limit solving.

Another class of methods is based on the transformations of the policy. In Multi-Valued States
(MVS) [4] and Pluribus [3], a portfolio is found by ”bias approach”, which uses hard-coded trans-
formations (e.g. multiplication of action probabilities) on the blueprint strategy (approximation of
NE). However, Kubı́ček et al. [10] proposed an extended version of the ”bias approach”. It uses
gradients from the Regularized Nash Dynamics [17] algorithm to perform transformations on the
strategy.

Kroer et al. [8] define a Mixed-Integer Linear Program that computes an abstraction of an exten-
sive form game that satisfies certain bounds on all levels at once. It can be used to create a portfolio,
however, this is not scalable to bigger games and the portfolio is not guaranteed to be optimal.

On the other hand, related to finding the portfolio is work of [18]. They introduce a framework
for a robust portfolio of strategies selection in Ad Hoc Teamwork Agents. This is defined in cooper-
ative games. Certain definitions used by them are not fully applicable in the context of competitive
zero-sum games. They introduce a concept of minimum coverage sets and use its approximation to
create an algorithm for finding portfolios in the big space of strategies.

Implicit modelling uses portfolios for the opponent’s exploitation. Bard et al. [2] create the port-
folio by clustering strategies from the data. However, it does not scale well and is data-dependent.

3. Preliminaries

A two-player normal form game is a tuple G = (N,A, u). N = {1, 2} is a set of players, by i
we refer to one of the players, and by −i to their opponent. A = A1 × A2 denotes a set of all
available action profiles. We denote a set of all probability distributions over actions from Ai as
∆(Ai), and a set of all probability distributions over action profiles as ∆(A). For each player i ∈ N
we define an (expected) utility function ui : ∆(A) −→ R, which returns utility for a strategy profile
π = (π1, ..., πn) ∈ ∆(A). π(a) denotes the probability of players playing action profile a ∈ ∆(A).
If ui(π) = −u−i(π) for all π ∈ ∆(A), we say that the game is zero-sum. In this work we will only
consider two-player zero-sum games (2p0s), additionally, we will use u as u = u1 = −u2.

A pure strategy πi for player i is an action a ∈ Ai. A mixed strategy πi is a probability
distribution over Ai. A strategy BRi(π−i) ∈ ∆(Ai) is best response BRi(π−i) ∈ argmaxπi∈∆(Ai)

ui(πi, π−i). We call a strategy profile π∗ a Nash Equilibrium (NE) if, for all agents i, π∗
i is a best

response to π∗
−i. An ϵ-Nash Equilibrium (ϵ-NE), ϵ ≥ 0, is a strategy profile π such that no player

can gain more than ϵ by unilaterally deviating from their strategy. A game value u∗ = u(π∗) of 2p0s
game is the utility value of Nash Equilibrium π∗. In 2p0s game the Maximum Entropy Correlated
Equilibrium (Maxent) [15] is πME = argmaxπ∗∈NE H(π), where H(π) is the (Shannon) entropy
of the strategy H(π) =

∑
a∈A π(a)ln( 1

π(a)).
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Figure 1: This diagram illustrates the strategy optimization process using a portfolio P in a game
G. The strategy space is a multidimensional simplex mapped to two dimensions for simplicity. On
the left, the simplex represents the strategy space of Player 1, ∆(A1), while on the right, of Player
2, ∆(A2). Within the latter, the gray simplex represents the strategy space defined by the portfolio
∆(P ). The NE of the restricted game, π∗

R, is computed for ∆(A1) and ∆(P ). Then, πB is computed
by fixing Player 1’s strategy and finding best response of Player 2 in the full strategy space ∆(A2).

4. Portfolios

A portfolio is a subset of possible actions or strategies that a player will use instead of their actions
in the original game. We now formally define a portfolio.

