
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

SICNN: Sparsity-induced Input Convex Neural Network for Optimal
Transport

Peter Chen LC3826@COLUMBIA.EDU
Department of Mathematics, Columbia University
HKU Musketeers Foundation Institute of Data Science

Yue Xie YXIE21@HKU.HK

Qingpeng Zhang QPZHANG@HKU.HK

HKU Musketeers Foundation Institute of Data Science

Abstract
Optimal Transport (OT) theory seeks to find the map T : X → Y that transports the source measure
X to the target measure Y with minimized cost c(x, T (x)) between x and its image T (x). Building
on the previous work of the Input Convex Neural Network (ICNN) OT solver [1, 13], and drawing
inspiration from the concept of displacement-sparse maps [9], we introduce the sparsity penalty
into the ICNN to promote sparsity in the displacement vectors ∆(x) = T (x) − x, making the
resulting map with better interpretability. However, a side effect of increased sparsity is reduced
feasibility, which means T (X) may deviate more significantly from the actual target measure. In
the low-dimensional setting, we propose a heuristic framework to balance the trade-off between
the sparsity and feasibility of the map. This framework dynamically adjusts the sparsity-inducing
intensity based on the evaluation of maps learned over different iterations. In the high-dimensional
setting, we directly constrain the dimensionality of the displacement vectors, i.e., for X ∈ Rd,
∀x ∈ X , we enforce dim(∆(x)) ≤ l, where l ≪ d. Among all maps that satisfy this constraint,
we aim to find the most feasible map. We demonstrate that this formulation can be novelly solved
using our heuristic adjustment framework without resorting to dimensionality reduction.

1. Introduction

Optimal transport (OT) aims to find a map T that efficiently transfers mass from one measure to
another under the ground-truth cost. This technique has been applied in various machine-learning-
based single-cell biology studies, as demonstrated in [6, 10, 11, 16, 22]. Compared to traditional
methods of solving OT, such as Sinkhorn’s algorithm [8], recent studies in single-cell biology have
increasingly utilized Neural Optimal Transport (Neural OT) solvers. These solvers efficiently scale
OT to large-scale and high-dimensional problems using continuous methods [12]. For instance,
CellOT [6] addresses cell perturbation response by leveraging Neural OT, implemented via the
Input Convex Neural Network (ICNN) framework [13].

While Neural OT solvers can produce feasible maps, the lack of sparsity in the displacement
vector makes these maps less interpretable, i.e. it is challenging to understand the trend of how the
source is transported to the target based on their feasible but complex results. Inspired by Cuturi

. This work was completed during Peter Chen’s internship at HKU IDS and partially supported by the HKU IDS
Research Grant.

© P. Chen, Y. Xie & Q. Zhang.

SICNN

Figure 1: OT maps induced by various sparsity penalties τ(·) at different intensity levels λ. The first column shows the map produced
by ICNN OT without sparsity penalties. Subsequent columns compare maps with different sparsity penalties: the upper row illustrates
the map trained with lower sparsity intensity, while the lower row shows the map trained with higher sparsity intensity. Details for these
numerical experiments can found in Appendix G.

et al. [9]’s displacement-sparse map, which uses the cost function c(x,y) := 1
2∥x − y∥22 + λ · τ ,

where τ is a sparsity regulator and λ is a constant that controls the intensity of sparsity-inducing, we
incorporate these sparsity penalties into the minimax formulation of the Kantorovich dual problem
proposed by Makkuva et al. [13]. This minimax formulation re-parameterized Kantorovich dual
potentials f and g into the convex function space, which can be then learned via ICNN training (we
denote this method as ICNN OT [13] in the later discussion).

However, inducing sparsity in the OT map comes with a trade-off: as the sparsity level increases,
the accuracy of the map’s feasibility decreases, which means that the source distribution cannot be
effectively transported to the target distribution. This effect is evident in Figure 1, where at higher
intensity levels, more points mapped by T are clustered around the center of the source distribution.
To tackle this issue, we create a dynamic framework to adjust the sparsity intensity, offering two
models to solve OT tasks in both low-dimensional and high-dimensional spaces.

Discussion of more related works is in Appendix A. Our contributions is summarized below:

• We embed the sparsity penalty functions into the ICNN OT framework. For low-dimensional
spaces, we apply three sparsity penalties (ℓ1-norm, STVS, and OVK) summarized in [9]. For
high-dimensional spaces, we introduce a novel smoothed ℓ0-norm as penalty.

• For low-dimensional tasks, we introduce a novel framework within the ICNN training pro-
cess that heuristically adjusts the sparsity intensity λ, allowing users to balance the trade-off
between the feasibility and sparsity of the resulting map.

• For high-dimensional tasks, we directly constrain the dimensionality of the displacement vec-
tors, aiming to find the most feasible map among those that satisfy these constraints. We find
that this formulation could be solved via our novel ICNN framework. We also propose an-
other theoretical “ground-truth” solution alongside the solution generated by our new ICNN
framework. We have included the entire implementation in this anonymous repository.

2

https://github.com/AnonymousSubmissionNeurIPS/SICNN

SICNN

2. Background in Optimal Transport

Given two distributions P and Q in Rd with a quadratic transportation cost, the Monge problem
seeks to find the transport map T : Rd → Rd that minimizes the transportation cost:

T ∗ = argmin
T :T#P=Q

1

2
EX∼P ∥T (X)−X∥2. (1)

Here, T ∗ is the optimal transport map among all maps T that push forward P to Q. However,
solving (1) is challenging because the set of feasible maps T may not be convex or might not exist
at all. To address this, Kantorovich relaxed the problem by allowing mass splitting, replacing the
direct map T with a coupling π between P and Q:

W 2
2 (P,Q) = inf

π∈Π(P,Q)

1

2
E(X,Y)∼π∥X − Y ∥2, (2)

where Π(P,Q) is the set of all couplings (or transport plans) between P and Q. This relaxation
makes the problem convex and solvable via linear programming, with the optimal value being the
squared 2-Wasserstein distance. To recover the map T from a coupling Π, one can use Kantorovich’s
dual formulation[19, Theorem 1.3]:

W 2
2 (P,Q) = sup

(f,g)∈Φc

(EP [f(X)] + EQ[g(Y)]) , (3)

where Φc =
{
(f, g) ∈ L1(P)× L1(Q) : f(x) + g(y) ≤ c(x, y)

}
is the constraint space for the

dual potentials f and g, with L1(P) denoting the set of integrable functions with respect to P ,
defined as {f : f is measurable and

∫
|f | dP <∞}, and c(x, y) represents the transportation cost.

