
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

On the Convergence of FedProx with Extrapolation and Inexact Prox

Hanmin Li HANMIN.LI@KAUST.EDU.SA

Peter Richtárik PETER.RICHTARIK@KAUST.EDU.SA

GenAI CoE, KAUST

Abstract
Enhancing the FedProx federated learning algorithm [37] with server-side extrapolation, Li et al.
[35] recently introduced the FedExProx method. Their theoretical analysis, however, relies on
the assumption that each client computes a certain proximal operator exactly, which is impractical
since this is virtually never possible to do in real settings. In this paper, we investigate the behav-
ior of FedExProx without this exactness assumption in the smooth and globally strongly convex
setting. We establish a general convergence result, showing that inexactness leads to convergence
to a neighborhood of the solution. Additionally, we demonstrate that, with careful control, the ad-
verse effects of this inexactness can be mitigated. By linking inexactness to biased compression
[9], we refine our analysis, highlighting robustness of extrapolation to inexact proximal updates.
We also examine the local iteration complexity required by each client to achieved the required
level of inexactness using various local optimizers. Our theoretical insights are validated through
comprehensive numerical experiments.

1. Introduction

Federated learning (FL) is a decentralized approach where clients collaboratively train a shared
model locally, preserving privacy [33, 43]. The federated average algorithm (FedAvg), introduced
by McMahan et al. [43] and Mangasarian and Solodov [41], is one of the most popular strategies for
tackling federated learning problems. The algorithm comprises three essential components: client
sampling, data sampling, and local training. The server samples a subset of clients to participate
in each training round, where each selected client performs local training using stochastic gradient
descent (SGD), with or without random reshuffling, to improve communication efficiency, as docu-
mented by Bubeck et al. [11], Gower et al. [22], Moulines and Bach [47], Sadiev et al. [65]. FedAvg
has been highly successful in practice, but it suffers from client drift when data is heterogeneous
[30].

Techniques like FedProx [37] have been proposed to address data heterogeneity. Instead of local
SGD rounds, FedProx requires each client to compute a proximal operator, which can be treated as
a local optimization problem. Proximal algorithms are effective when the proximal operators can
be easily evaluated [50]. Proximal operator algorithms, like the proximal point method (PPM)
[50, 62] and its stochastic extension (SPPM) [5, 8, 31, 51, 59], provide greater stability against
inaccurately specified step sizes compared to gradient-based methods. This stability is especially
valuable when problem-specific parameters, such as the objective function’s smoothness constant,
are unknown, making step size selection for SGD difficult. An excessively large step size in SGD
leads to divergence, while a small step size ensures convergence but slows down the training process
significantly.

© H. Li & P. Richtárik.

INEXACT FEDEXPROX

Another approach to mitigating the slowdown caused by heterogeneity is the use of a server step
size. In FedAvg, each client uses a local step size to minimize their individual objectives, while a
server step size is applied to aggregate the ‘pseudo-gradients’ from each client [30, 58]. The local
step size is kept small to mitigate client drift, while the server step size is larger to prevent slow-
downs. However, the small local step size causes an initial training slowdown that the larger server
step size cannot fully offset [24]. Building on the extrapolation technique used in parallel projection
methods for solving convex feasibility problems [12, 13, 48], Jhunjhunwala et al. [24] introduced
FedExP, an extension of FedAvg that incorporates adaptive extrapolation as the server step size.
Extrapolation accelerates the algorithm by moving further along the line connecting the most re-
cent iterate, xk, and the average of its projections onto the convex sets Xi in the parallel projection
method. In fixed point theory, this technique is also known as over-relaxation [56]. Extrapola-
tion is a common technique used to accelerate the convergence of fixed point methods, including
gradient-based and proximal splitting algorithms [14, 23]. Recently, Li et al. [35] demonstrated that
combining extrapolation with FedProx improves complexity bounds. The analysis of the resulting
algorithm, FedExProx, highlights the relationship between the extrapolation parameter and the step
size of gradient-based methods concerning the Moreau envelope of the original objective function.
However, it assumes each proximal operator is solved accurately, making it less practical and less
advantageous compared to gradient-based methods.

1.1. Contributions

Our paper makes the following contributions, please refer to Appendix A for notation details.

• We provide a new analysis of FedExProx, building on Li et al. [35], focusing on the case where
proximal operators are evaluated inexactly within the global strongly convex setting, eliminating
the assumption of exact evaluations. By properly defining the approximation notion, we establish
a general convergence guarantee to a neighborhood of the solution using biased SGD theory
[16]. Specifically, our algorithm achieves a linear convergence rate of O (Lγ(1+γLmax)/µ) to a
neighborhood of the solution, matching the rate from Li et al. [35].

• Building on our understanding of how the neighborhood arises, we propose a new method of ap-
proximation. This alternative characterization of inexactness removes the neighborhood from the
previous convergence guarantee, provided the inexactness is properly bounded and the extrapola-
tion parameter is chosen to be sufficiently small.

• By leveraging the similarity between the definitions of inexactness and compression, we enhance
our analysis using the theory of biased compression [9]. The improved analysis offers a faster rate
of O

(
Lγ(1+γLmax)
µ−4ε2Lmax

)
1, leading to convergence to the exact solution, provided that the inexactness

is bounded in a more permissive manner. More importantly, the optimal extrapolation 1/γLγ

matches the exact case. This shows that extrapolation aids convergence as long as sufficient
accuracy is reached, even with inexact proximal evaluations.

• We analyze how clients can achieve these approximations, providing local iteration complexity
for gradient descent (GD) and Nesterov’s accelerated gradient descent (AGD). For the i-th client,
the complexity is Õ (1 + γLi) for GD and Õ

(√
1 + γLi

)
for AGD. See Table 1 and Table 2 for

a detailed comparison of complexities.

1. The parameter ε2 is the parameter associated with accuracy of relative approximation as defined in Definition 4. We
use the notation O (·) to ignore constant factors and Õ (·) when logarithmic factors are also omitted.

2

INEXACT FEDEXPROX

• Finally, we validate our theoretical findings through numerical experiments. The results show
that the proposed relative approximation technique effectively eliminates bias. In some cases, the
algorithm outperforms FedProx with exact updates, further proving the effectiveness of server
extrapolation, even with inexact proximal updates.

2. Mathematical background

We consider the following distributed optimization problem,

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where x ∈ Rd is the model, f : Rd 7→ R is global objective, fi : Rd 7→ R is the empirical risk of
model x for the i-th client.

Definition 1 (Proximal operator) The proximal operator of an extended real-valued function ϕ :
Rd 7→ R ∪ {+∞} with step size γ > 0 and center x ∈ Rd is defined as

proxγϕ (x) := arg min
z∈Rd

{
ϕ {z}+ 1

2γ
∥z − x∥2

}
.

Definition 2 (Moreau envelope) The Moreau envelope of an extended real-valued function ϕ :
Rd 7→ R ∪ {+∞} with step size γ > 0 and center x ∈ Rd is defined as

Mγ
ϕ (x) := min

z∈Rd

{
ϕ (z) +

1

2γ
∥z − x∥2

}
.

For Moreau envelope, we have

Mγ
ϕ (x) = ϕ

(
proxγϕ (x)

)
+

1

2γ

∥∥x− proxγϕ (x)
∥∥2 .

Their function values are related, and for any proper, closed, convex function ϕ, the Moreau enve-
lope is differentiable.

∇Mγ
ϕ (x) =

1

γ

(
x− proxγf (x)

)
. (2)

This relationship plays a key role in our analysis.

Assumption 1 (Differentiability) The function fi : Rd 7→ R in (1) is differentiable and bounded
from below for all i ∈ [n].

Assumption 2 (Interpolation regime) There exists x⋆ ∈ Rd such that ∇fi(x⋆) = 0 for all i ∈ [n].

Following Li et al. [35], we assume the interpolation regime, common in modern deep learning
where parameters d exceed data points [4, 45]. This assumption is motivated by parallel projection
methods for solving convex feasibility problems, where the non-empty intersection of all convex
sets Xi corresponds to the interpolation assumption that each fi is the indicator function of Xi.
Extrapolation is known to improve these methods [48], and since proxγfi (xk) resembles projecting
onto a level set of fi, it is reasonable to expect extrapolation to be effective here as well.

3

INEXACT FEDEXPROX

Assumption 3 (Individual convexity) The function fi : Rd 7→ R is convex for all i ∈ [n]. This
means that for each fi,

0 ≤ fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ , ∀x, y ∈ Rd. (3)

Assumption 4 (Smoothness) The function fi : Rd 7→ R is Li-smooth, Li > 0 for all i ∈ [n]2.
This means that for each fi,

fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ ≤ Li

2
∥x− y∥2 , ∀x, y ∈ Rd. (4)

Assumption 5 (Global strong convexity) The function f is µ-strongly convex, µ > 0. That is

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ µ

2
∥x− y∥2 , ∀x, y ∈ Rd.

We present our algorithm in Algorithm 1, with analyses under different inexactness definitions in
Section 3 and Section 4. Client methods to achieve inexactness are in Appendix E, and numerical
experiments in Appendix I validate our results.

3. Absolute approximation in distance

The local optimization problem for client i is given by, minz∈Rd A
γ
k,i (z) := fi (z) +

1
2γ ∥z − xk∥2,

where xk is the current iterate and γ > 0 is a constant. Since each function fi is convex, Aγ
k,i (z) is

1/γ-strongly convex, and its unique minimizer is proxγfi (xk).

Definition 3 (Absolute approximation) Given a proper, closed and convex function ϕ : Rd 7→ R,
and a step size γ > 0, we say that a point y ∈ Rd is an ε1-approximation of proxγϕ (x), if for some
ε1 ≥ 0, ∥∥y − proxγf (x)

∥∥2 ≤ ε1. (5)

In order to analyze Algorithm 1, we first transform the update rule given in (8) in the following way,

xk+1 = xk + αk

(
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
+

1

n

n∑
i=1

proxγfi (xk)− xk

)
(2)
= xk − αk ·

1

n

n∑
i=1

γ∇Mγ
fi
(xk)︸ ︷︷ ︸

Gradient

+αk ·
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
︸ ︷︷ ︸

Bias

. (6)

The above reformulation suggests that Algorithm 1 is in fact, SGD with respect to global objective
γMγ (x) := 1

n

∑n
i=1 γM

γ
fi
(x) with a biased gradient estimator. Compared to SGD with an unbi-

ased gradient estimator, its biased counterpart is less well understood. However, we are still able to
obtain the following convergence guarantee using theories for biased SGD from [16].