Definition 1 A Mixed Portfolio of size k ∈ N+ of player i in the normal form game G is a subset
of mixed strategies P = {πp1, πp2, ..., πpk}, P ⊆ ∆(Ai), so that |P | = k.

Additionally, we define Pure Portfolio P as such that consist only of pure strategies, which
means that portfolio P of player i is a subset of actions P ⊆ Ai.

A normal form game G can be restricted by a portfolio for a player i. In that case, that player is
allowed to only choose the actions from the portfolio.

Definition 2 A normal form game G = (N,A, u) restricted by portfolio P = {πp1, ..., πpk} of
player i is called a restricted normal form game GR(G,P, i) = (N,A′, u′), where actions are
formed as A′ = A′

1 × A′
2, A

′
i = P,A′

−i = A−i and utility matrix is constructed with u′(π′
i, π−i) =

Σk
j=1π

′
i(j) · u(πpj , π−i), π

′
i ∈ ∆(P ).

We denote a set of all NE of restricted game GR(G,P, 2) as: π∗
R(G,P ) =

= argmaxπ1∈∆(A1)minπ2∈∆(P ) u(π1, π2)

4.1. Strategy Optimization

In this paper, we focus on identifying the opponent’s portfolio that enables the best performance
in the original game, as in e.g. MVS [4]. We define this process within the normal form games
and assume that strategy optimization is conducted for player 1 while player 2 is restricted by the
portfolio. Initially, we are given a two-player zero-sum normal form game, G = (N,A, u), and a
portfolio P of size k. Then a restricted game, GR(G,P, 2), is constructed and one of its NE, π∗

R, is
computed. Player 1 adopts this strategy in the original game G, while Player 2 plays best response,
BR2(π

∗
R1). This defines portfolio utility, which says how little a player can lose by assuming the

portfolio while facing a rational opponent. This process is illustrated in Figure 1.
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Definition 3 The set of utilities of portfolio P in a game G is the set of all the utilities that player 1
can get when assuming the portfolio: UP (G,P ) = {minσ2∈∆(A2) u(π1, σ2) | π ∈ π∗

R(G,P )}.

UP (G,P ) is a set rather than a single value, as multiple equilibria can exist in the restricted
game GR. While they share the same utility in GR, their utilities in the original game G may differ.
The following definition allows us to specify which one is selected.

Definition 4 Depending on the rule selecting the equilibrium in the restricted game there are the
following utilities of portfolio P in the game G:

• Optimistic Utility of Portfolio uOPT (G,P ) = maxσ∈π∗
R(G,P )minσ2∈∆(A2) u(σ1, σ2)

• Pessimistic Utility of Portfolio uPES(G,P ) = minσ∈π∗
R(G,P )minσ2∈∆(A2) u(σ1, σ2)

• Maximum Entropy Utility of Portfolio uME(G,P ) = minσ2∈∆(A2) u(π
ME(GR(G,P, 2)), σ2)

• Algorithm A Utility of Portfolio uA(G,P ) = minσ2∈∆(A2) u(A(GR(G,P, 2)), σ2), where
algorithm A is an algorithm that computes a NE in a game

Note that uOPT (G,P ), uPES(G,P ), uME(G,P ), uA(G,P ) ∈ UP (G,P ). For any game G and
portfolio P , the portfolio utility uP is bounded by optimistic and pessimistic utilities: uOPT (G,P )
≥ uP (G,P ) ≥ uPES(G,P ). However, computing these utilities requires knowledge beyond the
restricted game. Nevertheless, we focus on the pessimistic case as it reflects the portfolio’s perfor-
mance in the worst-case scenario. We further discuss this issue in the Appendix D.

Since the objective is to find a strategy the closest to NE strategy, we want to know how much
worse the player is for assuming the portfolio (uP (G,P )) from playing without any restriction on
actions (u(π∗(G))). In other words, we want to know the cost of using the portfolio:

Definition 5 For a given portfolio utility definition uP , a cost of portfolio P in the game G is
defined as C(G,P, uP ) = |u(π∗(G)− uP (G,P )|.