Given the quadratic cost c(x, y) = 1
2∥x − y∥2 and under the saturated condition f(x) + g(y) =

1
2∥x− y∥2, map T can be recovered as [5]:

T (x) = x−∇f(x) (4)

Dual formulation (3) can be further re-parameterized into a minimax formulation [13] (details
are provided in the Appendix B):

W 2
2 (P,Q) = sup

f∈CVX(P)
f∗∈L1(Q)

inf
g∈CVX(Q)

VP,Q(f, g) + CP,Q, (5)

where VP,Q(f, g) = −EP [f(X)] − EQ [⟨Y,∇g(Y)⟩ − f(∇g(Y))], CP,Q = 1
2E[∥X∥

2 + ∥Y ∥2],
f∗(y) = supx∈Rn(⟨x, y⟩ − f(x)) denotes the convex conjugate of f , and CVX(P) denotes the set
of all convex functions in L1(P). The new minimax formulation parameterized f and g into the
convex space under an separate alternative optimization scheme, which can be learned via ICNN.
Note that if optimal solution (f0, g0) exists, then optimal transport map T can be recovered via
∇g0(·)[13, Theorem 3.3]. Technical details of this implementation can be referred at Appendix C.

3. Inducing Sparsity towards Displacement Vector

Our goal is to bring sparsity to the displacement vector ∆(x) = T (x)− x from the map T learned
via ICNN, making the result with better interpretability. We introduce the sparsity penalty to the
minimax formulation (5), which makes the squared 2-Wasserstein biased:

3

SICNN

W̃ 2
2 (P,Q) = CP,Q + sup

f∈CVX(P)
f∗∈L1(Q)

inf
g∈CVX(Q)

VP,Q(f, g) + λ

∫
Rd

τ(∇g(y)− y) dQ, (6)

where ∇g(y) − y represents displacement vector derived from (4), τ(·) is the sparsity penalty for
displacement vectors, and λ is a parameter that controls the intensity of sparsity-inducing.

We first introduce three theorems to show the theoretical feasibility of formulation (6) before
delving into other details.

Theorem 1 (Convergence of the Wasserstein Distance) Let J0 denote the Wasserstein distance
as defined in equation (5), and let Jλ denote the biased Wasserstein distance as defined in equation
(6), with λ representing the sparsity-inducing intensity. Then, it holds that:

lim
λ→0

Jλ = J0.

Theorem 2 (Convergence of Dual Potentials for Convex τ) Let (g∗0, f
∗
0) be the optimal solution

of the optimization problem defined in equation (5), and let (g∗λ, f
∗
λ) be the optimal solution to

equation (6) for a given λ ≥ 0 and a convex regulator τ . Then, as λ→ 0, it holds that:

(g∗λ, f
∗
λ)→ (g∗0, f

∗
0).

Note that (g∗λ, f
∗
λ) may not converge to a unique (g∗0, f

∗
0) unless the objective function is strongly

concave-strongly convex. (g∗λ, f
∗
λ) would converge to a set of saddle points (g∗0, f

∗
0) if objective

function is only concave-convex.

Theorem 3 (Monotonicity of Regularization for Convex τ) Let (g∗λ1
, f∗

λ1
) and (g∗λ2

, f∗
λ2
) be the

optimal solutions to the optimization problem defined in equation (6) for λ = λ1 and λ = λ2,
respectively, where 0 ≤ λ1 < λ2, and let τ be a convex regulator. Then, the following inequality
holds: ∫

Rd

τ(∇g∗λ1
(y)− y) dQ ≥

∫
Rd

τ(∇g∗λ2
(y)− y) dQ.

Theorem 1 establishes that the formulation remains unbiased in the limit as λ → 0 for any
of the four regulators we used. Theorem 2 demonstrates the convergence of the dual potentials
specifically for convex regulators. Theorem 3 shows the monotonicity of the map’s sparsity level
as λ increases. However, we empirically observe that our non-convex regulators also exhibit this
property, as discussed in a later section. Proofs for these theorems are provided in the appendix D
and E.

3.1. Sparsity-inducing Penalties τ

We introduce four functions for the sparsity-inducing penalty τ that promote sparsity in the displace-
ment vectors: the ℓ1-norm, the Vanishing Shrinkage STVS (τstvs), the k-overlap norm (∥ · ∥ovk), and
the smoothed ℓ0-norm (designed for high dimensional cases). For a detailed introduction to these
penalties, please refer to Appendix F. Examples of ℓ1, τstvs, and ∥ · ∥ovk used as penalty functions
are shown in Figure 1. Among these three penalties, we find that ∥ · ∥ovk does not yield the expected
sparsity-inducing results due to its inability to converge (referred to Appendix G), likely because of
its quadratic nature.

4

SICNN

Figure 2: OT maps learned via ICNN with respect different α values in Eval from (7). τstvs is chosen as penalty function; From right to
left, sparsity-inducing intensity increases with higher α. Example simulation can be found in Figure 7.

3.2. Low Dimensional Space: Dynamic Adjustment to Sparsity-inducing intensity λ

In Section 3.1, we discuss using a constant λ to learn a sparse map via ICNN. However, a constant
intensity presents certain challenges: if the intensity is too low, the resulting map will not be suf-
ficiently sparse; conversely, if the intensity is too high, the resulting map will be less accurate in
feasibility (i.e. T (X) deviated more from the actual Y).

In this section, we propose a new framework that dynamically adjusts λ to optimize a goal
function that balances sparsity and feasibility during the ICNN training process. For the map Tn

learned at the n-th iteration of ICNN training, we define its sparsity and feasibility level through
two metrics, Spa (Sparsity) and Err (Error), where

Spa =
∑
x∈X

τ(Tn(x)− x), Err = D(Tn(X), Y).

We use the corresponding sparsity metric, τ , during training, while measuring the error through
the divergence D between the mapped distribution and the actual target distribution. To capture this
geometric divergence, we approximate the source and target distributions, X and Y , as finite sets of
sampled points, and use the Wasserstein distance to quantify the divergence between them. How-
ever, due to the computational inefficiency of the Wasserstein distance, we accelerate the training
process by approximating it with the sliced Wasserstein distance [4]. It is important to normalize
both metrics to the same numerical scale. Ultimately, we construct the evaluation function as:

Eval = α · Spa + (1− α) · Err, α ∈ [0, 1], (7)

where α is a pre-determined parameter. A higher value of α leads to a higher sparsity-inducing
intensity. The objective is to find the λ that minimizes Eval. Since λ is not explicitly related to
Eval, we use the heuristic search by embedding a simulated annealing framework into ICNN. We
heuristically adjust λ after every specific number of iterations (to give the ICNN sufficient time to
smoothly adjust the map with the updated λ). Examples are illustrated in Figure 2, and specific
details of this implementation are provided in Appendix H.