2. We will use Lmax to denote maxi∈[n] Li.

4

INEXACT FEDEXPROX

Theorem 1 Assume Assumption 1 (Differentiability), Assumption 2 (Interpolation Regime), As-
sumption 3 (Individual convexity), Assumption 4 (Smoothness) and Assumption 5 (Global strong
convexity) hold. If each client only computes a ε1-absolute approximation x̃i,k+1 of proxγfi (xk),

such that
∥∥x̃i,k+1 − proxγfi (xk)

∥∥2 ≤ ε1. Then we have the following convergence guarantee or
Algorithm 1: For a constant extrapolation parameter satisfying 0 < α ≤ 1/4γLγ , where γ is the step
size of the proximal operator, αk = α is a constant extrapolation parameter, Lγ is the smoothness
constant of Mγ . The last iterate xK satisfy

EK ≤
(
1− αγµ

8 (1 + γLmax)

)K

E0 +
4ε1 (1 + γLmax)

µ
·
(
2αLγ +

1

γ

)
,

where Ek = γMγ (xk)− γMγ
inf . Specifically, when we choose α = 1/4γLγ , we have

∆K ≤
(
1− µ

32Lγ (1 + γLmax)

)K Lγ (1 + γLmax)

µ
·∆0 + 12ε1 ·

(
1/γ + Lmax

µ

)2

,

where ∆K = ∥xK − x⋆∥2, x⋆ is a minimizer of f .

As per Fact 7, the minimizer of Mγ also minimizes f . The algorithm converges to a neighborhood
around x⋆, with its size dependent on ε1 and γ. A smaller γ leads to less progress per iteration, in-
creasing the accumulated error over more iterations and, consequently, enlarging the neighborhood
size. While ε1 can be arbitrarily large, the larger neighborhood reduces the practical significance.
For ε1 = 0, the neighborhood disappears, yielding an iteration complexity of Õ (Lγ(1+γLmax)/µ)3,
which recovers the result of Li et al. [35] up to a constant factor. The optimal extrapolation param-
eter is α⋆ = 1/4γLγ , 4 times smaller than that of Li et al. [35].

4. Relative approximation in distance

A key challenge in the above analysis is that without exact proximal evaluations, convergence is
limited to a neighborhood of the solution. As the algorithm progresses, the gradient term in the
estimator g(xk) diminishes, while the bias term remains unchanged. Based on this, we propose
using a different type of approximation.

Definition 4 (Relative approximation) Given a convex function ϕ : Rd 7→ R and a stepsize
γ > 0, we say that a point y ∈ Rd is a ε2-relative approximation of proxγϕ (x), if for some
ε2 ∈ [0, 1), ∥∥y − proxγϕ (x)

∥∥2 ≤ ε2 ·
∥∥x− proxγϕ (x)

∥∥2 . (7)

We require ε2 < 1 to ensure the next iterate is no worse than the current one. If each proximal
approximation meets Definition 4, both the gradient and bias terms decrease, ensuring convergence
to the exact solution. Using the theory of biased SGD, we obtain the following theorem.

Theorem 2 Assume all assumptions of Theorem 1 hold. If each client computes a ε2-relative ap-
proximation x̃i,k+1 with ε2 < µ2/4L2

max, so that
∥∥x̃i,k+1 − proxγfi (xk)

∥∥2 ≤ ε2·
∥∥xk − proxγfi (xk)

∥∥2.
If we are running Algorithm 1 with αk = α satisfying

0 < α ≤ 1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4
√
ε2Lmax + 4ε2Lmax

.

3. We leave out the log factor in Õ (·) notation.

5

INEXACT FEDEXPROX

Then the iterates generated by Algorithm 1 satisfies

EK ≤

(
1− α ·

γ
(
µ− 2

√
ε2Lmax

)
4 (1 + γLmax)

)K

E0.

Specifically, if we choose the largest α possible, we have

∆K ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2)

)K

· Lγ (1 + γLmax)

µ
∆0,

where S(ε2) :=
(µ−2

√
ε2Lmax)

(
1−2

√
ε2

Lmax
µ

)
µ+4

√
ε2Lmax+4ε2Lmax

satisfies 0 < S(ε2) ≤ 1 is the factor of slowing down
due to inexact proximal operator evaluation.

When ε2 = 0, the optimal extrapolation is α = 1/γLγ with iteration complexity Õ (Lγ(1+γLmax)/µ),
which recovers the exact result from Li et al. [35]. As ε2 increases, both α and S(ε2) decrease,
leading to a slower rate of convergence. Note that ε2 must satisfy ε2 < µ2/4L2

max

Definition 4 relates to the concept of compression. Indeed, we have xk − proxγfi (xk) =
γ∇Mγ

fi
(xk), while x̃i,k+1 − proxγfi (xk) can be interpreted as the compressed gradient, that is,

C(γ∇Mγ
fi
(xk)). In this case, Algorithm 1 can be viewed as compressed gradient descent with

biased compressor. We obtain the following convergence guarantee based on theory provided by
Beznosikov et al. [9].

Theorem 3 Assume all assumptions of Theorem 1 hold. Let the approximation x̃i,k+1 all satisfies
Definition 4 with ε2 < µ/4Lmax, that is

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2 ≤ ε2 ·

∥∥xk − proxγfi (xk)
∥∥2. If

we are running Algorithm 1 with αk = α ∈ (0, 1/γLγ], we have the iterates produced by it satisfying

EK ≤
(
1−

(
1− 4ε2Lmax

µ

)
· γµ

4 (1 + γLmax)
· α
)K

E0.

specifically, if we take the largest extrapolation (α = 1/γLγ > 1) possible, we have

∆K ≤
(
1−

(
1− 4ε2Lmax

µ

)
· µ

4Lγ (1 + γLmax)

)K

· Lγ (1 + γLmax)

µ
∆0.

The convergence guarantee is sharper, as Theorem 3 shows that if ε2 < µ/4L, we can set α =
1/γLγ

4,the optimal extrapolation for exact proximal computation from Li et al. [35]. This demon-
strates that extrapolation effectively accelerates the algorithm, even with inexact proximal evalua-
tions. When ε2 = 0, we recover the result from Li et al. [35].

References

[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Advances in Neural
Information Processing Systems, 30, 2017.

4. It is shown in Li et al. [35] that 1/γLγ > 1, which justifies why α is called the extrapolation parameter.

6

INEXACT FEDEXPROX

[2] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and
Cédric Renggli. The convergence of sparsified gradient methods. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

[3] Mihai Anitescu. Degenerate nonlinear programming with a quadratic growth condition. SIAM
Journal on Optimization, 10(4):1116–1135, 2000.

[4] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analy-
sis of optimization and generalization for overparameterized two-layer neural networks. In
International Conference on Machine Learning, pages 322–332. PMLR, 2019.

[5] Hilal Asi and John C Duchi. Stochastic (approximate) proximal point methods: Convergence,
optimality, and adaptivity. SIAM Journal on Optimization, 29(3):2257–2290, 2019.

[6] Heinz H Bauschke, Patrick L Combettes, and Serge G Kruk. Extrapolation algorithm for
affine-convex feasibility problems. Numerical Algorithms, 41:239–274, 2006.

[7] Amir Beck. First-order methods in optimization. SIAM, 2017.

[8] Dimitri P Bertsekas. Incremental proximal methods for large scale convex optimization. Math-
ematical Programming, 129(2):163–195, 2011.

[9] Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased com-
pression for distributed learning. Journal of Machine Learning Research, 24(276):1–50, 2023.

[10] Pascal Bianchi. Ergodic convergence of a stochastic proximal point algorithm. SIAM Journal
on Optimization, 26(4):2235–2260, 2016.

[11] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

[12] Y Censor, T Elfving, and GT Herman. Averaging strings of sequential iterations for convex
feasibility problems. In Studies in Computational Mathematics, volume 8, pages 101–113.
Elsevier, 2001.

[13] Patrick L Combettes. Convex set theoretic image recovery by extrapolated iterations of parallel
subgradient projections. IEEE Transactions on Image Processing, 6(4):493–506, 1997.

[14] Laurent Condat, Daichi Kitahara, Andrés Contreras, and Akira Hirabayashi. Proximal splitting
algorithms for convex optimization: A tour of recent advances, with new twists. SIAM Review,
65(2):375–435, 2023.

[15] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly
convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

[16] Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtárik. A guide through
the zoo of biased sgd. Advances in Neural Information Processing Systems, 36, 2024.

[17] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

7

INEXACT FEDEXPROX

[18] Pinghua Gong and Jieping Ye. Linear convergence of variance-reduced stochastic gradient
without strong convexity. arXiv preprint arXiv:1406.1102, 2014.

[19] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance
reduction, sampling, quantization and coordinate descent. In International Conference on
Artificial Intelligence and Statistics, pages 680–690. PMLR, 2020.

[20] Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster
non-convex distributed learning with compression. In International Conference on Machine
Learning, pages 3788–3798. PMLR, 2021.

[21] Robert M Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced meth-
ods for machine learning. Proceedings of the IEEE, 108(11):1968–1983, 2020.

[22] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and
Peter Richtárik. SGD: General analysis and improved rates. In International Conference on
Machine Learning, pages 5200–5209. PMLR, 2019.

[23] Franck Iutzeler and Julien M Hendrickx. A generic online acceleration scheme for optimiza-
tion algorithms via relaxation and inertia. Optimization Methods and Software, 34(2):383–405,
2019.

[24] Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. FedExP: Speeding up federated
averaging via extrapolation. In International Conference on Learning Representations, 2023.

[25] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. Advances in neural information processing systems, 26, 2013.

[26] Abderrahim Jourani, Lionel Thibault, and Dariusz Zagrodny. Differential properties of the
moreau envelope. Journal of Functional Analysis, 266(3):1185–1237, 2014.

[27] Stefan Kaczmarz. Approximate solution of systems of linear equations. International Journal
of Control, 57(6):1269–1271, 1937.

[28] Avetik Karagulyan, Egor Shulgin, Abdurakhmon Sadiev, and Peter Richtárik. Spam: Stochas-
tic proximal point method with momentum variance reduction for non-convex cross-device
federated learning. arXiv preprint arXiv:2405.20127, 2024.

[29] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feed-
back fixes signsgd and other gradient compression schemes. In International Conference on
Machine Learning, pages 3252–3261. PMLR, 2019.