The optimal portfolio is the one that minimizes that cost. We elaborate on it in the Appendix B.

4.2. Are Mixed Portfolios needed?

We observed that mixed portfolios are more expressive than pure portfolios of the same size.

Observation 6 For any portfolio utility uP , any game G = (N,A, u) and portfolio size k ≤ |N |,
there exists mixed portfolio Pm of size k that’s cost is at least as low as any pure portfolio Pp:

∃Pm⊆∆(A2)∀Pp⊆∆(A2)C(G,Pm, uP ) ≤ C(G,Pp, uP )

Theorem 7 There exist games and portfolio sizes for which the above inequality is strict.

We provide the proofs for Observation 6 and Theorem 7 in Appendix C.

5. Evaluation

The evaluation procedure starts with a portfolio P and a game G as input. Next, the NE π is found in
the restricted game GR(G,P, 2), based on the portfolio type. Once the equilibrium is identified, the
best response for Player 2, BR2(π1), is determined and its value, vbr, is computed. Afterwards, the
value of the game G, v, is calculated. Finally, the evaluation returns the cost of portfolio |v − vbr|.
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(a) krate = 0.3 (b) krate = 0.5 (c) krate = 0.3 (d) krate = 0.5

Figure 2: Figures (a) and (b) present results for the generalized RPS game (for 100 seeds). Figures
(c) and (d) present portfolio results for random games. 100 different games were generated (seed
42), for each size n. In both experiments, Gradient-based methods use a scaling factor of 0.3. The
average and standard error of pessimistic evaluation is shown.

5.1. Algorithm for pessimistic portfolio evaluation

We present the Mixed-Integer Linear Program (MILP) algorithm for the pessimistic evaluation
of (mixed) portfolio P : k × |A1|, k ∈ {1, ..., |A2|} in the normal form game G = (U, (A1 ×
A2), {1, 2}). For this program the value vR of the restricted game GR(G,P, 2) needs to be pro-
vided. We assume that the utility matrix U is normalized so the values are from [−1, 1]. That allows
us to use a big enough constant M = 10. Additionally, we calculate utility matrix UR : |A1| × k
of GR as UR = PU . ei ∈ {0, 1}|A2| denotes vector with 1 on position i and 0 otherwise. Variables
x ∈ [0, 1]|A1| denote player 1’s strategy and vo ∈ [min(U),max(U)] is the utility of portfolio.
Lastly, binary variables b ∈ {0, 1}|A2| signify which action is best response of player 2.

We make sure that strategy is a distribution (1) and that there is only one best response picked(2).
We also fix player 1’s strategy to be NE (3) and bound best response value vo (4).

1)
∑

i∈{1,..,|A1|}

xi = 1, 2)
∑

i∈{1,..,|A2|}

bi = 1, 3)xUR ≥ vr1

4)∀i∈{1,...,|A2|} : xUei ≤ vo +M(1− bi)

Finally, the objective is to minimize vo.

6. Experiments

We employ methods relevant to the portfolio search problem, utilizing scalable heuristics that do
not guarantee optimal portfolios. Additionally, we include a non-scalable optimal method.

Gradient Cluster Transformations (GCT) [10], operates in three stages. Firstly, it computes
the gradients of an algorithm that approaches Nash Equilibrium, though full convergence is not
required. Next, the gradients are normalized and clustered to form k distinct clusters, representing
various directions in the strategy space. Finally, gradients are drawn from each of these k clusters,
multiplied by a scaling factor c, and added to a grounding strategy, such as an approximate NE,
to form the portfolio. We adapt GCT for the 2p0s NFG setting. Like the original authors, we use
the Regularized Nash Dynamics (R-NaD) algorithm [17] [16] as the iterative algorithm. R-NaD
performs efficiently on GPUs, making it well-suited for large imperfect information games. We use
it with 10k gradients. Additionally, we modify the GCT method, which clips the gradients to be
non-negative before normalization, we refer to it as GCT-Clip.
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The Double Oracle (DO) [14] method iteratively expands each player’s strategy subset by
adding best responses to the opponent’s current actions. We start with responses to the uniform
strategy and continue until player 2’s subset reaches the target portfolio size.