3.3. High Dimensional Space: Direct Displacement Vector Dimensionality Constraint

In high-dimensional settings, instead of using a sparsity metric, we impose a direct constraint on
the dimensionality of the displacement vectors. Given P,Q ∈ Rd, our goal is to find an optimal

5

SICNN

Figure 3: In Rd, where d = 250, we simulated sc-RNA perturbations under a drug simulation scenario. In this setting, 20 genes are
directly affected with significant changes, while other genes are perturbed within the noise level. An OT map is learned between the
cell in original group and treated genes with a constant λ. Due to precision limitations of the ICNN, we count any entry of ∆(x)
that larger than 1 as an extra dimension. The average and upper quartile of dim(∆(x)) are presented above. Note that ICNN can
occasionally generate displacement vectors with dimensions significantly higher than the rest. To mitigate this, we recommend applying
a quantile-based or average dimension constraint rather than imposing a strict upper limit on all vectors. A strict constraint could lead to
undesirable outcomes, where most vectors have dimensions much lower than expected.

transport map T such that all displacement vectors ∆(x) = T (x) − x have a dimensionality less
than l, where l≪ d. Among all maps satisfying this constraint, we seek the one that minimizes the
divergence between T (X) and Y . This problem can be formulated as follows:

min
T

1

2
EX∼P ∥T (X)−X∥2 + βD(T (X), Y)

s.t. dim(T (xi)− xi) ≤ l, l≪ d, ∀xi ∈ X.
(8)

By introducing a divergence regularization term D(T (X), Y) with weighting parameter β, we
relax the requirement that the source measure P must be exactly transported to the target measure
Q (i.e., T#P = Q). This formulation is indeed challenging to solve with traditional methods due
to the direct constraint on the dimensionality of the vectors. However, our new heuristic adjustment
framework based on ICNN can efficiently address this problem. We also provide a theoretical
method to solve (8), though it incurs a high computational cost, as discussed in Appendix I.

We now introduce our ICNN-based solution. In contrast to lower-dimensional cases, we can
directly apply the smoothed ℓ0-norm to control the dimensionality of the displacement vectors. Al-
though the smoothed ℓ0-norm is not a convex penalty, we empirically observe that increasing λ
enhances sparsity, as shown in Figure 3. Therefore, our strategy to adjust λ becomes straightfor-
ward: we initially increase λ until the dimensionality requirement is met; then, we decrease λ to
minimize D(T (X), Y) while maintaining the dimensionality constraint. For further details on the
algorithm, please refer to Appendix J.

3.4. Experiment Setting

Numerical experiments analysis for the toy data in Figures 1 and 2 can be found in Appendix
G. For the higher-dimensional experiments, we construct synthesized single-cell RNA (sc-RNA)
perturbation data by simulating changes in gene expression under drug stimulation. OT is used to
match the cells between the original group and treated group via their gene expressions. In our
synthesized data, we introduce a significant change in a small subset of genes truly affected by the
drug while adding noise to other genes. Our objective is to learn an OT map that accurately captures
the transport among the most significantly affected genes.

6

SICNN

Compared to methods such as using PCA or sliced-Wasserstein method [7, 15] to reduce the
problem to a lower dimension and then run the OT solver, where the learned map may lack inter-
pretability in the original space, our method maintains the interpretability of the map in the original
high-dimensional space. Details of experiment and hyper-parameter setup can be found in Appendix
K and Figure 3.

Due to the page limit, we put the conclusion part to Appendix L.

References

[1] Brandon Amos, Lei Xu, and J. Zico Kolter. Input convex neural networks. In Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 146–155. PMLR, 2017.

[2] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the k-
support norm. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/99bcfcd754a98ce89cb86f73acc04645-Paper.pdf.

[3] Mathieu Blondel, Vivien Seguy, and Antoine Rolet. Smooth and sparse optimal trans-
port. In Proceedings of the 21st International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 84 of Proceedings of Machine Learning Research, pages 880–
889. PMLR, 2018. URL http://proceedings.mlr.press/v84/blondel18a/
blondel18a.pdf.

[4] Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasser-
stein barycenters of measures. Journal of Mathematical Imaging and Vision, 51(1):22–45,
2015.

[5] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Communications on Pure and Applied Mathematics, 44(4):375–417, 1991.

[6] Cédric Bunne, Sebastian G. Stark, Gregor Gut, et al. Learning single-cell perturbation
responses using neural optimal transport. Nature Methods, 20:1759–1768, 2023. doi:
10.1038/s41592-023-01969-x.

[7] Antoine Collas, Titouan Vayer, Rémi Flamary, and Arnaud Breloy. Entropic wasserstein com-
ponent analysis, 2023. URL https://arxiv.org/abs/2303.05119.

[8] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf.

[9] Marco Cuturi, Michal Klein, and Pierre Ablin. Monge, bregman and occam: Interpretable op-
timal transport in high-dimensions with feature-sparse maps. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 6671–6682. PMLR, 2023.

7

https://proceedings.neurips.cc/paper_files/paper/2012/file/99bcfcd754a98ce89cb86f73acc04645-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/99bcfcd754a98ce89cb86f73acc04645-Paper.pdf
http://proceedings.mlr.press/v84/blondel18a/blondel18a.pdf
http://proceedings.mlr.press/v84/blondel18a/blondel18a.pdf
https://arxiv.org/abs/2303.05119
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf

SICNN

[10] Pinar Demetci, Ryan Santorella, Bjorn Sandstede, William S. Noble, and Ritambhara Singh.
Scot: single-cell multi-omics alignment with optimal transport. Journal of Computational
Biology, 29:3–18, 2022. doi: 10.1089/cmb.2021.0295.

[11] Geert-Jan Huizing, Gabriel Peyré, and Laura Cantini. Optimal transport improves
cell–cell similarity inference in single-cell omics data. Bioinformatics, 38(8):2169–2177,
2022. doi: 10.1093/bioinformatics/btac084. URL https://doi.org/10.1093/
bioinformatics/btac084.

[12] Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, Alexander Filippov, and
Evgeny Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2
benchmark. In Advances in Neural Information Processing Systems, NIPS ’21. Curran As-
sociates Inc., 2021.

[13] Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport
mapping via input convex neural networks. In Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
6672–6681. PMLR, 2020.

[14] G. Hosein Mohimani, Massoud Babaie-Zadeh, and Christian Jutten. Fast sparse representation
based on smoothed ℓ0 norm. In Mike E. Davies, Christopher J. James, Samer A. Abdallah, and
Mark D. Plumbley, editors, Independent Component Analysis and Signal Separation, pages
389–396, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[15] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its
application to texture mixing. In Alfred M. Bruckstein, Bart M. ter Haar Romeny, Alexan-
der M. Bronstein, and Michael M. Bronstein, editors, Scale Space and Variational Methods
in Computer Vision, pages 435–446, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-24785-9.