[30] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[31] Ahmed Khaled and Chi Jin. Faster federated optimization under second-order similarity. In
The Eleventh International Conference on Learning Representations, 2022.

[32] Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with
compressed gradients. arXiv preprint arXiv:1806.06573, 2018.

8

INEXACT FEDEXPROX

[33] Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492, 8, 2016.

[34] Hanmin Li, Avetik Karagulyan, and Peter Richtárik. Variance reduced distributed non-convex
optimization using matrix stepsizes. arXiv preprint arXiv:2310.04614, 2023.

[35] Hanmin Li, Kirill Acharya, and Peter Richtárik. The power of extrapolation in federated
learning. arXiv preprint arXiv:2405.13766, 2024.

[36] Hanmin Li, Avetik Karagulyan, and Peter Richtárik. Det-CGD: Compressed gradient descent
with matrix stepsizes for non-convex optimization. In International Conference on Learning
Representations, 2024.

[37] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2:429–450, 2020.

[38] Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

[39] Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
momentum. Advances in Neural Information Processing Systems, 33:18261–18271, 2020.

[40] Nicolas Loizou and Peter Richtárik. Linearly convergent stochastic heavy ball method for
minimizing generalization error. arXiv preprint arXiv:1710.10737, 2017.

[41] Olvi L Mangasarian and Mikhail V Solodov. Backpropagation convergence via deterministic
nonmonotone perturbed minimization. Advances in Neural Information Processing Systems,
6, 1993.

[42] Bernard Martinet. Algorithmes pour la résolution de problèmes d’optimisation et de minimax.
PhD thesis, Université Joseph-Fourier-Grenoble I, 1972.

[43] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[44] Konstantin Mishchenko, Slavomir Hanzely, and Peter Richtárik. Convergence of first-order
algorithms for meta-learning with Moreau envelopes. arXiv preprint arXiv:2301.06806, 2023.

[45] Andrea Montanari and Yiqiao Zhong. The interpolation phase transition in neural networks:
Memorization and generalization under lazy training. The Annals of Statistics, 50(5):2816–
2847, 2022.

[46] Jean-Jacques Moreau. Proximité et dualité dans un espace Hilbertien. Bulletin de la Société
Mathématique de France, 93:273–299, 1965.

[47] Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algo-
rithms for machine learning. Advances in Neural Information Processing Systems, 24, 2011.

9

INEXACT FEDEXPROX

[48] Ion Necoara, Peter Richtárik, and Andrei Patrascu. Randomized projection methods for convex
feasibility: Conditioning and convergence rates. SIAM Journal on Optimization, 29(4):2814–
2852, 2019.

[49] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Aca-
demic Publishers, 2004.

[50] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends® in Opti-
mization, 1(3):127–239, 2014.

[51] Andrei Patrascu and Ion Necoara. Nonasymptotic convergence of stochastic proximal point
methods for constrained convex optimization. Journal of Machine Learning Research, 18
(198):1–42, 2018.

[52] Guy Pierra. Decomposition through formalization in a product space. Mathematical Program-
ming, 28:96–115, 1984.

[53] Chayne Planiden and Xianfu Wang. Strongly convex functions, Moreau envelopes, and the
generic nature of convex functions with strong minimizers. SIAM Journal on Optimization, 26
(2):1341–1364, 2016.

[54] Chayne Planiden and Xianfu Wang. Proximal mappings and Moreau envelopes of single-
variable convex piecewise cubic functions and multivariable gauge functions. Nonsmooth
Optimization and Its Applications, pages 89–130, 2019.

[55] Boris T Polyak. Gradient methods for solving equations and inequalities. USSR Computa-
tional Mathematics and Mathematical Physics, 4(6):17–32, 1964.

[56] LF Rechardson. The approximate arithmetical solution by finite difference of physical prob-
lems involving differential equations, with an application to the stresses in a masonary dam.
R. Soc. London Phil. Trans. A, 210:307–357, 1911.

[57] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. Advances in Neural Information Pro-
cessing Systems, 24, 2011.

[58] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. In-
ternational Conference on Learning Representations, 2021.

[59] Peter Richtárik and Martin Takác. Stochastic reformulations of linear systems: algorithms
and convergence theory. SIAM Journal on Matrix Analysis and Applications, 41(2):487–524,
2020.

[60] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better,
and practically faster error feedback. Advances in Neural Information Processing Systems, 34:
4384–4396, 2021.

[61] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

10

INEXACT FEDEXPROX

[62] R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal
on Control and Optimization, 14(5):877–898, 1976.

[63] Ernest K Ryu and Stephen Boyd. Stochastic proximal iteration: a non-asymptotic improve-
ment upon stochastic gradient descent. Author website, early draft, 2014.

[64] Abdurakhmon Sadiev, Dmitry Kovalev, and Peter Richtárik. Communication acceleration of
local gradient methods via an accelerated primal-dual algorithm with an inexact prox. Ad-
vances in Neural Information Processing Systems, 35:21777–21791, 2022.

[65] Abdurakhmon Sadiev, Grigory Malinovsky, Eduard Gorbunov, Igor Sokolov, Ahmed Khaled,
Konstantin Burlachenko, and Peter Richtárik. Federated optimization algorithms with random
reshuffling and gradient compression. arXiv preprint arXiv:2206.07021, 2022.

[66] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns. In Interspeech, volume
2014, pages 1058–1062. Singapore, 2014.

[67] Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with Moreau
envelopes. Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

[68] Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with
communication compression and optimal oracle complexity. In International Conference on
Learning Representations, 2024.

11

INEXACT FEDEXPROX

Contents

1 Introduction 1
1.1 Contributions . 2

2 Mathematical background 3

3 Absolute approximation in distance 4

4 Relative approximation in distance 5

A Notations 12

B Related work 13

C Facts and lemmas 14

D Theory of biased SGD 17

E Achieving the level of inexactness 18

F Theory of biased compression 19

G Analysis of inexact FedExProx in the client sampling setting 20
G.1 Relative approximation in distance . 20
G.2 Absolute approximation in distance . 22

H Proof of theorems and lemmas 22
H.1 Proof of Lemma 1 . 22
H.2 Proof of Theorem 1 . 24
H.3 Proof of Theorem 2 . 26
H.4 Proof of Theorem 3 . 30
H.5 Proof of Theorem 5 . 32
H.6 Proof of Theorem 6 . 33
H.7 Proof of Theorem 11 . 34

I Experiments 38
I.1 Comparison of FedProx, FedExProx, FedExProx with absolute approximation and

relative approximation . 39
I.2 Comparison of FedExProx with absolute approximation under different inaccuracies 41
I.3 Comparison of FedExProx with relative approximation under different inaccuracies 41
I.4 Adaptive extrapolation for inexact proximal evaluations 41

Appendix A. Notations

Throughout the paper, we use the notation ∥·∥ to denote the standard Euclidean norm defined on
Rd and ⟨·, ·⟩ to denote the standard Euclidean inner product. Given a differentiable function f :
Rd 7→ R, its gradient is denoted as ∇f(x). We use the notation Df (x, y) to denote the Bregman

12

INEXACT FEDEXPROX

Algorithm 1 Inexact FedExProx
1: Parameters: extrapolation parameter αk = α > 0, step size for the proximal operator γ > 0,

starting point x0 ∈ Rd, number of clients n, total number of iterations K, proximal solution
accuracy ε ≥ 0.

2: for k = 0, 1, 2 . . .K − 1 do
3: The server broadcasts the current iterate xk to each client
4: Each client computes an ε approximation of the solution x̃i,k+1 ≃ proxγfi (xk), and sends it

back to the server
5: The server computes

xk+1 = xk + αk

(
1

n

n∑
i=1

x̃i,k+1 − xk

)
. (8)

6: end for

divergence associated with a function f : Rd 7→ R between x and y. The notation inf f is used
to denote the minimum of a function f : Rd 7→ R. We use proxγϕ (x) to denote the proximity
operator of function ϕ : Rd 7→ R with γ > 0 at x ∈ Rd, and Mγ

ϕ (x) to denote the corresponding
Moreau Envelope. We denote the average of the Moreau envelope of each local objective fi by the
notation Mγ : Rd 7→ R. Specifically, we define Mγ (x) = 1

n

∑n
i=1M

γ
f (x). Note that Mγ (x)

has an implicit dependence on γ, its smoothness constant is denoted by Lγ . We say an extended
real-valued function f : Rd 7→ R ∪ {+∞} is proper if there exists x ∈ Rd such that f(x) < +∞.
We say an extended real-valued function f : Rd 7→ R ∪ {+∞} is closed if its epigraph is a closed
set. We use the notation Ek = γMγ (xk) − γMγ

inf to denote the function value suboptimality of
γMγ at xk, and ∆k = ∥xk − x⋆∥2 to denote the squared distance. The notation O (·) is used to
describe complexity while omitting constant factors, whereas Õ (·) is used when logarithmic factors
are also omitted.

Appendix B. Related work

Arguably, stochastic gradient descent (SGD) [17, 19, 22, 61] remains one of the foundational algo-
rithm in the field of machine learning. One can simply formulate it as

xk+1 = xk − η · g(xk),

where η > 0 is a scalar step size, g(xk) is a possibly stochastic estimator of the true gradient
∇f(xk). In the case when g(xk) = ∇f(xk), SGD becomes GD. Various extensions of SGD have
been proposed since its introduction, examples include compressed gradient descent (CGD) [1, 32],
SGD with momentum [39, 40], SGD with matrix step size [36] and variance reduction [20, 21,
25, 34, 68]. Gower et al. [22] presented a framework for analyzing SGD with unbiased gradient
estimator in the convex case based on expected smoothness. However, in practice, sometimes the
gradient estimator could be biased, examples include SGD with sparsified or delayed update [2,
57]. Beznosikov et al. [9] examined biased updates in the context of compressed gradient descent.
Demidovich et al. [16] provides a framework for analyzing SGD with biased gradient estimators in
the non-convex setting.

13

INEXACT FEDEXPROX

Proximal point method (PPM) was originally introduced as a method to solve variational in-
equalities [42, 62]. The transition to the stochastic case, driven by the need to efficiently address
large-scale optimization problems, leads to the development of SPPM. Due to its stability and
advantage over the gradient based methods, it has been extensively studied, as documented by
[8, 10, 51]. For proximal algorithms to be practical, it is commonly assumed that the proximal
operator can be solved efficiently, such as in cases where a closed-form solution is available. How-
ever, in large-scale machine learning models, it is rarely possible to find such a solution in closed
form. To address this issue, most proximal algorithms assume that only an approximate solution
is obtained, achieving a certain level of accuracy [28, 31, 64]. Various notions of inexactness are
employed, depending on the assumptions made, the properties of the objective, and the availability
of algorithms capable of efficiently finding such approximations.

