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Abstract
Studies of scaling ladders have shown that the compute-optimal Pareto frontier of a family of loss
curves can have a predictable shape, often a power law. We use a series of small transformer models
to demonstrate that the full loss curves themselves have a consistent shape —– collapsing onto a
single universal curve after an affine rescaling. Surprisingly, the deviations in the rescaled curves
across model sizes are smaller than deviations induced by randomn initialization and data ordering
in the raw loss curves, a phenomenon we call supercollapse. We recreate this phenomenon in a
simplified setting of training MLPs on a synthetic regression dataset. By analyzing both the original
model and our simplified model, we identify necessary conditions for supercollapse, including
compute-optimal training, learning rate decay, and a power-law compute-loss Pareto frontier, and
demonstrate its sensitivity to the estimate of the irreducible loss. Our study hints at a broader,
dynamical universality induced by compute-optimal scaling procedures.
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Figure 1: Supercollapse of transformer loss curves for predicting next-pixel on CIFAR-5M. (a) Raw cross-entropy
loss curves for a series of compute-optimally scaled transformers with linearly decayed learning rate. (b) The loss curves
collapse onto a single universal curve with high precision after an affine rescaling, a phenomenon we call supercollapse.
(c) Deviation from the universal curve (∆, blue) is within 1% for the majority of training and below the noise floor due
to random initialization and data ordering measured on an equivalent scale (dashed red, yellow, and green).
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1. Introduction

Recent progress in machine learning has been driven by understanding how the model performance
scales with its parameter count, training data, and compute budget, especially in high-data settings.
These empirical observations are captured by neural scaling laws — most notably the compute-
optimal scaling laws, which predict the minimal loss achievable for a given compute budget [4, 6, 8].
While most explorations of scaling laws focus on the final loss value, in this work we show that the
full loss curve, not just the final loss, can follow a highly predictable trend as we scale model, data,
and training compute. Our main results are as follows:

• We use a next-pixel prediction transformer model trained on CIFAR-5M [10] to show there is
an affine transformation of loss curves at different model sizes that makes them all coincide
for a large fraction of training (Figure 1b). We dub this phenomenon supercollapse because
the deviation between the resulting rescaled loss curves is less than the inherent random fluc-
tuation in the loss curves for any particular model by varying seeds (Figure 1c).

• We show that supercollapse requires compute-optimal training horizons and learning rate
decay, and is highly sensitive to the estimate of the irreducible loss (Figure 2).

• We recreate supercollapse in MLPs on an synthetic regression dataset (Figure 3) with a power-
law Fourier spectrum, showing it is a general phenomenon not limited to transformers or
modeling natural data.

Our work suggests that there may be universal training dynamics of models trained with compute-
optimal hyperparameter choices. Moreover, much of the phenomenology may hold generally and
doesn’t require specific datasets or industry-scale models to explore. From a practical perspective,
our result suggests analyzing loss curve collapse may be a cost-efficient and high-precision tool for
studying certain scaling behaviors of neural networks.

2. Experimentally Tractable Scaling Ladders via Next-Pixel Prediction

To study compute-optimal training dynamics, we need an experimentally tractable scaling ladder
— a procedure for training a family of models with increasing compute, with hyperparameters that
ensure compute-optimal performance. We introduce such a scaling ladder for a family of small
transformers on a next-pixel prediction task, which enables quick experimental turnaround. Small
scale proxies for behavior in larger transformer models have been used successfully to understand
large-scale training instabilities [13], suggesting that some findings can generalize to larger systems.

Model and Dataset Details. We train decoder-only transformer models on a next-pixel prediction
task using the CIFAR-5M dataset [10] of 6 million CIFAR-like images. We convert the 32× 32× 3
images to greyscale and flatten them into sequences of length 1024. The model autoregressively pre-
dicts the pixel intensities by minimizing the cross-entropy loss. On the larger dataset YFCC-100M
[12], this task has been found to generate power-law scaling of the loss on the compute-optimal
Pareto frontier [4] — a key property in neural scaling laws, especially those found in language.