[16] G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, V. Subramanian, A. Solomon, J. Gould, S. Liu,
S. Lin, P. Berube, L. Lee, J. Chen, J. Brumbaugh, P. Rigollet, K. Hochedlinger, R. Jaenisch,
A. Regev, and E. S. Lander. Optimal-transport analysis of single-cell gene expression identifies
developmental trajectories in reprogramming. Cell, 176(4):928–943.e22, 2019. doi: 10.1016/
j.cell.2019.01.006.

[17] Amandine Schreck, Gersende Fort, Sylvain Le Corff, and Eric Moulines. A shrinkage-
thresholding metropolis adjusted langevin algorithm for bayesian variable selection. IEEE
Journal of Selected Topics in Signal Processing, 10(2):366–375, 2015.

[18] Mathieu Blondel Tianlin Liu, Joan Puigcerver. Sparsity-constrained optimal transport. In
Proceedings of the Eleventh International Conference on Learning Representations (ICLR),
2023. URL https://openreview.net/forum?id=yHY9NbQJ5BP.

[19] Cédric Villani. Topics in Optimal Transportation, volume 58. American Mathematical Society,
2003.

[20] John von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100:295–
320, 1928. doi: 10.1007/BF01448847.

8

https://doi.org/10.1093/bioinformatics/btac084
https://doi.org/10.1093/bioinformatics/btac084
https://openreview.net/forum?id=yHY9NbQJ5BP

SICNN

[21] Yuanhao Wang and Jian Li. Improved algorithms for convex-concave minimax optimization.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 4800–4810. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/331316d4efb44682092a006307b9ae3a-Paper.pdf.

[22] S. Zhang, A. Afanassiev, L. Greenstreet, T. Matsumoto, and G. Schiebinger. Optimal trans-
port analysis reveals trajectories in steady-state systems. PLoS Computational Biology, 17(7):
e1009466, 2021. doi: 10.1371/journal.pcbi.1009466.

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/331316d4efb44682092a006307b9ae3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/331316d4efb44682092a006307b9ae3a-Paper.pdf

SICNN

Appendix A. Related Works

While many recent works have related sparsity to OT, the notion of sparsity they address typically
pertains to the complexity of the transportation plan matrix or the dual solutions. The idea of con-
sidering the sparsity of the displacement vector, however, is a novel concept introduced by Cuturi
et al. [9] in 2023. This foundational work inspires us to develop neural OT solvers that not only
exhibit these traits but also leverage them to address more complex displacement-related sparsity
problems. Below, we introduce several related works focusing on other aspects of sparsity in OT.

Sparsity-Constrained Optimal Transport. Liu et al. [18] proposed a regularization method to
control the column cardinality of the transportation plan matrix, achieving strong dual results. This
regularization leads to greater sparsity and reduced complexity in the transportation plan. However,
converting the transportation plan to the map typically depends on the characteristics of the rows,
which is not the focus of this study. Moreover, when converting the plan to displacement vectors
using methods such as Barycenters, the constrained cardinality of entries in the plan does not nec-
essarily translate to the dimensionality of the displacement vector.

Smooth and Sparse Optimal Transport. Blondel et al. [3] propose a regularization method of
using the squared 2-norm to handle the dense and complex transportation plans produced by the
entropic regularization solution via Sinkhorn’s algorithm.

Appendix B. Details for Minimax Formulation (5)

The constraint in equation (3),

f(x) + g(y) ≤ 1

2
∥x− y∥22,

can be reparameterized as:[
1

2
∥x∥22 − f(x)

]
+

[
1

2
∥y∥22 − g(y)

]
≥ ⟨x, y⟩.

By reparameterizing f and g using 1
2∥x∥

2
2 − f(x) and 1

2∥y∥
2
2 − g(y), respectively, and substi-

tuting these into the dual formulation (3), we obtain:

W 2
2 (P,Q) = CP,Q − inf

(f,g)∈Φ̃c

{EP [f(X)] + EQ[g(Y)]} ,

where

Φ̃c ≜ {(f, g) : f(x) + g(y) ≥ ⟨x, y⟩},

and CP,Q = 1
2E[∥X∥

2
2 + ∥Y ∥22] is a constant. Makkuva et al. [13, Theorem 3.3] have shown

that this reparameterized formulation can be further transformed into the minimax formulation (5)
and solved via ICNN.

10

SICNN

Appendix C. Background in Input Convex Neural Network (ICNN)

Figure 4: Input convex neural network (ICNN) architecture.

Amos et al. [1] introduced Input Convex Neural
Networks (ICNNs) to learn convex functions by
finding a set of parameters, {W (y)

i ,W
(z)
i }, during

each iteration to optimize a specific objective func-
tion.

Given an initial input y, the neural network
learns the convex function zn through the follow-
ing model:

zi+1 = gi

(
W

(z)
i zi +W

(y)
i y + bi

)
, f(y; θ) = zn,

where zi denotes the layer activations, θ ={
W

(y)
0:k−1,W

(z)
1:k−1, b0:k−1

}
represents the parame-

ters (with W
(y)
0:k−1 and W

(z)
1:k−1 as weight matrices

and b0:k−1 as the biased term), and gi is non-linear
activation functions. In each iteration, a small batch
is selected from both the source and target, and the
ICNN learns θf and θg within its ICNN(Rd) space to
optimize the empirical counterpart of equation (5).

To maintain the convexity of the network, the
parameters θ must be non-negative. Makkuva et al. demonstrates the feasibility of adding bounds
to θ during the training process [13, Remark 3.4] ; This implementation could make that θf and θg
can be learned from a compact function space. Further details of the algorithm can be found in [13,
Algorithm 1].

Appendix D. Proof of Theorem 1 and 2.

To rigorously prove Theorem 1, we require following supporting theorem and lemmas.

Lemma 4 Let τ(·) be one of the four sparsity penalties introduced in Section 3.1. Consider λ, the
sparsity-inducing intensity, and∇g(y)− y, the displacement vector, as given in equation (6). Then,
it holds that:

lim
λ→0

λ

∫
Rd

τ(∇g(y)− y) dQ = 0.

Sketch Proof of Lemma 4: To prove this lemma, we must show that τ(·) is bounded. We assume
that the source and target measures are separated by a finite distance, i.e., ∇g(y) − y is bounded.
Indeed, each of the four sparsity penalties is bounded as follows:

• The smoothed ℓ0-norm is bounded by the dimensionality of the source and target measures.

• The ℓ1-norm and the ∥ · ∥ovk are bounded by the length of displacement vectors.

• The sparsity penalty τstvs is bounded by functions such as asinh(·) and e−(·).

11

SICNN

Given these bounds, we can conclude that Lemma 4 holds for all four sparsity penalties used in
our analysis.