Moreau envelope was first introduced to handle non-smooth functions by Moreau [46]. It is also
known as the Moreau-Yosida regularization. The use of the Moreau envelope as an analytical tool
to analyze proximal algorithms is not novel. Ryu and Boyd [63] noted that running a proximal algo-
rithm on the objective is equivalent to applying gradient methods to its Moreau envelope. Davis and
Drusvyatskiy [15] analyzed stochastic proximal point method (SPPM) for weakly convex and Lip-
schitz functions based on this finding. Recently, Li et al. [35] provided an analysis of FedProx with
server-side step size in the convex case, based on the reformulation of the problem using the Moreau
envelope. The role of the Moreau envelope extends beyond analyzing proximal algorithms; it has
also been applied in the contexts of personalized federated learning [67] and meta-learning [44].
The mathematical properties of the Moreau envelope are relatively well understood, as documented
by Jourani et al. [26], Planiden and Wang [53, 54].

Projection methods initially emerged as an effective tool for solving systems of linear equa-
tions or inequalities [27] and were later generalized to solve the convex feasibility problem [13].
The parallel version of this approach involves averaging the projections of the current iterates onto
all existing convex sets Xi to obtain the next iterate, a process that is empirically known to be
accelerated by extrapolation. Numerous heuristic rules have been proposed to adaptively set the
extrapolation parameter, such as those by Bauschke et al. [6] and Pierra [52]. Only recently, the
mechanism behind constant extrapolation was uncovered by Necoara et al. [48], who developed
the corresponding theoretical framework. Additionally, Li et al. [35] provides explanations for the
effectiveness of adaptive rules, revealing the connection between the extrapolation parameter and
the step size of SGD when using the Moreau envelope as the global objective.

Appendix C. Facts and lemmas

Fact 1 (Young’s inequality) For any two vectors x, y ∈ Rd, the following inequality holds,

∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 . (9)

Fact 2 (Property of convex smooth functions) Let ϕ : Rd 7→ R be differentiable. The following
statements are equivalent:

1. ϕ is convex and L-smooth.

2. 0 ≤ 2Dϕ (x, y) ≤ L ∥x− y∥2 for all x, y ∈ Rd.

3. 1
L ∥∇ϕ(x)−∇ϕ(y)∥2 ≤ 2Dϕ (x, y) for all x, y ∈ Rd.

14

INEXACT FEDEXPROX

Table 1: Comparison of FedExProx [35] and our proposed inexact versions of the algorithms using
different approximations. In the convergence column, we present the rate at which each
algorithm converges to either the solution or a neighborhood in the global strongly convex
setting. Here, Lγ represents the smoothness constant of Mγ as defined before Theorem 1.
The neighborhood column indicates the size of the neighborhood, while the optimal ex-
trapolation column suggests the best choice of α for each algorithm. The final column
outlines the conditions on the inexactness. All quantities are presented with constant fac-
tors omitted, K is the number of total iterations, γ is the local step size for the proximal
operator, S (ε2) defined in Theorem 2 is a factor of slowing down due to inexactness in
(0, 1]. For relative approximation, we first present the original theory in the third row and
then place the sharper analysis in the following row for comparison.

Algorithm Convergence Neighborhood Optimal
Extrapolation

Bound on
Inexactness

FedExProx exp
(
− Kµ

Lγ(1+γLmax)

)
0 1

γLγ
NA

(NEW) FedExProx with
ε1 approximation

exp
(
− Kµ

Lγ(1+γLmax)

)
ε1

(
1
γ
+Lmax

µ

)2
(a) 1

4γLγ
NA (b)

(NEW) FedExProx with
ε2 relative approximation

by biased SGD
exp

(
− KµS(ε2)

Lγ(1+γLmax)

)
(c) 0 < 1

γLγ
< µ2

4L2
max

(NEW) FedExProx with
ε2 relative approximation

by biased compression
exp

(
−K(µ−4ε2Lmax)

Lγ(1+γLmax)

)
0 1

γLγ

(d) < µ
4Lmax

(a) Note that when ε1 = 0, i.e., when the proximal operators are evaluated exactly, the neighborhood dimin-
ishes, and we recover the result of FedExProx by Li et al. [35], up to a constant factor.

(b) Unlike relative approximations, the convergence guarantee here is more general, allowing for the analysis
of unbounded inexactness. However, as the inexactness increases, the neighborhood grows correspond-
ingly, rendering the result practically useless.

(c) Refer to Theorem 2 for the definition of S (ε2) and the corresponding optimal extrapolation parameter.
The theory indicates that inexactness will adversely affect the algorithm’s convergence.

(d) Surprisingly, our sharper analysis reveals that the optimal extrapolation parameter in this case remains
the same as in the exact setting, highlighting the effectiveness of extrapolation even when the proximal
operators are evaluated inexactly.

The notation Dϕ (x, y) denotes the Bregman divergence associate with ϕ at x, y ∈ Rd, defined as

Dϕ (x, y) = ϕ (x)− ϕ (y)− ⟨∇ϕ(y), x− y⟩ .

The following two facts establish that the convexity and smoothness of a function ϕ : Rd 7→ R
ensure the convexity and smoothness of its Moreau envelope.

Fact 3 (Convexity of Moreau envelope) [7, Theorem 6.55] Let ϕ : Rd 7→ R∪{+∞} be a proper
and convex function. Then Mγ

ϕ is a convex function.

Fact 4 (Smoothness of Moreau envelope) [35, Lemma 4] Let ϕ : Rd 7→ R be a convex and L-
smooth function. Then Mγ

ϕ is L
1+γL -smooth.

15

INEXACT FEDEXPROX

Table 2: Comparison of local iteration complexities of each client in order to obtain an approxima-
tion using either GD or AGD [49]. We use the i-th client as an example, where the local
objective fi : Rd 7→ R is Li-smooth and convex, i ∈ {1, 2, . . . , n}.

Algorithm ε1 absolute approximation ε2 relative approximation

Gradient descent O
(
(1 + γLi) log

(
∥xk−proxγfi

(xk)∥2

ε1

))
(a) O

(
(1 + γLi) log

(
1
ε2

))
Accelerate gradient descent O

(√
1 + γLi log

(
∥xk−proxγfi

(xk)∥2

ε1

))
O

(√
1 + γLi log

(
1
ε2

))
(a) We can easily provide an upper bound of

∥∥xk − proxγfi
(xk)

∥∥2 for determining the number of local
computations needed.

The following fact illustrates the relationship between the minimizer of a function ϕ and its
Moreau envelope Mγ

ϕ .

Fact 5 (Minimizer equivalence) [35, Lemma 5] Let ϕ : Rd 7→ R ∪ {+∞} be a proper, closed
and convex function. Then for any γ > 0, ϕ and Mγ

ϕ has the same set of minimizers.

In our case, we assume each fi from (1) is convex and Li-smooth. Therefore by Fact 3
and Fact 4, we know that each Mγ

fi
is also convex and Li

1+γLi
-smooth. This means that Mγ =

1
n

∑n
i=1M

γ
fi

is also convex and smooth. We denote its smoothness constant as Lγ , and the follow-
ing fact provides a range for this constant.

Fact 6 (Global convexity and smoothness) [35, Lemma 7] Let each fi be proper, closed convex
and Li-smooth. Then Mγ is convex and Lγ-smooth with

1

n2

n∑
i=1

Li

1 + γLi
≤ Lγ ≤ 1

n

n∑
i=1

Li

1 + γLi
.

The following fact establishes that the minimizer of f and Mγ are the same.

Fact 7 (Global minimizer equivalence) [35, Lemma 8] If we let every fi : Rd 7→ R ∪ {+∞} be
proper, closed and convex, then f(x) = 1

n

∑n
i=1 fi(x) has the same set of minimizers and minimum

as

Mγ (x) =
1

n

n∑
i=1

Mγ
fi
(x) ,

if we are in the interpolation regime and 0 < γ < ∞.

The above fact demonstrates that running SGD on the objective Mγ will lead us to the correct
destination, as the minimizers of Mγ and f are identical in our setting. In problem (1), if we
assume that f is strongly convex, then we have Mγ satisfies the following star strong convexity
inequality.

16

INEXACT FEDEXPROX

Fact 8 (Star strong convexity) [35, Lemma 11] Assume Assumption 1 (Differentiability), Assump-
tion 2 (Interpolation Regime), Assumption 3 (Individual convexity), Assumption 4 (Smoothness) and
Assumption 5 (Global strong convexity) hold, then the convex function Mγ (x) satisfies the following
inequality,

Mγ (x)−Mγ
inf ≥

µ

1 + γLmax
· 1
2
∥x− x⋆∥2 ,

for any x ∈ Rd and a minimizer x⋆ of Mγ (x).

The above fact implies that the strong convexity of f translates to the star strong convexity of
Mγ . Star strong convexity is also known as quadratic growth (QG) condition [3]. In the case of a
convex function, it is also known as optimal strong convexity [38] and semi-strong convexity [18].
It is known that for a convex function satisfying quadratic growth condition, it also satisfies the
Polyak-Lojasiewicz inequality [55] which is described by the following lemma. Notice that since
Algorithm 1 can be viewed as running SGD with objective γMγ and a fixed step size αk = α, we
describe the inequality based on γMγ in the following lemma.

Lemma 1 (PL-inequality) Assume that Assumption 1 (Differentiability), Assumption 2 (Interpo-
lation Regime), Assumption 3 (Individual convexity), Assumption 4 (Smoothness) and Assumption 5
(Global strong convexity) hold, then γMγ (x) satisfies the following Polyak-Lojasiewicz inequality,

∥γ∇Mγ (x)∥2 ≥ 2 · γµ

4 (1 + γLmax)

(
γMγ (x)− γMγ

inf

)
, (10)

where x ∈ Rd is an arbitrary vector and x⋆ is a minimizer of Mγ (x).