We use two random methods: Random Mixed Portfolio and Random Gradient Portfolio. The
former generates random strategies with values drawn from uniform distribution and then normal-
ized. The latter allows for a direct analysis of the impact of the gradients generated by GCT. It
generates random gradients, which are normalized and added to the Nash Equilibrium strategy,
scaled by a constant factor as in GCT. Together, these components form the portfolio.

Additionally, we compute the optimal pure pessimistic portfolio (OPPP) via brute force, enu-
merating all pure portfolios and evaluating them using the algorithm in Subsection 5.1.

7. Results

7.1. Random games

Random games [13] enable easy generation of games at any size. We create them by sampling
utility integer values from [−1e07, 1e07] and normalizing them to the range [-1, 1]. Empirically,
these games typically have a single NE. We conducted experiments on games with action sizes
|A1| = |A2| ∈ {3, . . . , 15}, using portfolio size rates of 0.3 and 0.5. Portfolio size k is calculated
as k = max (1, ⌊krate · n⌋), with k = 2 for n = 3 and krate ≥ 0.5. Results in Figure 2 show a ”zig-
zag” pattern, caused by k increasing by 1. None of the methods outperform OPPP. For krate = 0.3
GCT-Clip outperforms GCT and DO. GCT outperformed DO for n > 6. However, for krate = 0.5
they all perform with similar quality. Non-random methods achieve lower costs for krate = 0.5, as
larger portfolios retain more information. This effect is especially pronounced for DO, likely due to
its iterative nature: with smaller portfolios, there’s a lower chance of selecting the correct strategies.
Random Gradient Mixed performs worse than GCT, indicating the usefulness of R-NaD gradients
in GCT. A more detailed GCT study can be found in Appendix A.

7.2. Generalized Rock Paper Scissors

To assess methods on a game with a specific structure, we performed experiments on the general-
ized Rock Paper Scissors game, as it is a popular zero-sum game [12]. We use the generalization
proposed by Gergely et al. [5], defined for odd sizes n with each action winning and losing exactly
⌊n2 ⌋ times. Uniform strategy is the only NE for all n. The results are presented in the Figure 2.
Interestingly, in this game, the difference between GCT and GCT-Clip is different than in Random
Games. Moreover, for some sizes, OPPP is reached by DO or even outperformed by GCT.

8. Conclusions

We formally defined portfolios and their optimization problem, analyzed their dynamics, and devel-
oped an algorithm to find optimal pure portfolios. Using this algorithm, we benchmarked compu-
tationally efficient methods and assessed their performance. While we observed improvements in
the GCT method, it does not achieve the cost of the optimal pure portfolio, indicating room for fur-
ther enhancement. Future work should focus on designing an algorithm for finding optimal mixed
portfolios. It would also be beneficial to test GCT-Clip with SEPOT [10] in large games to assess
it. Additionally, exploring other use cases for portfolios would be valuable.
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Appendix A. Qualitative analysis and GCT study

A.1. GCT study on random games

In order to measure how ”accidental” is GCT method and whether the gradients generated by it are
useful in leading to the portfolio, we analyse the importance of the three stages of GCT: choos-
ing the gradients(1), normalization of the gradients(2) and choosing a grounding strategy for the
gradients(3).

To analyse the first stage and determine which gradients are relevant, we performed experiments
to check the influence of the number of gradients used. The results are presented in the Figure 4.
It can be observed that in general, GCT with only the first 500 or 1000 gradients achieves worse
results. The difference grows with the portfolio size, as other gradients sizes improve the cost.