Scaling Ladder. We used 3 transformer blocks and scaled the model dimension D from 768 to
2048, fixing the attention head dimension at 64 and MLP hidden dimension equal to D instead of
the usual 4D to reduce parameters. The resulting model sizes ranged from 12M to 79M parameters,
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which are sufficiently small to be trained compute-optimally on CIFAR-5M without a noticable
train-test gap. We trained with the Adam [2] optimizer at a batch size of 256 images for a width-
dependent training horizon of S(D) steps, linearly decaying the learning rate to 0 at the end. All
models were parameterized in µP [14, 16] to use suitably scaled initialization and learning rates
(Appendix A). We trained with qk-layernorm [5], gradient clipping at global norm of 1, and a linear
warmup of 1000 steps, with no weight decay. With a fixed batch size, a P parameter transformer
model trained for S steps uses a compute budget (FLOPs) proportional to 6SP for large P [8].
Therefore we take C = 6SP to be the “compute cost” for all our analyses. Note that P ∝ D2.
We chose the training horizon by estimating its compute-optimal value S∗(D), which we will show
is critical for supercollapse. To estimate the compute-optimal S∗(D), we carry out the following
procedure detailed in Appendix A: 1) We trained models with varying D for 7 · 105 steps without
learning rate decay. 2) We then numerically computed the compute-loss Pareto frontier to obtain an
estimate of D∗(C) - the optimal width for a fixed compute budget. 3) Finally, we fit a power law
D∗(C) ∝ CαD and inverted it to find an optimal number of steps S∗(D). We then used S∗(D) as
our training horizon function for our experiments with learning rate decay. This procedure assumes
S∗(D) does not change too much when adding learning rate decay, in order to avoid an additional
sweep over S∗ for each D as done in Hoffmann et al. [6].
The loss curves of the models trained with learning rate decay generate a Pareto frontier which
is well-described by the form L0 + aC−b (Figure 1a), as expected from prior works on compute-
optimal scaling laws [6, 8]. We refer to L0 as the irreducible loss. Moreover, the loss curves have
remarkably similar shapes, which we explore in the next section. We found the train-test gap to be
negligible and report the test loss throughout this work.

3. Observation of Supercollapse in Transformer Models

3.1. Loss Rescaling and Loss Curve Collapse

A natural way to compare the loss curves for different D is to plot the relative progress of training.
We chose to plot the reducible loss vs compute (training FLOPS) as fractions of their final values.
More formally, given an estimate of the irreducible loss L0 our family of rescaled loss curves
L(t;D) is derived from the original loss curves L(C;D) as

L(t;D) =
L(t · C∗(D);D)− L0

L(C∗(D);D)− L0
, (1)

where C∗(D) is the total compute used to train a model of width D. Note that L(1;D) = 1 always.
We see that our family of rescaled curves L(t;D) appear to have the same shape for the last 80%
of training (Figure 1b). We optimized the single parameter L0 = 3.137 to achieve this degree of
collapse across 8 curves over a broad range of t. Note that L0 derived in this manner differs from
the more common technique of fitting the Pareto frontier by only 0.005, but this small difference is
key to the precision of the collapse as we discuss in Section 4.
This result suggests that merely predicting the endpoints of training is a low bar; in the right setup
and with the appropriate rescaling, the entire loss trajectory is consistent across model scales. In
the remainder of the paper we quantify the degree of consistency, and explore necessary conditions
for this phenomenon.
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3.2. Supercollapse: Consistency Below the Noise Floor

We dub the above phenomenon supercollapse, based on the following analysis of the deviations in
L(t;D) acrossD for fixed t. One natural comparison of the deviations in L(t;D) are the deviations
in the loss curves for fixed D induced by the randomness of the training process. We measure the
cross-seed fluctuation σD defined as

σ2D(t) = V
{
L(tC∗(D), D)− L0]

E[L(C∗(D), D)− L0]