Theorem 5 (von Neumann’s Minimax Theorem [20]) Let X ⊂ Rn and Y ⊂ Rm be two com-
pact and convex sets. Suppose f : X × Y → R is a continuous function that is concave in x for
each fixed y and convex in y for each fixed x (concave-convex). Then, the following equality holds:

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

Moreover, its optimal solution (x∗, y∗) satisfies the following saddle point inequality:

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y)

In the context of ICNN, we can relax the requirement of having two compact sets to a single
compact space, ICNN(Rd).

Lemma 6 For the expression defined in equation (5), given f ∈ CVX(P) and g ∈ CVX(Q), the
function

VP,Q(f, g) = −EP [f(X)]− EQ [⟨Y,∇g(Y)⟩ − f(∇g(Y))]

is a concave-convex function.

Proof of Lemma 6. To prove that VP,Q(f, g) is a concave-convex function, we first show that, for
a fixed g, VP,Q(f, g) is concave in f .

Consider any two functions f1, f2 ∈ CVX(P) and any α ∈ [0, 1]. We aim to show that:

VP,Q(αf1 + (1− α)f2, g) ≥ αVP,Q(f1, g) + (1− α)VP,Q(f2, g). (9)

To demonstrate this, note that by linearity:

VP,Q(αf1 + (1− α)f2, g) = −EP [(αf1 + (1− α)f2)(X)]

− EQ [⟨Y,∇g(Y)⟩ − (αf1 + (1− α)f2)(∇g(Y))]

= −αEP [f1(X)]− (1− α)EP [f2(X)]

+ αEQ [f1(∇g(Y))] + (1− α)EQ [f2(∇g(Y))]

− EQ [⟨Y,∇g(Y)⟩]
= αVP,Q(f1, g) + (1− α)VP,Q(f2, g).

This establishes that VP,Q(f, g) is concave in f for a fixed g.
Next, we show that for a fixed f , VP,Q(f, g) is convex in g. Consider any g1, g2 ∈ CVX(Q) and

any α ∈ [0, 1]. We need to prove that:

VP,Q(f, αg1 + (1− α)g2) ≤ αVP,Q(f, g1) + (1− α)VP,Q(f, g2). (10)

By definition, we have:

12

SICNN

VP,Q(f, αg1 + (1− α)g2) = −EP [f(X)]

− EQ

[
⟨Y, α∇g1(Y) + (1− α)∇g2(Y)⟩ − f

(
α∇g1(Y) + (1− α)∇g2(Y)

)]
= −EP [f(X)]− EQ [⟨Y, α∇g1(Y)⟩+ ⟨Y, (1− α)∇g2(Y)⟩]
+ EQ

[
f
(
α∇g1(Y) + (1− α)∇g2(Y)

)]
≤ −EP [f(X)]− EQ [⟨Y, α∇g1(Y)⟩+ ⟨Y, (1− α)∇g2(Y)⟩]
+ EQ [αf(∇g1(Y)) + (1− α)f(∇g2(Y))] (∵ f is convex).

□
Combining the terms, we obtain the desired inequality (10). Therefore, by combining inequali-

ties (9) and (10), we conclude that VP,Q(f, g) is indeed a concave-convex function. With Lemma 4,
Theorem 5, and Lemma 6, we can then prove Theorem 1.

Proof of Theorem 1. For brevity, let S(g) =
∫
Rd τ(∇g(y) − y) dQ. We first aim to prove that

Jλ ≥ J0. This follows from the non-negativity of τ(·) and λ, which implies:

VP,Q(f, g) + λS(g) ≥ VP,Q(f, g).

Taking the infimum over g on both sides and then the supremum over f , we obtain:

sup
f∈CVX(P)
f∗∈L1(Q)

inf
g∈CVX(Q)

(VP,Q(f, g) + λS(g)) ≥ sup
f∈CVX(P)
f∗∈L1(Q)

inf
g∈CVX(Q)

VP,Q(f, g),

which is equivalent to the inequality Jλ ≥ J0. To show that limλ→0 Jλ = J0, it remains to
prove that limλ→0 Jλ ≤ J0.

Let (f∗
0 , g

∗
0) be the optimal solution corresponding to J0. Since f and g are parameterized

from a convex space and VP,Q(f, g) is a concave-convex function (as established in Lemma 6), by
Theorem 5, we have:

VP,Q(f, g∗0) ≤ VP,Q(f∗
0 , g

∗
0) = J0. (11)

Now, consider the compactness of the function space ICNN(Rd), there exists (f∗
λ , g

∗
λ) that is the

optimal solution corresponding to Jλ. For this supremum-infimum formulation, we have:

Jλ = VP,Q(f∗
λ , g

∗
λ) + λS(g∗λ) ≤ VP,Q(f∗

λ , g) + λS(g). (12)

Note that Theorem 5 does not necessarily apply to Jλ, since τ(·) may not be convex, so only
one side of the saddle point inequality holds. Substituting g = g∗0 into (12), we obtain:

Jλ ≤ VP,Q(f∗
λ , g

∗
0) + λS(g∗0).

Taking the limit as λ→ 0, we have:

lim
λ→0

Jλ ≤ lim
λ→0

[VP,Q(f∗
λ , g

∗
0) + λS(g∗0)] .

By Lemma 4, limλ→0 λS(g) = 0, so:

13

SICNN

lim
λ→0

Jλ ≤ VP,Q(f∗
λ , g

∗
0). (13)

Substituting f = f∗
λ into (11), we have:

VP,Q(f∗
λ , g

∗
0) ≤ VP,Q(f∗

0 , g
∗
0) = J0. (14)

Combining (13) and (14), we obtain:

lim
λ→0

Jλ ≤ VP,Q(f∗
λ , g

∗
0) ≤ VP,Q(f∗

0 , g
∗
0) = J0.

Thus, with Jλ ≥ J0 and limλ→0 Jλ ≤ J0, Theorem 1 is proved. □

Proof of Theorem 2. After proving Theorem 1, we aim to show that when λ→ 0,

(f∗
λ , g

∗
λ)→ (f∗

0 , g
∗
0).

Consider f and g from compact function spaces. This compactness is achieved by imposing
arbitrary bounds on the parameters, as we discussed in Appendix C. Let (f∗

λn
, g∗λn

) be a sequence
of optimal solutions corresponding to a sequence λn → 0. By the compactness of the spaces, there
exists a convergent subsequence (f∗

λnk
, g∗λnk

)→ (f ′, g′).
Since limλ→0 Jλ = J0, we have:

lim
n→∞

Jλn = J0.

Consequently,

lim
n→∞

Jλn = lim
n→∞

VP,Q(f∗
λn
, g∗λn

) + λS(g∗λn
) = VP,Q(f ′, g′).

This implies that:

VP,Q(f ′, g′) = J0 = VP,Q(f∗
0 , g

∗
0).

Since VP,Q(f, g)+λS(g) is concave-convex when τ(·) is convex, saddle point inequality holds
for both Jλ and J0. Note that such saddle point is unique given the objective function is strongly
concave-strongly convex [21, Definition 3]. Our objective function is only concave-convex, which
indicates that the convergent subsequence would possibly converge to a set of saddle points.