This proves that gradients from R-NaD from later iterations are useful. However, for a bigger
number of gradients, it is not clear which one is the best. This suggests that gradients from the end
do not contribute to finding good directions from the NE. That might be caused by making gradients
more repetitive and losing more significant gradients. Or because gradients from later iterations are
changing policy by a small difference, which can be not significant, especially when k is smaller.
This is supported by the fact that the bigger k, the more cost decreases among the higher gradients
number.

For the second stage of GCT, we test the importance of normalization of the gradients and
gradient scaling factor. We compare no normalization, normalization of the length of the gradient
and third variant (old/clipping) which is clipping the values of gradients to be from 0 to 1 before
normalization. Results are presented in the Figure 3. It is apparent that normalization is necessary,
which makes sense because some gradients might be significantly smaller than others, especially
the ones nearer convergence. Additionally, clustering them with length is more messy(?) - it’s
introducing additional dimension. However, surprisingly the normalization method that clips the
gradients to positive value firsts has better results. We also tested the influence of the clustering
constant gradients’ multiplication factor for 20 values from 0.01 to 1.0 and observed no difference
in the results, therefore we set this constant to 0.3.

To test the importance of the grounding strategy for the GCT method we performed an experi-
ment with the GCT gradients attached to different grounding strategies. We compare using different
approximations of Nash Equilibrium(ϵ-Nash Equilibrium), depending on the ϵne. Here, we take the
strategy that is on the edge of ϵ-NE for player 1. Results are presented in the Figure 5.

It is visible that for ϵne ≤ 1.0, the costs are almost the same. For bigger values, it is increasing
the cost significantly. It is a positive outcome in the meaning that in terms of large imperfect
information games, computing ϵ-NE with very small ϵne is costly.

A.2. Qualitative analysis

To understand portfolios more we performed qualitative analysis. Firstly, we look at the games in
which GCT achieved (much) worse results than other methods, meaning a difference of at least 0.3.

When an action is dominated it results in the GCT method not using this action at all in the
portfolio. On one hand, this is a desired feature as often dominated actions are not necessary in the
portfolio. On the other hand, there are many games where the Optimal Pure Pessimistic Portfolio
contains actions from outside of NE support (when the portfolio size is smaller or equal to the size

9



FINDING OPTIMAL PORTFOLIOS OF COUNTERSTRATEGIES IN THE LARGE IIG

(a) krate = 0.2 (b) krate = 0.4 (c) krate = 0.6

Figure 3: Normalization of gradients in GCT method. Average and standard error from 50 random
games is shown.

(a) krate = 0.2 (b) krate = 0.4 (c) krate = 0.6

Figure 4: Number of gradients in GCT method. The average and standard error of pessimistic
evaluation from 20 random games is shown. Original normalization is used.

of the support). This results in many games in which the GPT portfolio performs much worse than
the Optimal Pure Pessimistic Portfolio.

B1 B2 B3

A1 -0.99 0.66 0.37
A2 -0.15 -0.16 0.87
A3 -1.00 0.48 -0.72

Table 1: Game of size 3.

B1 B2 B3 B4

A1 0.38 0.60 0.56 -0.65
A2 -0.29 -0.07 -0.00 -0.98
A3 0.10 -0.74 0.52 0.39
A4 0.90 0.52 -0.29 1.00

Table 2: Game of size 4.

Table 3: Games in which GCT was much worse than OPPP.

For game, with utility matrix presented in Table 1, and k = 1 GCT found portfolio {[0.431,
0.569, 0.000]} with cost 0.837, whereas OPPP portfolio is {[1, 0, 0]} with cost 0.007. For compari-
son, a portfolio containing strategy {[0.5, 0.5, 0.0]}, which is very close to NE has the same cost as
OPPP.