Appendix D. Theory of biased SGD

For completeness, we provide the theory of biased SGD we used to analyze our algorithm in this
paper. It is adapted from Demidovich et al. [16], which offers a comprehensive study of various
assumptions employed in the analysis of SGD with biased gradient updates. In addition, the authors
introduced a new set of assumptions, referred to as the Biased ABC assumption, which are less
restrictive than all previous assumptions. The authors provided convergence guarantees for SGD
with biased gradient updates in the non-convex and convex setting. Specifically, they considered
the case of minimizing a function f : Rd 7→ R,

min
x∈Rd

f(x),

with
xk+1 = xk − ηg(xk), (biased SGD)

where η > 0 is the stepsize, g(xk) is a possibly stochastic and biased gradient estimator. They
introduced the biased ABC assumption,

Assumption 6 (Biased-ABC) [16, Assumption 9] There exists constants A,B,C, b, c ≥ 0 such
that the gradient estimator g(x) for every x ∈ Rd satisfies

⟨∇f(x),E [g(x)]⟩ ≥ b ∥∇f(x)∥2 − c

E
[
∥g(x)∥2

]
≤ 2A (f(x)− finf) +B ∥∇f(x)∥2 + C.

17

INEXACT FEDEXPROX

A convergence guarantee was provided for biased SGD under Assumption 6 given that f is L̂-
smooth and µ̂-PL, that is, there exists µ̂ > 0, such that

∥∇f(x)∥2 ≥ 2µ̂ (f(x)− finf) ,

for all x ∈ Rd.

Theorem 4 (Theory of biased SGD) [16, Theorem 4] Let f be L̂-smooth and µ̂-PL and Assump-
tion 6 hold. If we choose a step size η satisfying

0 < η < min

{
µ̂b

L̂ (A+ µ̂B)
,
1

µ̂b

}
. (11)

Then we have

E [f(xk)− finf] ≤ (1− ηµ̂b)k (f(x0)− finf) +
LCη

2µ̂b
+

c

µ̂b
.

Under the special case of
µ̂b

L̂ (A+ µ̂B)
<

1

µ̂b
,

The range of the step size can be simplified to

0 < η ≤ µ̂b

L̂ (A+ µ̂B)
,

and if we take the largest possible step size, we have

E [f(xk)− finf] ≤

(
1− µ̂2b2

L̂ (A+ µ̂B)

)k

(f(x0)− finf) +
LC

2L̂ (A+ µ̂B)
+

c

µ̂b
.

The constants C, c determine whether the algorithm is converging to the exact solution or just a
neighborhood. For g(x) = ∇f(x), clearly we have A = 0, B = 1, b = 1, C = 0, c = 0, and there
is no neighborhood. This is expected because the algorithm reduces to standard GD The iteration
complexity is give by Õ

(
L̂
µ̂

)
, which is also expected for GD.

Appendix E. Achieving the level of inexactness

To fully comprehend the overall complexity of Algorithm 1, it is essential to examine whether the in-
exactness in evaluating the proximal operators can be effectively achieved. Since each proxγfi (xk)
is computed locally by the corresponding client, the client has access to all the necessary data points
for the computation. Thus, the most straightforward approach is to have each client perform GD.

Theorem 5 (Local computation via GD) Assume Assumption 1 (Differentiability), Assumption 3
(Individual convexity) and Assumption 4 (Smoothness) hold. The iteration complexity for the i-
th client to provide an approximation using GD in the k-th iteration with local step size ηi =

γ
1+γLi

, satisfying Definition 3 is O
(
(1 + γLi) log

(
∥xk−proxγfi (xk)∥2

/ε1
))

, and for Definition 4, it
is O ((1 + γLi) log (1/ε2)) .

18

INEXACT FEDEXPROX

Note that there are no constraints on ε1, and since
∥∥xk − proxγfi (xk)

∥∥2 ≤ ∥γ∇f(xk)∥2 by (39),
it is straightforward to adjust GD to optimize the approximation. However, for ε2, we require
ε2 < µ

4Lmax
. In practice, ε2 can be set to a sufficiently small value to satisfy this condition, though

this will increase the number of local iterations performed by each client. The complexity bounds
also indicate that as the local step size γ increases, it becomes more challenging to compute the
approximation. We can use the accelerated gradient descent (AGD) of Nesterov [49] to obtain a
better iteration complexity for each client.

Theorem 6 (Local computation via AGD) Assume all assumptions mentioned in Theorem 5 hold.
The iteration complexities for the i-th client to provide an approximation in the k-the iteration
using AGD with local step size ηi =

γ
1+γLi

and momentum parameter αi =
√
1+γLi−1√
1+γLi+1

, satisfying
Definition 3, Definition 4 are

O

(√
1 + γLi log

(
(1 + γLi) ·

∥∥xk − proxγfi (xk)
∥∥2

ε1

))
; O

(√
1 + γLi log

(
1 + γLi

ε2

))
,

respectively.

Appendix F. Theory of biased compression

In this section, we present the theory of SGD with biased compression. The theory is adapted from
Beznosikov et al. [9]. The authors introduced theory for analyzing compressed gradient descent
(CGD) with biased compressor, both in the single node case and in the distributed case when the
objective function is assumed to be strongly convex. Here, we are only concerned with the single
node case because distributed compressed gradient descent (DCGD) with biased compressor may
fail to converge. To address this issue, error feedback mechanism [29, 60, 66] is needed. In the
single node case, the authors considered solving

min
x∈Rd

f(x),

where f : Rd 7→ R is L̂-smooth and µ̂-strongly convex, with the following compressed gradient
descent algorithm

xk+1 = xk − ηC (∇f(xk)) , (CGD)

where C : Rd 7→ R are potentially biased compression operators, η > 0 is a step size. The author
proved that if certain conditions on C is satisfied, a corresponding convergence guarantee can then
be established. Three classes of compressor/mapping were introduced.

Definition 7 (Class B1) We say a mapping C ∈ B1 (α, β) for some α, β > 0 if

α ∥x∥2 ≤ E
[
∥C (x)∥2

]
≤ β ⟨E [C (x)] , x⟩ , ∀x ∈ Rd.

Definition 8 (Class B2) We say a mapping C ∈ B2 (ξ, β) for some ξ, β > 0 if

max

{
ξ ∥x∥2 , 1

β
E
[
∥C (x)∥2

]}
≤ ⟨E [C (x)] , x⟩ , ∀x ∈ Rd.

19

INEXACT FEDEXPROX

Definition 9 (Class B3) We say a mapping C ∈ B3 (δ) for some δ > 0, if

E
[
∥C (x)− x∥2

]
≤
(
1− 1

δ

)
∥x∥2 .

The authors proved the following theorem about the convergence of the algorithm, the notation Fk

is used to denote E [f(xk)]− finf , with F0 = f(x0)− finf ,

Theorem 10 Let C ∈ B1 (α, β). Then we have Fk ≤
(
1− α/βηµ̂

(
2− ηβL̂

))
Fk−1, as long as

0 ≤ η ≤ 2

βL̂
. If we choose η = 1

βL̂
, we have

Fk ≤
(
1− α

β2
· µ̂
L̂

)K

F0. (12)

Let C ∈ B2 (ξ, β). Then we have Fk ≤
(
1− ξη (2− ηβ) L̂

)
Fk−1, as long as 0 ≤ η ≤ 2

βL̂
. If we

choose η = 1

βL̂
, we have

Fk ≤
(
1− ξ

β
· µ̂
L̂

)k

F0. (13)

Let C ∈ B3 (δ). Then we have Fk ≤
(
1− 1

δηµ̂
)
Fk−1, as long as 0 ≤ η ≤ 1

L̂
. If we choose η = 1

L̂
,

we have

Fk ≤
(
1− 1

δ
· µ̂
L̂

)k

F0. (14)

Notice that when C (x) = x, that is, when no compression happens, we have α = β = ξ = δ = 1.
In this case, the iteration complexity of CGD is given by Õ

(
L̂
µ̂

)
and we recover the result of GD.

It is worth noting that Theorem 10 remains valid if the condition of f being µ̂-strongly convex is
replaced with f being µ̂-PL.

Appendix G. Analysis of inexact FedExProx in the client sampling setting

In this section, we will discuss the case where we do client sampling in algorithm 1, we first for-
mulate the algorithm as below. For the sake of simplicity, we use τ -nice sampling as an example.

G.1. Relative approximation in distance

The failure of biased compression theory: Similar to Theorem 10, we initially apply the theory
from Beznosikov et al. [9], as it provides improved results in the full-batch scenario. We first define
the compressing mapping Cτ in this case,

Cτ (γ∇Mγ (xk)) =
1

τ

∑
i∈Sk

(
γ∇Mγ

fi
(xk)−

(
x̃i,k+1 − proxγfi (xk)

))
. (16)

One can verify for every xk and ε2-approximation x̃i,k+1 of proxγfi (xk), we have

Cτ ∈ B3

(
δ =

µ

µ− 4ε2Lmax − n−τ
τ(n−1) [4 (2 + ε2)Lmax − 2µ]

)

20

INEXACT FEDEXPROX

Algorithm 2 Inexact FedExProx with τ -nice sampling
1: Parameters: extrapolation parameter αk = α > 0, step size for the proximal operator γ > 0,

starting point x0 ∈ Rd, number of clients n, size of minibatch τ , total number of iterations K,
proximal solution accuracy ε2 ≥ 0.

2: for k = 0, 1, 2 . . .K − 1 do
3: The server broadcasts the current iterate xk to a selected set of client Sk of size τ
4: Each selected client computes a ε approximation of the solution x̃i,k+1 ≃ proxγfi (xk), and

sends it back to the server
5: The server computes

xk+1 = xk + αk

1

τ

∑
i∈Sk

x̃i,k+1 − xk

 . (15)

6: end for

In the case of τ = n, we have Cn ∈ B3
(

µ
µ−4ε2Lmax

)
, which recovers the result of (37). When

τ = 1, ε2 = 0, however, this is problematic, as C1 ∈ B3
(
δ = µ

3µ−8Lmax

)
. Notice that we require

δ > 0, so we require 3µ > 8Lmax which only holds in a very restrictive setting. This is due to the
stochasticity contained in (16), which arises from client sampling.

Theory of biased SGD: The algorithm does converge, however, and one can use the theory of
Demidovich et al. [16] to obtain a convergence guarantee.