Therefore, we conclude that:

(f ′, g′)→ (f∗
0 , g

∗
0).

□
It is important to note that when τ(·) is non-convex, while a convergent subsequence may still exist,
the convergence to (f∗

0 , g
∗
0) is not guaranteed to rigorously hold.

14

SICNN

Appendix E. Proof of Theorem 3

We first define (still, for brevity, let S(g) =
∫
Rd τ(∇g(y)− y) dQ)

Jλ1 = CP,Q + sup
f∈CVX(P)
f∗∈L1(Q)

inf
g∈CVX(Q)

VP,Q(f, g) + λ1S(g),

Jλ2 = CP,Q + sup
f∈CVX(P)
f∗∈L1(Q)

inf
g∈CVX(Q)

VP,Q(f, g) + λ2S(g).

Consider (f∗
λ1
, g∗λ1

) and (f∗
λ2
, g∗λ2

) be the optimal solution to respect Jλ1 and Jλ2 , we aim to
prove that given λ1 < λ2, we have

S(g∗λ1
) ≥ S(g∗λ2

).

By the saddle point inequality, we have the following four inequalities,

VP,Q(f∗
λ1
, g∗λ1

) + λ1S(g
∗
λ1
) ≤ VP,Q(f∗

λ1
, g∗λ2

) + λ1S(g
∗
λ2
), (15)

VP,Q(f∗
λ2
, g∗λ2

) + λ2S(g
∗
λ2
) ≤ VP,Q(f∗

λ2
, g∗λ1

) + λ2S(g
∗
λ1
), (16)

VP,Q(f∗
λ1
, g∗λ1

) + λ1S(g
∗
λ1
) ≥ VP,Q(f∗

λ2
, g∗λ1

) + λ1S(g
∗
λ1
), (17)

VP,Q(f∗
λ2
, g∗λ2

) + λ2S(g
∗
λ2
) ≥ VP,Q(f∗

λ1
, g∗λ2

) + λ2S(g
∗
λ2
). (18)

By (17) and (18), we have

VP,Q(f∗
λ1
, g∗λ1

) ≥ VP,Q(f∗
λ2
, g∗λ1

), (19)

VP,Q(f∗
λ2
, g∗λ2

) ≥ VP,Q(f∗
λ1
, g∗λ2

). (20)

Rearranging (15) and (16), we have

VP,Q(f∗
λ1
, g∗λ1

)−VP,Q(f∗
λ1
, g∗λ2

)+VP,Q(f∗
λ2
, g∗λ2

)−VP,Q(f∗
λ2
, g∗λ1

) ≤ (λ1−λ2)[S(g
∗
λ2
)−S(g∗λ1

)]

With (19) and (20), we can get

0 ≤ (λ1 − λ2)[S(g
∗
λ2
)− S(g∗λ1

),]

S(g∗λ1
) ≥ S(g∗λ2

), (∵ λ1 < λ2)

□

15

SICNN

Appendix F. Sparsity-Inducing Penalties τ

ℓ1 and ℓ0-Norms. We denote ℓ1 and ℓ0 by the norms ∥ · ∥1 and ∥ · ∥0, respectively. The ℓ1-norm
directly penalizes the magnitude of the displacement vector, encouraging it to move towards the
nearest target and inducing sparsity. In contrast, the ℓ0-norm penalizes the dimensionality of the
displacement vector by counting the number of non-zero components. However, we empirically
find that the ℓ0-norm does not effectively induce sparsity in the map learned via ICNN.

Vanishing Shrinkage STVS. Schreck et al. [17] introduce the soft-thresholding operator with
vanishing shrinkage (STVS) for displacement vector z,

τstvs(z) = γ21Td

(
σ(z) +

1

2
− 1

2
e−2σ(z)

)
,

where σ(z) = asinh(z
2γ) with element-wise operations. Cuturi et al. [9] add +1

2 to make τstvs
non-negative.

k-overlap Norm. Argyriou et al. [2] define the k-overlap norm for any vector z ∈ Rd as:

∥z∥ovk := min

∑
I∈Gk

∥vI∥2 : supp(vI) ⊆ I,
∑
I∈Gk

vI = z

 ,

where Gk represents the set of all subsets of {1, . . . , d} with cardinality at most k. For any
vector z ∈ Rd, let z↓ denote the vector formed by arranging all entries of z in decreasing order.
This expression can be evaluated as follows to represent an ℓ1/ℓ2 norm split among the d variables
in the vector:

∥z∥2ovk =

k−r−1∑
i=1

(|z↓i |)
2 +

(
d∑

i=k−r

|z↓i |

)2

/(r + 1),

where r ≤ k − 1 is the unique integer such that

|z↓k−r| ≤
d∑

i=k−r

|z↓i | < |z
↓
k−r−1|.

Smoothed ℓ0-Norm. Mohimani et al. [14] propose a continuous approximation to the ℓ0-norm by
replacing the discontinuous function ν(z), defined as:

ν(z) =

{
1 z ̸= 0

0 z = 0
,

with a smooth Gaussian function:

fσ(z) = exp

(
− z2

2σ2

)
. (21)

As σ → 0, fσ(z) approximates 1− ν(z). The smoothed approximation of the ℓ0-norm is given
by:

16

SICNN

n− Fσ(z), where Fσ(z) =

n∑
i=1

fσ(zi).

Appendix G. Convergence Analysis for Low Dimensional Experiments

Figure 5: Convergence results of the Wasserstein distance in
Figure 1. ‘GT’ represents the unbiased ground truth Wasser-
stein distance, as learned from equation (5). The other lines
represent biased Wasserstein distances obtained using differ-
ent penalty functions, learned from equation (6). For exam-
ple, ‘OVK 0.0005’ indicates the use of a k-overlap penalty
with λ = 0.0005.

We first construct an “8-Gaussian” example, where
the source is located at the center, and the target
points are generated using eight Gaussian distribu-
tions. Unlike the “8-Gaussian” examples in ICNN
OT [13], we make the range of the Gaussians more
compact to test how ICNN could handle this situa-
tion.

Among the three penalties we use, the k-overlap
norm has the issue of failing to converge and does
not produce a desirable sparse map. Its quadratic na-
ture makes it highly sensitive to the intensity param-
eters. As λ increases, the k-overlap norm tends to
‘over-transport’ — moving the source even further
towards the target than intended. Therefore, we rec-
ommend applying the ℓ1-norm and τstvs to the ICNN,
as their convergence trends align with our expecta-
tions from Theorem 1.

It is important to note that the Wasserstein dis-
tance typically converges quickly in the initial stages. However, ICNN usually requires additional
time to make minor adjustments to the transportation map. Leveraging this characteristic, we de-
veloped our heuristic framework to dynamically adjust the sparsity intensity during the training
process.