}
(2)

where E and V denotes expectation and variance due to randomness in the training algorithm such
as initialization and data ordering. That is, σD(t) is the standard deviation of the reducible loss
curves of a width D model as a fraction of its average final reducible loss. We use the estimate
of L0 found by the supercollapse fit, and perform the averaging over five seeds. We will compare
σD(t) to the cross-model collapse deviation ∆(t), defined as the standard deviation of the rescaled
loss curves L(t;D) over the range of D we tested:

∆2(t) = VD[L(t;D)] = VD
[
L(tC∗(D), D)− L0

L(C∗(D), D)− L0

]
(3)

which quantifies the degree of the collapse, where VD denotes empirical variance over D in our
experiments, and we use only a single seed for each D to mimic the realistic training setup.
Plotting the two measures (Figure 1c) reveals that the cross-model collapse deviation (∆, blue) is
consistently less than the cross-seed fluctuation σD(t) (dashed red, yellow, and green, computed
over 5 seeds), for the majority of the training process and a variety of D. In other words, the
collapse of L across model sizes D is quantitatively better than the noise floor introduced by the
stochasticity of the training algorithm measuerd on an equivalent scale.
This phenomenon is remarkable; there is a way to make full loss curves across different training
scales more consistent than the level of random fluctuations of any individual loss curve. While
we can only predict the reducible loss curve of any one model to a relative error of 1%, we can
rescale these curves so they match each other to within a relative error significantly below 1% after
an initial transient period.
A key to this result is the fact that L, and therefore ∆(t), depends on the exact final loss reached
by each individual trajectory, not its average. In contrast, σD(t) is rescaled by the average final
loss across seeds. This shows that the end point of a specific loss curve efficiently encodes much
of the randomness throughout the trajectory. Further evidence can be found by comparing cross-
seed fluctuation σD(t) with the cross-seed collapse deviation ∆D(t) given by ∆2

D(t) = V[L(t;D)].
This measure is the analogue of the cross-model collapse deviation ∆(t) except with the “collapse”
taken over random seeds while fixing D. We see that ∆D is in fact numerically comparable to ∆
(Figure 1c, solid red, yellow, and green), suggesting that the cross-model collapse and cross-seed
collapse are closely related phenomona.

4. Conditions for Supercollapse

In this section, we empirically probe the conditions required for supercollapse. We first demonstrate
that small differences in the scaling ladder and rescaling transform can significantly change the
quality of the collapse, and then test whether supercollapse happens in other settings beyond our
transformers expeirments.
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(a) Not compute-optimal
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(b) No LR decay
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(c) Suboptimal choice of L0
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(d) Supercollapse

Figure 2: Ablating necessary conditions for supercollapse. (a) Compute-optimal horizon: underestimating the optimal
compute exponent by 15% breaks scaling collapse. (b) Learning rate decay: Using a constant learning rate without decay
yields only a noisy scaling collapse (no supercollapse). (c) Estimating L0: fitting L0 using only the final losses leads to
a poor collapse. (d) Supercollapse with all conditions satisfied, shown for comparison.

4.1. Necessary Conditions for Supercollapse in Next-Pixel Prediction

Compute-Optimal Training. Suboptimally scaling the training horizon by underestimating the
scaling exponent c in S∗(D) ∝ Dc from 2.31 to 2 breaks the collapse (Figure 2a). Note c = 2
corresponds to scaling parameter count in proportion to training examples, which is found to be
compute-optimal in language modeling [6] and thus a reasonable alternative scaling. This result
suggests that loss curve collapse can be used to test the optimality of a scaling ladder.

Learning Rate Decay. The variation within and between the rescaled curves at late times is no-
ticeably larger when using a constant instead of decaying learning rate (Figure 2b, as compared to
Figure 1b). This suggests that learning rate decay is essential for supercollapse.