Theorem 11 Assume Assumption 1 (Differentiability), Assumption 2 (Interpolation regime), As-
sumption 3 (Individual convexity), Assumption 4 (Smoothness) and Assumption 5 (Global strong
convexity) hold. Let the approximation x̃i,k+1 all satisfies Definition 4 with ε2 <

µ2

4L2
max

, that is∥∥x̃i,k+1 − proxγfi (xk)
∥∥2 ≤ ε2 ·

∥∥xk − proxγfi (xk)
∥∥2 ,

holds for all client i at iteration k. If we are running Algorithm 2 with minibatch size τ and extrap-
olation parameter αk = α > 0 satisfying

α ≤ 1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4ε2Lmax + 4
√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

)
Then the iterates generated by Algorithm 2 satisfies

E [EK] ≤

(
1− α ·

γ
(
µ− 2

√
ε2Lmax

)
4 (1 + γLmax)

)K

E0. (17)

Specifically, if we choose the largest α possible, we have

E [∆K] ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2, τ)

)K

· Lγ (1 + γLmax)

µ
∆0,

21

INEXACT FEDEXPROX

where S (ε2, τ) is defined as

S (ε2, τ) :=

(
µ− 2

√
ε2Lmax

) (
1− 2

√
ε2

Lmax
µ

)
µ+ 4ε2Lmax + 4

√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

) ,
satisfying

0 < S (ε2, τ) ≤ 1.

Notice that we have S (ε2, τ = n) = S (ε2), which appears in Theorem 2. For the special case
when ε2 = 0, every proximal operator is solved exactly. The range of α becomes,

0 < α ≤ 1

γLγ
· µ

n−τ
τ(n−1) · 4Lmax +

n(τ−1)
τ(n−1)µ

.

According to Li et al. [35],

0 < α ≤ 1

γLγ
· Lγ (1 + γLmax)

n−τ
τ(n−1)Lmax +

n(τ−1)
τ(n−1) · Lγ (1 + γLmax)

.

Clearly the bound we obtain here is suboptimal, since we have µ ≤ Lγ (1 + γLmax) according to
(22). This is due to the previously mentioned issue: the nature of biased compression. When client
sampling is used together with biased compressors, it does not necessarily guarantee any benefits.
To solve this, the modification of the algorithm itself may be needed, which we consider as a future
work direction.

G.2. Absolute approximation in distance

Similarly to Theorem 11, by applying the theory of biased SGD [16], we can derive a convergence
guarantee for the minibatch case, though with a suboptimal convergence rate. For brevity and clarity,
we do not include the details here.

Appendix H. Proof of theorems and lemmas

H.1. Proof of Lemma 1

Using Fact 8, we have

Mγ (x)−Mγ
inf ≥

µ

1 + γLmax
· 1
2
∥x− x⋆∥2 , (18)

where x ∈ Rd is any vector, x⋆ is a minimizer of Mγ , by Fact 5, it is also a minimizer of f . Since
we assume each function fi is convex, by Fact 3, we know that Mγ

fi
is also convex. As a result, the

average of Mγ
fi

, Mγ is also a convex function. Utilizing the convexity of Mγ , we have,

Mγ
inf ≥ Mγ (x) + ⟨∇Mγ (x) , x⋆ − x⟩ .

Rearranging terms we get,

⟨∇Mγ (x) , x− x⋆⟩ ≥ Mγ (x)−Mγ
inf . (19)

22

INEXACT FEDEXPROX

As a result, we have

⟨∇Mγ (x) , x− x⋆⟩
(18)+(19)

≥ µ

1 + γLmax
· 1
2
∥x− x⋆∥2 .

Using Cauchy-Schwarz inequality, we have

∥∇Mγ (x)∥ ∥x− x⋆∥ ≥ ⟨∇Mγ (x) , x− x⋆⟩ ≥
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 .

When ∥x− x⋆∥ > 0, the above inequality leads to

∥∇Mγ (x)∥ ≥ µ

2 (1 + γLmax)
· ∥x− x⋆∥ , (20)

which also holds when ∥x− x⋆∥ = 0. Now using (19) and (20), we obtain

Mγ (x)−Mγ
inf

(19)

≤ ⟨∇Mγ (x) , x− x⋆⟩
≤ ∥∇Mγ (x)∥ ∥x− x⋆∥
(20)

≤ 2 (1 + γLmax)

µ
∥∇Mγ (x)∥2 .

A simple rearranging of terms result in

∥γ∇Mγ (x)∥2 ≥ 2 · γµ

4 (1 + γLmax)

(
γMγ (x)− γMγ

inf

)
.

Up till here we have already proved the statement in the lemma, but we want to look at the strongly
constant µ of f a little bit. In order to provide an upper bound of µ, we notice that due to Fact 4, each
Mγ

fi
is Li

1+γLi
-smooth and therefore Mγ is smooth. We use the notation Lγ to denote its smoothness

constant. Applying the smoothness of Mγ (x), we have

Mγ (x) ≤ Mγ (x⋆) + ⟨∇Mγ (x⋆) , x− x⋆⟩+
Lγ

2
∥x− x⋆∥2 .

Utilizing the fact that ∇Mγ (x⋆) = 0, we have

Mγ (x)−Mγ
inf ≤

Lγ

2
∥x− x⋆∥2 (21)

Combining (21) and (18), we can deduce that

µ

1 + γLmax
· 1
2
∥x− x⋆∥2 ≤ Mγ (x)−Mγ

inf ≤
Lγ

2
∥x− x⋆∥2 .

which results in the estimate that
µ ≤ Lγ (1 + γLmax) . (22)

23

INEXACT FEDEXPROX

H.2. Proof of Theorem 1

Let us first recall that after reformulation, Algorithm 1 can be written as

xk+1 = xk − α · g(xk),

where g(xk) is defined as

g(xk) :=
1

n

n∑
i=1

γ∇Mγ
fi
(xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
.

We view this as running full batch biased SGD with stepsize α and global objective γMγ (x). We
first examine if Assumption 6 (Biased-ABC) holds for arbitrary xk. Since we are in the full batch
case, it is easy to see that

E [g(xk)] = g(xk).

Since our objective now is γMγ (x), we have that

⟨γ∇Mγ (xk) , g(xk)⟩ =

〈
γ∇Mγ (xk) , γ∇Mγ (xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉

= ∥γ∇Mγ (xk)∥2 −

〈
γ∇Mγ (xk) ,

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉
︸ ︷︷ ︸

:=P1

.

Now let us focus on P1, we have the following upper bound,

P1 ≤ 1

2
∥γ∇Mγ (xk)∥2 +

1

2

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

(5)

≤ 1

2
∥γ∇Mγ (xk)∥2 +

ε1
2
.

As a result, we have

⟨γ∇Mγ (xk) , g(xk)⟩ ≥
1

2
∥γ∇Mγ (xk)∥ −

ε1
2
,

which holds for arbitrary xk. This suggests that b = 1
2 , c =

ε1
2 . On the other hand,

E
[
∥g(xk)∥2

]
=

∥∥∥∥∥γ∇Mγ (xk) +
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

(9)

≤ 2 ∥γ∇Mγ (xk)∥2 + 2

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

(5)

≤ 2 ∥γ∇Mγ (xk)∥2 + 2ε1.

24

INEXACT FEDEXPROX

Thus, we can choose A = 0, B = 2, C = 2ε1. Since we have assumed Assumption 3 (Individual
convexity) and Assumption 4 (Smoothness), it is easy to see that Mγ is smooth, and we denote its
smoothness constant as Lγ . It is therefore straightforward to see that our global objective γMγ is
γLγ-smooth. We also assume f is µ-strongly convex, which by Fact 8 indicates that Mγ is µ

1+γLmax

star strongly convex. We immediately obtain using Lemma 1 that γMγ is γµ
4(1+γLmax)

-PL. Now, we
have validated all the assumptions for using Theorem 4. Applying Theorem 4, we obtain that when
the extrapolation parameter satisfies

0 < α <
1

4
·min

{
1

γLγ
,
2 (1 + γLmax)

γµ

}
,

the last iterate xK of Algorithm 1 with each proximal operator solved inexactly according to Defi-
nition 1 satisfies

EK ≤
(
1− αγµ

8 (1 + γLmax)

)K

E0 +
8ε1αLγ (1 + γLmax)

µ
+

4ε1 (1 + γLmax)

γµ
,

where Ek = γMγ (xk)−Mγ
inf . Let us now prove that

1

γLγ
<

2 (1 + γLmax)

γµ
.

This is equivalent to prove

µ < 2Lγ (1 + γLmax) ,

which is always true since (22) holds. As a result, we can simplify the range of the extrapolation
parameter to

0 < α ≤ 1

4γLγ
.

If we pick the largest possible α, we have

EK ≤
(
1− µ

32Lγ (1 + γLmax)

)K

E0 +
6ε1 (1 + γLmax)

γµ
.

This result is not directly comparable to that of Li et al. [35]. However, using smoothness of γLγ ,
if we denote ∆k = ∥xk − x⋆∥2 where x⋆ is a minimizer of both Mγ and f since we assume we are
in the interpolation regime (Assumption 2), we have

E0 ≤
γLγ

2
∆0.

Using star strong convexity, we have

EK ≥ γµ

2 (1 + γLmax)
∆K .

As a result, we can transform the above convergence guarantee into

∆K ≤
(
1− µ

32Lγ (1 + γLmax)

)K Lγ (1 + γLmax)

µ
·∆0 + 12ε1 ·

(
1/γ + Lmax

µ

)2

.

This completes the proof.

25

INEXACT FEDEXPROX

H.3. Proof of Theorem 2

Since we based our analysis on the theory of biased SGD, we first verify the validity of Assump-
tion 6.

Finding b and c: Let us start with finding a lower bound on ⟨γ∇Mγ (xk) ,E [g(xk)]⟩. We have

⟨γMγ (xk) ,E [g(xk)]⟩ =

〈
γMγ (xk) , γM

γ (xk)−
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉

= ∥γMγ (xk)∥2 −

〈
γMγ (xk) ,

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉

≥ ∥γMγ (xk)∥2 − ∥γMγ (xk)∥ ·

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥ ,
where the last inequality is obtained using Cauchy-Schwarz inequality. We then utilize the convexity
of ∥·∥ and obtain,

⟨γMγ (xk) ,E [g(xk)]⟩ ≥ ∥γMγ (xk)∥2 − ∥γMγ (xk)∥ ·
1

n

n∑
i=1

∥∥(x̃i,k+1 − proxγfi (xk)
)∥∥

(7)

≥ ∥γMγ (xk)∥2 −
√
ε2 ∥γMγ (xk)∥ ·

1

n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥

= ∥γMγ (xk)∥2 −
√
ε2 ∥γMγ (xk)∥ ·

1

n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥ .
Notice that ∥∥∥γ∇Mγ

fi
(xk)

∥∥∥ =
∥∥∥γ∇Mγ

fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥ ,
holds for any x⋆ that is a minimizer of Mγ (x) due to interpolation regime assumption. As a result,
we can provide an upper bound based on smoothness of each individual γMγ

fi
(x) using Fact 2,∥∥∥γ∇Mγ

fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥ ≤ γLi

1 + γLi
∥xk − x⋆∥ . (23)

Thus,

1

n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥ ≤ 1

n

n∑
i=1

γLi

1 + γLi
∥xk − x⋆∥ ≤ γLmax

1 + γLmax
· ∥xk − x⋆∥ .