We also make an additional dataset “2-Box” for reference, as shown in Figure 6:

Figure 6: Targets are randomly generated from two boxes positioned next to the source. OT maps are learned using different penalty
functions and intensity parameters λ between the source and target. We expect the displacement vectors to be either horizontal or
vertical, allowing for a clearer interpretation of the transportation trend.

17

SICNN

Appendix H. Simulated Annealing Framework for λ Adjustment (Low Dimensional
Space)

We embed the simulated annealing framework into the ICNN training process to optimize the
sparsity-inducing intensity λ. Initially, we perform nini iterations using the starting value of λ to
train the functions f and g until the map’s sparsity and error levels converge to a stable state.

After reaching this initial stability, we initiate the simulated annealing process with a starting
temperature T . During this phase, λ is adjusted randomly within a range determined by the current
temperature; a higher T allows for a wider range of adjustments. We then continue training f and g
with the new λ for ntr iterations. We observe that ICNN can quickly adapt to changes in λ.

Once the map’s sparsity and error levels stabilize again, we evaluate whether to accept the new
λ based on its associated evaluation metric. To ensure smooth transitioning, if the new λ is not
accepted, we perform an additional nsm iterations of training to allow the ICNN to revert smoothly
to the previous value of λ.

Figure 7: Simulation of Algorithm 1 for Figure 2 with α = 0.9. All parameters in the figure are plotted every 100 iterations. The
simulated annealing process concludes after approximately 120,000 iterations of training.

This algorithm is illustrated in Algorithm 1. Figure 7 shows an example simulation of Algorithm
1. Note that all the hyperparameters related to iterations need to be re-adjusted based on the size of
the data.

Hyperparameters. We use most of the default hyperparameters for ICNN training. For iterations
related hyperparameters, we set nini = 20, 000 and ntr = nsm = 2, 000. For simulated annealing
hyperparameters, we set initial temperature as 1.0, and minimum temperature as 0.15, temperature
decay rate as 0.9, and range adjustment parameter p = 3. For τstvs penalty, we set γ = 100.

18

SICNN

Figure 8: Training structure of SICNN, with the simulated annealing module embedded into the original ICNN OT. Specific details are
shown in Algorithm 1 below.

Algorithm 1: Simulated Annealing with SICNN (Low Dimensional Setting)
Input: Initialization iterations nini, Training iterations ntr, Smoothing iterations nsm
Input: Initial temperature T , Minimum temperature Tmin, Temperature decay rate d, Range

adjusting parameter p
Input: Sparsity-feasibility trade-off parameter α, Initial sparsity-inducing intensity λ
for i = 1 to nini do

Map← Learn f and g with λ;
end
Eval← α · Spa(Map) + (1− α) · Err(Map);
while T > Tmin do

Range← max(0.01, exp(−p · (1− T)));
λnew ← λ · (1 + random(−Range,Range));
for j = 1 to ntr do

Map← Learn f and g with λnew;
end
Evalnew ← α · Spa(Map) + (1− α) · Err(Map);
∆← Evalnew − Eval;
if ∆ > 0 or random() < exp(∆/T) then

λ← λnew;
else

Do nothing;
end
for k = 1 to nsm do

Map← Learn f and g with λ;
end
T ← T · d;

end

19

SICNN

Appendix I. Theoretical Solution towards formulation (8) - Regularized Gradient
Descent Method (RGD)

Instead of directly solving formulation (8) with its constraints, we approach this problem using an
unregularized ground truth solution TGT , defined as:

TGT = argmin
T :T#P=Q

1

2
EX∼P ∥T (X)−X∥2.

We convert the constraint in (8) into a regularization term. For any displacement vector z, we
define:

τ(z) = max(0, smoothed ∥z∥0 − l),

where the penalty ceases once the displacement vector meets the dimensionality requirement
l. Thus, the problem is reformulated as a multi-objective optimization task that can be solved via
gradient descent, starting from the initial solution TGT :

min
T

βD(T (X), Y) + µ
∑
x∈X

τ(T (x)− x). (22)

To improve computational efficiency, we approximate D(T (X), Y) by ∥T (X) − TGT (X)∥2,
leveraging the fact that TGT satisfies T#P = Q. The core objective is to ensure that the displace-
ment vectors have low dimensionality while not deviating significantly from the ground truth. The
parameters β and µ can be adjusted dynamically based on the feedback from the gradient descent
solution: increasing µ if the dimensionality constraint is not satisfied, and decreasing it when the
constraint is met to enhance solution feasibility.

We perform gradient descent to update the displacement vectors using the following update rule:

T (xi)
(k+1) = T (xi)

(k) − r · ∇T (xi)J(T),

where r is the learning rate, and ∇T (xi)J(T) is the gradient of the objective function (22) with
respect to the vector T (xi).

The main drawback of this method is the requirement to compute an unregularized map before
performing gradient descent. Furthermore, the displacement vectors derived from the gradient de-
scent process no longer exhibit the typical characteristics of an optimal transport map or plan. As
a result, their interpretation is restricted to the specific sample and cannot be generalized or applied
as a map or plan to other samples.

20

SICNN

Appendix J. Heuristic Framework for λ Adjustment (High Dimensional Space)

Our method is straightforward: we first increase λ to ensure that the displacement vectors meet
the dimensionality constraint. Then, we heuristically decrease λ to reduce the intensity of sparsity-
inducing, allowing the model to learn a more feasible map. The details of this algorithm are illus-
trated in Algorithm 2.

Algorithm 2: Simulated Annealing with SICNN (High Dimensional Setting)
Input: Initialization iterations nini, Training iterations ntr, Smoothing iterations nsm
Input: Initial temperature T , Minimum temperature Tmin, Temperature decay rate d, Range

adjusting parameter p
Input: Initial sparsity-inducing intensity λ, Intensity increasing rate ir, Dimension

requirement l
for i = 1 to nini do

Map← Learn f and g with λ using ICNN;
end
Dim← Dim(Map);
while Dim ≥ l do

λ← λ · (1 + ir);
for j = 1 to ntr do

Map← Learn f and g with λ using ICNN;
end
Dim← Dim(Map);

end
while T > Tmin do

Range← max(0.01, exp(−p · (1− T)));
λnew ← λ · (1 + random(−Range, 0));
for j = 1 to ntr do

Map← Learn f and g with λnew using ICNN;
end
Dimnew ← Dim(Map);
if Dimnew ≥ l then

λ← λnew;
end
for k = 1 to nsm do

Map← Learn f and g with λ using ICNN;
end
T ← T · d;

end

21

SICNN

Appendix K. High Dimensional Experiment Setup and Results

In our experiment, we use 500 cells, each characterized by 250 genes (i.e., in R250). Among these
genes, we randomly select 20 to undergo a significant perturbation in their expression levels (with
an intensity of 100) and add random noise to the other genes to simulate changes in gene expression
under drug stimulation. We learn an OT mapping between the cells in the original group (before
drug perturbation) and the treated group (after drug perturbation).