Estimating L0 from Full Loss Curves. When the models achieve near irreducible loss, the
rescaled curves are highly sensitive to the estimate of L0. A standard approach to estimate L0 is
by simplying fitting a power-law plus constant form L∗(C) = aC−b + L0 to the compute-optimal
loss frontier L∗(C) = minD L(C;D) [4, 8]. Compared to our earlier estimate of L0 using full loss
curves based on the collapse, this estimate leads to significantly worse collapse (Figure 2c), even
though the estimates only differ by 0.005 (power-law fit L0 = 3.132 vs. full curve L0 = 3.137).
However, as we do not know the true L0, we cannot conclude which estimate is more accurate.

4.2. How General is Supercollapse?

Is supercollapse specific to the next-pixel prediction transformer models? We show the answer is
no, by recreating supercollapse in MLPs trained on a synthetic regression dataset.

Supercollapse in MLPs on Random Fourier Features. We train 6-layer MLPs with varying
widths from 512 to 4096 on a target function φ(x) =

∑M
i=1wi

√
2 cos

(
2πk>i x+ bi

)
, with x ∈

R8, wi ∼ N (0, 1), bi ∼ π
2Bernoulli(0.5), ki = quantize(|ki|vi) where |ki| is a scalar sampled

from a power law with support [1, 106] and exponent −2, vi is a random unit vector, and quantize
rounds to the nearest point in Z8. During training, x is sampled uniformly from [−0.5, 0.5]8, mak-
ing the fourier featrues orthonormal over the data distribution. We include experiment details in
Appendix B. Carrying out the experimental procedure in Section 2, we find qualitatively the same
supercollapse shown in Figure 3a and Figure 3b in this setup. This result indicates supercollapse
may be a fairly generic phenomenon in scaling neural networks.
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(b) Supercollapse (c) No power law
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(d) No Collapse

Figure 3: Supercollapse in MLPs trained on random Fourier featurues data. (a,b) Raw loss and rescaled loss cureves
with a linearly decaying learning rate, showing supercollapse. (c,d) Raw loss and rescaled loss cureves with a constant
learning rate but with an expoential instead of power-law frequency distribution, showing a lack of collapse.

Power-Law Compute-Loss Frontier. Supercollapse is a statement about a precise scale invari-
ance in the loss dynamics. This suggests that the task itself needs to have some scale invariance as
well, such as a power-law compute-loss Pareto frontier. We ablate this property in the MLP setting
by changing the distribution of the scalar frequency |ki| from a power law to an exponential. With
this change, the compute-loss frontier no longer obeys a power law as shown in Figure 3c, where
the best power-law fit is shown as a dashed line and L0 is estimated to be 0. The lack of a power-
law pareto frontier is in line with recent works establishing a connection between the power-law
spectrum of the task kernel and the power-law scaling of loss with compute [1, 11]. In Figure 3d,
we see this change also destroys the collapse in the rescaled curves, suggesting that a power-law
compute-optimal frontier is necessary.

Effect of Feature Learning. In Appendix C, we discuss the effect of feature learning on super-
collapse. We train versions of the transformer and MLP models with no or weak feature learning
(curvature evolution), and find that the collapse of the rescaled loss curves look qualitatively dif-
ferent than those in Figure 1b and Figure 3. This suggests that the amount of feature-learning can
impact the shape and quality of the collapse significantly, an interesting topic for further study.

5. Discussion

Going beyond the existing studies on scaling laws that focus primarily on the final loss, our result
points to a high degree of universality in the overall training dynamics of neural networks as they
scale. This dynamical universality makes it possible to study the scaling behaviors of the entire
loss curves after a rescaling, with equal or even better precision compared to the final loss. This
finding potentially enables a more efficient and precise method for understanding and predicting
neural network performance as they scale.
We list several exicting extensions of this work:

• Scaling supercollapse: Can we produce supercollapse in much larger-scale models with more
sophisticated and realistic scaling ladders (e.g. co-scaling width, depth, and batch size)?

• Explaining supercollapse: Can we understand why the loss curves at different scales collapse
onto a single universal curve with unexpectedly high consistency?