For the next game 2, GCT found bad portfolios for both krate. For k = 1, OPPP has an action
that is not in the support of NE while OPPP finds [1, 0, 0, 0] with cost 0.517, while GCT achieves
cost 0.971 and portfolio {[0, 0.198, 0.523, 0.279]}. For comparison, a portfolio containing strategy
{[0.0, 0.2, 0.4, 0.4]}, which has the same cost as OPPP.

10
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(a) krate = 0.2 (b) krate = 0.4 (c) krate = 0.6

Figure 5: Grounding strategy in the GCT method: Average and standard error of pessimistic eval-
uation over 50 random games are shown, using original normalization. For each ϵne, the least
beneficial strategy that is an ϵne-NE was chosen. ’Uniform’ refers to the uniform strategy.

(a) Original Normalization (b) Original Normalization (c) Original Normalization

Figure 6: GCT method with different scaling factors. Average with standard error on 50 random
games each is presented. Original Normalization.

We now discuss the same game (Table 2) but for k = 2. OPPP found portfolio {[0, 1, 0, 0],
[0, 0, 0, 1]} with cost 0.284. GCT found portfolio {[0.00, 0.176, 0.644, 0.180], [0.00, 0.238, 0.340,
0.422]} with cost 0.677.

Additionally, we look at two games. Firstly, in the Rock Paper Scissors game in which GCT
found a portfolio
{[0.26, 0.24, 0.50], [0.41, 0.42, 0.17]}, with cost 0.48, which is better than pure optimal pessimistic
but not optimal. Then we look at the games from example 7 in which GCT and DO both find optimal
portfolios.

11
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Appendix B. Details on optimizing portfolio cost

Definition 1 For a utility portfolio uP , the optimal portfolio of size k in the game G is a portfolio
of player 2 defined as P ∗ ∈ argminP⊆∆(A2),|P |=k |u(π∗(G))− uP (G,P )|

Next, we will demonstrate that the above optimization criterion can be simplified. To achieve
this, we require the following lemma:

Lemma 2 Utility u∗ in the Nash Equilibrium of 2p0s game G is bigger or equal than any utility of
portfolio uP (G,P ) ∈ UP (G,P ): u∗ ≥ uP (G,P )

Proof Since G is a zero-sum game, for any strategy π1 ∈ ∆(A1) we have following inequality:
u∗ = u(π∗

1, π
∗
2) ≥ u(π1, π

∗
2) = −u2(π1, π

∗
2). In particular, when π1 = π∗

R1 we have that u∗ ≥
u(π∗

R1, π
∗
2) = −u2(π

∗
R1, π

∗
2). This is equivalent to:

−u∗ ≤ u2(π
∗
R1, π

∗
2) ≤ u2(π

∗
R1, BR2(π

∗
R1)) =

= −u(π∗
R1, BR2(π

∗
R1)) = −uP (G,P ) ∈ UP (G,P )

Therefore u∗ ≥ uP (G,P ), for all uP (G,P ) ∈ UP (G,P )

Now we introduce the simplification of the Definition 1.

Theorem 3 For a portfolio utility uP , the optimal portfolio of player 2 of size k is characterized
by P ∗ ∈ argmaxP⊆∆(A2),|P |=k uP (G,P )

Proof Thanks to Lemma 2, the absolute value in the definition of cost can be removed: C(G,P, uP ) =
u∗ − uP (G,P ). Moreover, game value u∗ does not depend on portfolio, therefore, minimizing
C(G,P, uP ) is equivalent to minimizing −uP (G,P ) or maximizing uP (G,P ).