Our objective is to reduce the dimensionality of the displacement vectors to around 20 (l =
21 due to the precision problem of ICNN), capturing only the genes affected by the drug while
minimizing the influence of noise from unaffected genes. We compares the result of four different
methods to learn this mapping: unregularized ground truth (py.emd), regularized gradient descent
method (RGD, Appendix I), ICNN OT [13], and SICNN. Example of displacement vector is shown
below:

Figure 9: The displacement mapping of cell 1 from the original group to the treated group across four different methods.

Part of the numerical results for Figure 4 is presented in Table 1. Among the noise gene cate-
gories, we observe a significant dimensionality reduction of displacement vectors from the ICNN
OT solution to the SICNN solution. In contrast, even though the displacement entries for noise
genes are reduced, the displacement of perturbed genes produced by SICNN still maintain the sim-
ilar numerical level to that of the unregularized ground truth (GT) and RGD.

For RGD and the unregularized GT, we find that RGD successfully reduces the numerical values
of the noise genes while preserving the numerical levels of the perturbed genes, keeping them
comparable to those in the unregularized GT.

For the final average dimension of all displacement vectors, the unregularized GT and ICNN
OT methods yield average dimensions of 31 and 208.5, respectively, whereas the RGD and SICNN
methods produce significantly lower average dimensions of 20 and 20.88, respectively.

22

SICNN

Table 1: Example of Displacement Vector Entries for Cell 1 Across Different Methods

Gene Method
Unregularized

GT RGD ICNN OT SICNN

Noise gene
1 -0.3462 -0.2054 -20.8935 -0.0943
2 -0.8874 -0.5546 3.1371 -0.1606
3 -0.0587 -0.0346 15.5107 0.0882
4 -0.1844 -0.1087 -8.1908 -0.004
5 0.1065 0.0627 -8.1025 0.3725
6 1.4298 1.0052 1.1131 0.7004
7 0.767 0.4716 -4.1726 0.2827
8 -0.4 -0.238 0.3409 -0.2775
10 -0.2009 -0.1185 -2.2892 -0.0279
11 0.7323 0.4485 7.8398 0.3889
13 -0.2199 -0.1298 -4.9439 -0.4263
14 0.4978 0.2982 7.3894 -0.1368
15 0.635 0.3848 8.883 0.1079
16 0.0332 0.0195 1.1512 0.2405
17 -0.1008 -0.0593 -4.2023 0.2815
18 -0.309 -0.183 4.9597 -0.3348
19 0.4995 0.2992 12.7438 0.1468
20 0.1725 0.1017 -6.0698 0.5856
21 0.1528 0.09 -3.5468 0.2549
22 1.3816 0.9578 -2.9502 0.7722
23 1.2688 0.8537 -7.5327 0.7564
24 0.0435 0.0256 -3.2566 0.1695

Perturbed gene
9 43.0514 43.0514 61.5517 58.7538
12 7.7989 7.7989 122.9864 81.8804
51 83.0593 83.0593 118.6831 91.2122
52 43.7719 43.7719 69.5696 60.9674
63 91.2791 91.2791 83.1085 82.323
77 12.0843 12.0843 102.573 66.1896
88 77.6835 77.6835 82.7079 67.8737

128 60.8325 60.8325 82.4737 68.1296
137 58.0109 58.0109 46.2925 44.1126
140 46.694 46.694 84.2862 92.4234
157 52.9928 52.9928 87.2424 69.6636
184 85.2533 85.2533 80.1477 83.9621
197 79.2744 79.2744 86.5302 57.9

Overall Dimension
(Noise + Perturbed gene) 31 20 115 21

Hyperparameters for the RGD Method. To ensure reproducibility, we provide the details of the
parameters used in our high-dimensional experiments. The parameter for the smoothed ℓ0-norm in
Equation (21) is set to σ = 1. For the multi-objective optimization, we use β = 1 and µ = 1.4. The
gradient descent employs a learning rate of r = 0.01 and a convergence threshold of 10−6.

23

SICNN

Hyperparameters for the ICNN OT Method. We largely used the default hyperparameter settings
as outlined in ICNN OT [13], with a modification to the batch size, which was set to 128 to better
accommodate our datasets.

Hyperparameters for SICNN method. We set nini = 10, 000 and ntr = nsm = 5, 000. For
simulated annealing hyperparameters, we set initial temperature as 1.0, and minimum temperature
as 0.15, temperature decay rate as 0.9, and range adjustment parameter p = 3. The parameter for
the smoothed ℓ0-norm in Equation (21) is set to σ = 1.0. Initial λ = 0.005, intensity increasing rate
ir = 0.5, and dimension requirement l = 21.

Appendix L. Conclusions

In this work, we propose an intuitive approach to incorporate displacement sparsity into ICNN to
solve OT problems. Unlike the constant sparsity intensity used in Cuturi et al.’s [9] displacement-
sparse map, we introduce a novel heuristic framework that dynamically adjusts the sparsity intensity
throughout ICNN training based on different objective functions. Furthermore, we apply our heuris-
tic framework to solve the direct displacement-constrained problem in high-dimensional settings.

Future Work. In this short version of SICNN, we regret that we have only presented experimental
results on synthesized datasets. However, we have already retrieved multiple datasets for 2D cell
perturbation and high-dimensional gene perturbation tasks. In future work, we will conduct addi-
tional experiments to evaluate the performance of SICNN on these real-world datasets. We will
also develop a more effective method for setting the training parameters, such as nsm and ntr, in the
heuristic framework. Currently, these parameters are conservatively chosen in an arbitrary manner.
Implementing an improved mechanism to determine these parameters could significantly accelerate
the training process.

24

	Introduction
	Background in Optimal Transport
	Inducing Sparsity towards Displacement Vector
	Sparsity-inducing Penalties
	Low Dimensional Space: Dynamic Adjustment to Sparsity-inducing intensity
	High Dimensional Space: Direct Displacement Vector Dimensionality Constraint
	Experiment Setting

	Related Works
	Details for Minimax Formulation ([e5]5)
	Background in Input Convex Neural Network (ICNN)
	Proof of Theorem 1 and 2.
	Proof of Theorem 3
	Sparsity-Inducing Penalties
	Convergence Analysis for Low Dimensional Experiments
	Simulated Annealing Framework for Adjustment (Low Dimensional Space)
	Theoretical Solution towards formulation ([e8]8) - Regularized Gradient Descent Method (RGD)
	Heuristic Framework for Adjustment (High Dimensional Space)
	High Dimensional Experiment Setup and Results
	Conclusions