In addition, we have due to Cauchy-Schwarz inequality and the convexity of Mγ (x)

∥∇Mγ (xk)∥ · ∥xk − x⋆∥ ≥ ⟨∇Mγ (xk) , xk − x⋆⟩ ≥ Mγ (xk)−Mγ
inf , (24)

and due to quadratic growth condition that

Mγ (xk)−Mγ
inf ≥

µ

1 + γLmax
· 1
2
∥xk − x⋆∥2 . (25)

26

INEXACT FEDEXPROX

Combining (24) and (25), we have

µ

2 (1 + γLmax)
· ∥xk − x⋆∥2

(24)+(25)

≤ ∥∇Mγ (xk)∥ · ∥xk − x⋆∥ .

This indicates that

∥xk − x⋆∥ ≤ 2 (1 + γLmax)

µ
∥∇Mγ (xk)∥ . (26)

Combining (23) and (26), we generate the following lower bound

⟨γMγ (xk) ,E [g(xk)]⟩
(23)

≥ ∥γMγ (xk)∥2 −
√
ε2 ∥γMγ (xk)∥ ·

γLmax

1 + γLmax
∥xk − x⋆∥

(26)

≥ ∥γMγ (xk)∥2 −
√
ε2 ·

Lmax

1 + γLmax
· 2 (1 + γLmax)

µ
∥γMγ (xk)∥2

=

(
1−

√
ε2 ·

2Lmax

µ

)
· ∥γMγ (xk)∥2 .

Thus, as long as ε2 < µ2

4L2
max

, we have b = 1−√
ε2 · 2Lmax

µ , and c = 0.

Finding A,B and C: We start with expanding ∥g(xk)∥2,

E
[
∥g(xk)∥2

]
=

∥∥∥∥∥γMγ (xk)−
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

= ∥γMγ (xk)∥2 +

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

︸ ︷︷ ︸
:=T2

−2

〈
γMγ (xk) ,

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉
︸ ︷︷ ︸

:=T3

. (27)

It is easy to bound T2 utilizing the convexity of ∥·∥2,

T2 ≤
1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2

(7)

≤ ε2
n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥2 = ε2

n

n∑
i=1

∥∥∥γMγ
fi
(xk)

∥∥∥2 .
Let x⋆ be a minimizer of Mγ , since we assume Assumption 2 holds, it is also a minimizer of each
Mγ

fi
. As a result,

T2 ≤
ε2
n

n∑
i=1

∥∥∥γMγ
fi
(xk)− γMγ

fi
(x⋆)

∥∥∥2
≤ ε2

n

n∑
i=1

2γLi

1 + γLi

(
γMγ

fi
(xk)− γMγ

fi
(x⋆)

)
≤ 2ε2γLmax

1 + γLmax
·
(
γMγ (xk)− γMγ

inf

)
. (28)

27

INEXACT FEDEXPROX

We then consider T3, and start with applying Cauchy-Schwarz inequality

T3 ≤ 2 ∥γ∇Mγ (xk)∥

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥ . (29)

Using the convexity of ∥·∥, we have∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥

(7)

≤
√
ε2
n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥

(2)
=

√
ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥
Fact 2
≤

√
ε2
n

n∑
i=1

γLi

1 + γLi
∥xk − x⋆∥

≤
√
ε2γLmax

1 + γLmax
· ∥xk − x⋆∥ .

Utilizing (26), we have∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥ ≤
√
ε2γLmax

1 + γLmax
· 2 (1 + γLmax)

µ
∥∇Mγ (xk)∥

=
2
√
ε2Lmax

µ
· ∥γ∇Mγ (xk)∥ . (30)

Plug the above inequality into (29), we have

T3 ≤
4
√
ε2Lmax

µ
· ∥γ∇Mγ (xk)∥2 . (31)

Combining (31) and (28), plug them into (27), we have

E
[
∥g (xk)∥2

]
≤ 2ε2γLmax

1 + γLmax
·
(
γMγ (xk)− γMγ

inf

)
+

(
1 +

4
√
ε2Lmax

µ

)
· ∥γ∇Mγ (xk)∥2 .

Thus, we have

A =
ε2γLmax

1 + γLmax
, B =

µ+ 4
√
ε2Lmax

µ
, C = 0.

Applying Theorem 4: First, we list our the values appeared respectively,

A =
ε2γLmax

1 + γLmax
, B =

µ+ 4
√
ε2Lmax

µ
, b =

µ− 2
√
ε2Lmax

µ
,

C = c = 0.

28

INEXACT FEDEXPROX

We know that the PL constant of γMγ is given by γµ
4(1+γLmax)

and the corresponding smoothness
constant is γLγ . Applying Theorem 4, the range of α is given by

0 < α < min

1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4
√
ε2Lmax + 4ε2Lmax︸ ︷︷ ︸
:=B1

,
4 (1 + γLmax)

γ
(
µ− 2

√
ε2Lmax

)︸ ︷︷ ︸
:=B2

 . (32)

Now notice that actually we can prove that for ε2 < µ2

4L2
max

, we have B2 > B1, and we can simplify
the range of α to

0 < α ≤ 1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4
√
ε2Lmax + 4ε2Lmax

.

Proof of B2 > B1 : It is easy to verify that the above inequality (B2 > B1) can be equivalently
written as

4Lγ (1 + γLmax) (µ+ 4
√
ε2Lmax + 4ε2Lmax) > (µ− 2

√
ε2Lmax)

2 ,

since when
√
ε2 <

µ
2Lmax

, we have µ− 2
√
ε2Lmax > 0. We expand the right-hand side and obtain:

(µ− 2
√
ε2Lmax)

2 = µ2 − 4
√
ε2Lmax + 4ε2L

2
max < 2µ2 − 4

√
ε2Lmax < 2µ2.

For the left-hand side, as we have already shown in 22, we have

4Lγ (1 + γLmax) (µ+ 4
√
ε2Lmax + 4ε2Lmax) ≥ 4µ (µ+ 4

√
ε2Lmax + 2ε2Lmax) > 4µ2.

Combining the above inequality we arrive at B2 > B1.

The convergence guarantee : Given that we select α properly, we have

EK ≤

(
1− α ·

γ
(
µ− 2

√
ε2Lmax

)
4 (1 + γLmax)

)K

E0,

where Ek = γMγ (xk) − γMγ
inf . We do not have expectation here since we are in the full batch

case. Specifically, if we choose the largest α possible, we have

EK ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2)

)k

E0,

where

S(ε2) =

(
µ− 2

√
ε2Lmax

) (
1− 2

√
ε2

Lmax
µ

)
µ+ 4

√
ε2Lmax + 4ε2Lmax

,

satisfies 0 < S(ε2) ≤ 1 is the factor of slowing down due to inexact proximity operator evaluation.
Using smoothness of γLγ , if we denote ∆k = ∥xk − x⋆∥2 where x⋆ is a minimizer of both Mγ and
f since we assume we are in the interpolation regime (Assumption 2), we have

E0 ≤
γLγ

2
∆0.

29

INEXACT FEDEXPROX

Using star strong convexity (quadratic growth property), we have

EK ≥ γµ

2 (1 + γLmax)
∆K .

As a result, we can transform the above convergence guarantee into

∆K ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2)

)K

· Lγ (1 + γLmax)

µ
∆0.

This completes the proof.

H.4. Proof of Theorem 3

We start with formalizing the problem. We can write the update rule of Algorithm 1 as

xk+1 = xk − α ·

(
1

n

n∑
i=1

γ∇Mγ
fi
(xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

))
(33)

Since by Definition 4, we have
∥∥x̃i,k+1 − proxγfi (xk)

∥∥2 ≤ ε2

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2, we can view the
left hand side as a compressed version of the true gradient. Specifically, there are two possible
perspectives:

(I). Let Ci (·) be the compressing mapping with the i-th client, i ∈ {1, 2, . . . , n}, defined as

Ci
(
γ∇Mγ

fi
(xk)

)
:= γ∇Mγ

fi
(xk)−

(
x̃i,k+1 − proxγfi (xk)

)
.

In this way, we reformulate (33) as

xk+1 = xk − α · 1
n

n∑
i=1

Ci
(
γ∇Mγ

fi
(xk)

)
. (34)

(34) is exactly DCGD with biased compression. We can easily prove that

Ci ∈ B1

(
α = 1− 2

√
ε2, β =

1−√
ε2

1 + ε2

)
Ci ∈ B2

(
ξ = 1−

√
ε2, β =

1−√
ε2

1 + ε2

)
Ci ∈ B3

(
δ =

1

1− ε2

)
.

However, DCGD with biased compression may fail to converge even if the above formulation
of compression mapping seems quite nice. For an example of such failure, we refer the readers
to Beznosikov et al. [9, Example 1]. This limitation can be circumvented by employing
an error feedback mechanism; however, this approach requires modifications to the original
algorithm. We therefore leave it as a future research direction.

30

INEXACT FEDEXPROX

(II). We can also view it as if we are in the single node case. Let C (·) be the compressing mapping
defined as

C (∇Mγ (xk)) :=
1

n

n∑
i=1

γ∇Mγ
fi
(xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
= γ∇Mγ (xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
. (35)

This formulation leads us to the convergence guarantee appeared in Theorem 3, as we illus-
trate below.

Let us first analyze C defined in (35). We will verify it belongs to B3 (δ). The inequality we want to
prove can be written equivalently as∥∥∥∥∥γ∇Mγ (xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
− γ∇Mγ (xk)

∥∥∥∥∥
2

≤
(
1− 1

δ

)
∥γ∇Mγ (xk)∥2 ,

(36)

which is exactly ∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

≤ ∥γ∇Mγ (xk)∥2

For the left-hand side, using the convexity of ∥·∥2 in combination with Definition 4, we obtain∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2

≤ ε2
n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥2 .

Let x⋆ be a minimizer of f , since we assume Assumption 2 holds, by Fact 7, it is also a minimizer
of γMγ ,

ε2
n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥2 (2)

=
ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2
=

ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥2
Fact 2
≤ 2ε2

n

n∑
i=1

γLi

1 + γLi

(
γMγ

fi
(xk)− γMγ

fi
(x⋆)

)
≤ 2ε2γLmax

1 + γLmax
(γMγ (xk)− γMγ (x⋆)) .