12
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Appendix C. Proof of Observation 6 and Theorem 7

Observation 6 is trivially proven because mixed portfolios contain pure portfolios. Below we present
the proof of the Theorem 7.
Proof

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Table 4: Utility matrix of
Rock Paper Scissors(RPS)

R P
R 0 -1
P 1 0
S -1 1

Table 5: Utility matrix of
GR(RPS, {R,P}, 2)

σ1 σ2

R -0.5 0
P 0.5 -0.5
S 0 0.5

Table 6: Utility matrix of GR(RPS,
{(0.5, 0.5, 0.0), (0.0, 0.5, 0.5)}, 2)

We prove the opposite by counterexample. We will show that for a specific game, there exists
a mixed portfolio with a lower cost than any pure portfolio. We will show that for optimistic and
pessimistic utility, which is enough because those types bound others. Let G be a Rock Paper
Scissors game (Table 4) and portfolio size be k = 2. In this case, an optimal portfolio is any portfolio
that contains two distinct actions, then without loss of generality Ppure = {(1, 0, 0), (0, 1, 0)} is the
optimal pure portfolio. Utility of restricted game GR(G,Ppure, 2) is presented in the Table 5. The
optimistic and pessimistic NE both result in the following strategy of player 1: π∗

R1 = (0, 23 ,
1
3) and

best response of player 2 in the original game G to be BR2(π
∗
R1) = (0, 0, 1). Therefore, the cost of

this portfolio is: C(G,Ppure, uP OPT ) = C(G,Ppure, uP PES) = |0− 2
3 | ≈ 0.67

Now, we will show a mixed portfolio of size k = 2, that has a lower cost for this game than
0.67 with Pmixed = {(0.5, 0.5, 0), (0., 0.5, 0.5)}. Utility of restricted game GR(G,Pmixed, 2) is
presented in the Table 6. Again, the optimistic and pessimistic NE both result in the following
strategy of player 1: π∗

R1 = (0, 13 ,
2
3), with best response of player 2 to be BR2(π

∗
R1) = (0, 0, 1).

Therefore the cost of this portfolio is: C(G,Pmixed, uP OPT ) = C(G,Pmixed, uP PES) = |0 −
1
3 | ≈ 0.33
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Appendix D. Discussion about different utilities of portfolio

B1 B2 B3 B4

A1 0 0 1 -1
A2 0 0 -b 1

Table 7: Utility matrix of a game with ambiguous optimal optimistic portfolios. b > 1 is parameter.

While the optimal portfolio with optimistic utility is easier to find, it may not be useful for
strategy calculation. Since the NE selected in the restricted game is always beneficial for player
1, the portfolios are chosen ignoring the difficulty in finding it, promoting ambiguous restricted
games. A portfolio carrying less information (not capturing full-game dynamics) can make it harder
to identify the correct NE with a method that relies solely on the restricted game.

As an example, consider a game G with the utility matrix in Table 7 and b > 1. The NE
for G is π∗ = {(1+b

3+b ,
2

3+b), (0, 0,
2

3+b ,
1+b
3+b)}. The desired portfolio of size k = 2 should include

actions B3 and B4, as they are necessary to identify the NE, while actions B1 and B2 are redundant.
However, both {B3, B4} and {B1, B2} are optimal optimistic portfolios, because in the restricted
game GR(G, {B1, B2}, 2), any strategy is a NE so π∗

1 can be chosen. Unfortunately, there is no
guarantee the method using only the restricted game will find π∗

1 . Even if it did for one value of b,
it would fail for others, leading to portfolio exploitability. Thus, the optimistic portfolio concept is
not ideal, as it does not capture what we are truly aiming to optimize.

Therefore, the optimal pessimistic portfolio is more relevant, as it guarantees a maximum cost
regardless of the method. However, its optimization formula is more complex, making it harder
to find the optimal algorithm. If the NE-finding method is known, such as Regret Matching+,
computation becomes more precise. This simplifies the process but reduces generality.

On the other hand, Maximum Entropy Equilibrium can be useful when an equilibrium must
be chosen, as it’s easier to compute than the pessimistic version and doesn’t require full game
information. It’s also method-independent, making it more general, though it’s uncertain if the
chosen NE-finding method will yield a similar result.
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