• Guiding optimal scaling: Can we use supercollapse, or lack thereof, to identify sub-optimality
in our scaling ladder other than the training horizon?
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Appendix A. Transformer Experiment Details

A.1. Architectural Details

Our transformer uses GeLU activations [3], RMSNorm [17], and learned positional embeddings.
We untie the embedding matrix from the output head and do not use bias anywhere. The vocabulary
is the set of pixel intensities {0, . . . , 255}.

A.2. Hyperparameters

We parameterize the learning rate for each weight matrix as η = ηbase/D where D is the model
dimension, except for the embedding matrix which has η = ηbase. We use a parameter multiplier
a on the embedding matrix. We use ηbase = 4 and a = 0.1 as they led to good performance in
our early experiments. We initialize the embedding matrix as W emb

ij ∼ N (0, 1), the output head as
W head = 0, all other matrices W as Wij ∼ N (0, 1/D).

A.3. Estimating Compute-Optimal Training Horizon

We provide additional details for the 3-step procedure presented in Section 2:

1. We trained models with varying D for 7 · 105 steps without learning rate decay but keeping
the initial warmup. We chose a large enough number of steps so that the largest model could
reach the compute-optimal loss frontier. We average the loss curves from 5 seeds for each D.

2. We numerically computed the compute-loss Pareto frontier to obtain an estimate of D∗(C) -
the optimal width for a fixed compute budget. We use 50 logarithically spaced points for C
and find the D that achieves the best loss given that amount of compute.

3. We fit a power law D∗(C) ∝ CαD and inverted it to find an optimal number of steps S∗(D).
Before obtaining the final fit, we iteratively remove the point with minimum or maximum C
in the remaining points to maxize theR2 of the fit. This step removes outlier points that do not
belong on the true compute-optimal frontier but are present in our data due to over-training
the largest model or under-training the smallest model.

Appendix B. MLP Experiment Details

We use the vanilla MLP where f(x) =
(
WL+1 ◦ g ◦WL ◦ g ◦ · · · ◦ g ◦W 1

)
(x), where W ` de-

notes linear layers without bias. We parameterize the learning rate for each weight matrix as
η = ηbase/D where D is the width, except W 1 which has a learning rate ηbase/8 (8 is the in-
put dimension). We initialize all but the last layer as Wij ∼ N (0, 1/D) and zero-initialize the last
layer. We use a base learning rate ηbase = 0.4 and a batch size of 16384. We use gradient clipping
at global norm of 1 and a linear warmup of 1000 steps. We repeat the same procedure outlined in
Section 2 to estimate the compute-optimal training horizon and run our final experiments with a
linear decay learning rate schedule to produce Figure 3a and Figure 3b.
For Figure 3c and Figure 3d, we sample the scalar frequencies |ki| from the distribution p(k) ∝
exp(−k/k0) where k0 = 1.1. We did not experiment different values of k0.
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(d) MLP collapse

Figure 4: Loss and loss curve collapse in models with no or weak feature learning. (a) Loss curves for transformers
where only the last layer is trained, using a linearly decayed learning. (b) Rescaled loss curves. (c) Loss curves for MLPs
using NTK parameterization with a linearly decayed learning. (d) Rescaled loss curves.

Appendix C. Effect of Feature Learning

In Figure 4, we show the raw and rescaled loss curves in models with no or weak feature learning,
obtained by training only the last layer of the transformer (scaling learning rate as 1/D) and training
the MLP in the NTK parameteriztaion [7, 9]. As before, we train the models using the Adam
optimizer. We use the version of the NTK parameteriztaion appropriate for the Adam optimizer
[15]. Compared to the collapse observed in fully-trained feature-learning models, the collapse in
Figure 4 show two qualitative differences: 1) the collapse is only good at late times (t > 0.5),
and 2) the loss curve is flat, i.e. ∂L/∂t ≈ 0, at late times, with a clear positive curvature, i.e.
∂2L/∂t2 > 0. Both phenomena are likely related to the effect of the learning rate decay on slowing
down the loss decrease in linear models rather than accelerating it as in non-linear models. We leave
further exploration of this topic to future work.
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