We then notice that as it is illustrated by Lemma 1, we have(
1− 1

δ

)
∥γ∇Mγ (xk)∥2 ≥

(
1− 1

δ

)
γµ

2 (1 + γLmax)
(γMγ (xk)− γMγ (x⋆)) .

31

INEXACT FEDEXPROX

Combining the above two inequalities, we know that the following inequality is a sufficient condi-
tion for (36),

2ε2γLmax

1 + γLmax
(γMγ (xk)− γMγ (x⋆)) ≤

(
1− 1

δ

)
γµ

2 (1 + γLmax)
(γMγ (xk)− γMγ (x⋆)) .

It is easy to check that if we pick

δ =
µ

µ− 4ε2Lmax
> 0, (37)

the condition is met. However, for this to hold, we must ensure that ε2 < µ
4Lmax

.
As we mentioned in Appendix F, Beznosikov et al. [9] provided the theory of CGD with biased

compressor belongs to B3 (δ). We have already shown that C ∈ B3
(
δ = µ

µ−4ε2Lmax

)
, when ε2 <

4Lmax
µ . Notice that our objective γMγ is γLγ-smooth and γµ

1+γLmax
-PL.5 Therefore, as long as

0 < α ≤ 1
γLγ

and ε2 <
µ

4Lmax
, we have

EK ≤
(
1− µ− 4ε2Lmax

µ
· γµ

4 (1 + γLmax)
· α
)K

E0,

Taking α = 1
γLγ

, which is the largest step size possible, we can further simplify the above conver-
gence into

Mγ (xk)−Mγ
⋆ ≤

(
1−

(
1− 4ε2Lmax

µ

)
· µ

4Lγ (1 + γLmax)

)K

(Mγ (x0)−Mγ⋆) .

Using smoothness of γLγ , if we denote ∆k = ∥xk − x⋆∥2 where x⋆ is a minimizer of both Mγ and
f since we assume we are in the interpolation regime (Assumption 2), we have

E0 ≤
γLγ

2
∆0.

Using star strong convexity (quadratic growth property), we have

EK ≥ γµ

2 (1 + γLmax)
∆K .

As a result, we can transform the above convergence guarantee into

∆K ≤
(
1−

(
1− 4ε2Lmax

µ

)
· µ

4Lγ (1 + γLmax)

)K

· Lγ (1 + γLmax)

µ
∆0.

This completes the proof.

H.5. Proof of Theorem 5

Notice that we assume each fi is Li-smooth and convex. The local optimization of each client can
be written as

min
z∈Rd

{
Aγ

k,i (z) = fi (z) +
1

2γ
∥z − xk∥2

}
,

It is easy to see that Aγ
k,i (z) is Li +

1
γ -smooth and 1

γ -strongly convex. We first provide the conver-
gence theory of GD for reference.

5. Theorem 10 remains valid if we replace f being strongly convex with PL.

32

INEXACT FEDEXPROX

Theory of GD: For a µ̂-strongly convex, L̂-smooth function ϕ, the algorithm can be formulated
as

zt+1 = zt − η∇ϕ(zt), (GD)

where zt is the iterate in the t-th iteration, and η > 0 is the step size. GD with step size η ∈ (0, 1

L̂
]

generates iterates that satisfy

∥zt − z⋆∥2 ≤ (1− ηµ̂)t ∥z0 − z⋆∥2 ,

where z⋆ is a minimizer of ϕ, t is the number of iterations (number of gradient evaluations).

Approximation satisfying Definition 3: Notice that proxγfi (xk) is the minimizer of Aγ
k,i (z) and

z0 = xk. As a result, if we run GD with the largest step size γ
1+γLi

,

∥∥zt − proxγfi (xk)
∥∥2 ≤ (1− 1

1 + γLi

)t ∥∥xk − proxγfi (xk)
∥∥2 (38)

We have

t = O

(
(1 + γLi) log

(∥∥xk − proxγfi (xk)
∥∥2

ε1

))
.

The unknown term
∥∥xk − proxγfi (xk)

∥∥2 within the log can be bounded by∥∥xk − proxγfi (xk)
∥∥2 = ∥z0 − z⋆∥2

≤ γ2
∥∥∥∇Aγ

k,i (z0)−∇Aγ
k,i (z⋆)

∥∥∥2 = ∥γ∇fi (xk)∥2 , (39)

which can be easily calculated.

Approximation satisfying Definition 4: According to (38), we have

t = O
(
(1 + γLi) log

(
1

ε2

))
.

This completes the proof.

H.6. Proof of Theorem 6

We first provide the theory of AGD [49].

Theory of AGD: For a µ̂-strongly convex, L̂-smooth function ϕ, the algorithm can be formulated
as

yt+1 = zt + α (zt − zt−1)

zt+1 = yt+1 − η∇ϕ (yt+1) , (AGD)

where zt, yt are iterates, η > 0 is the step size, α > 0 is the momentum parameter. AGD with step

size η = 1

L̂
, momentum α =

√
L̂−

√
µ̂√

L̂+
√

µ̂
generates iterates that satisfy

∥zt − z⋆∥2 ≤
2L̂

µ̂
·

(
1−

√
µ̂

L̂

)t

∥z0 − z⋆∥2 ,

where z⋆ is a minimizer of ϕ, t is the number of iterations (number of gradient evaluations).

33

INEXACT FEDEXPROX

Approximation satisfying Definition 3: Notice that proxγfi (xk) is the minimizer of Aγ
k,i (z) and

z0 = xk. As a result, if we run AGD with the step size γ
1+γLi

and momentum α =
√
1+γLi−1√
1+γLi+1

,

∥∥zt − proxγfi (xk)
∥∥2 ≤ 2 · (1 + γLi)

(
1− 1√

1 + γLi

)t ∥∥xk − proxγfi (xk)
∥∥2 . (40)

We have

t = O

(√
1 + γLi log

(
(1 + γLi) ·

∥∥xk − proxγfi (xk)
∥∥2

ε1

))
Similar to the proof of Theorem 5, since we have according to (39),∥∥xk − proxγfi (xk)

∥∥2 ≤ ∥γ∇fi (xk)∥2 ,

it is straightforward to determine the number of local iterations needed.

Approximation satisfying Definition 4: Using (40), we have

t = O
(√

1 + γLi log

(
1 + γLi

ε2

))
.

H.7. Proof of Theorem 11

In this case, the gradient estimator is defined as

g(xk) =
1

τ

∑
i∈Sk

(
γ∇Mγ

fi
(xk)−

(
x̃i,k+1 − proxγfi (xk)

))
.

Notice that we have

⟨γ∇Mγ (xk) ,E [g(xk)]⟩

=

〈
γ∇Mγ (xk) ,E

1
τ

∑
i∈Sk

γ∇Mγ
fi
(xk)−

1

τ

∑
i∈Sk

(
x̃i,k+1 − proxγfi (xk)

)〉

=

〈
γ∇Mγ (xk) , γ∇Mγ (xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉
.

Using the same technique in the proof of Theorem 2, we are able to obtain that

⟨γ∇Mγ (xk) ,E [g(xk)]⟩ ≥
(
1−

2
√
ε2Lmax

µ

)
· ∥γ∇Mγ (xk)∥2 .

34

INEXACT FEDEXPROX

Thus, as long as we pick ε2 <
µ2

4L2
max

, we can pick b = 1−√
ε2 · 2Lmax

µ and c = 0. We then compute

E
[
∥g(xk)∥2

]
,

E
[
∥g(xk)∥2

]
= E

∥∥∥∥∥∥1τ
∑
i∈Sk

γ∇Mγ
fi
(xk)−

1

τ

∑
i∈Sk

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥1τ
∑
i∈Sk

γ∇Mγ
fi
(xk)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=T1

+E

∥∥∥∥∥∥1τ
∑
i∈Sk

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=T2

−2E

〈1

τ

∑
i∈Sk

γ∇Mγ
fi
(xk) ,

1

τ

∑
i∈Sk

(
x̃i,k+1 − proxγfi (xk)

)〉
︸ ︷︷ ︸

:=T3

.

We try to provide upper bounds for those terms separately.

Term T1: We have

T1 =
n− τ

τ (n− 1)
· 1
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2 + n (τ − 1)

τ (n− 1)
· ∥γ∇Mγ (xk)∥2 .

Using smoothness of γMγ
fi

and the fact that we are in the interpolation regime, we have

T1 =
n− τ

τ (n− 1)
· 1
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥2 + n (τ − 1)

τ (n− 1)
· ∥γ∇Mγ (xk)∥2

≤ n− τ

τ (n− 1)
· 1
n

n∑
i=1

2γLi

1 + γLi
·
(
γMγ

fi
(xk)− γ

(
Mγ

fi

)
inf

)
+

n (τ − 1)

τ (n− 1)
· ∥γ∇Mγ (xk)∥2

≤ n− τ

τ (n− 1)
· 2γLmax

1 + γLmax
·
(
γMγ (xk)− γMγ

inf

)
+

n (τ − 1)

τ (n− 1)
· ∥γ∇Mγ (xk)∥2 . (41)

Term T2: It is easy to see that using convexity of the squared Euclidean norm, we have

T2 ≤ E

1
τ

∑
i∈Sk

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2

=
1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2 (7)

≤ ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2 .
Using smoothness of each individual γMγ

fi
(xk) and the fact we are in the interpolation regime, we

have

T2 ≤
2ε2γLmax

1 + γLmax

(
γMγ (xk)− γMγ

inf

)
. (42)

35

INEXACT FEDEXPROX

Term T3: We have

T3 = −2 · n− τ

τ (n− 1)
· 1
n

n∑
i=1

〈
γ∇Mγ

fi
(xk) , x̃i,k+1 − proxγfi (xk)

〉
− 2 · n (τ − 1)

τ (n− 1)
·

〈
γ∇Mγ (xk) ,

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉
.

Using Cauchy-Schwarz inequality and convexity, we further obtain

T3 ≤ 2 · n− τ

τ (n− 1)
· 1
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥∥∥x̃i,k+1 − proxγfi (xk)
∥∥

+ 2 · n (τ − 1)

τ (n− 1)
∥γ∇Mγ (xk)∥ ·

1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥ .

Using similar approaches in the previous paragraphs, we have

T3

(7)

≤ 2 (n− τ)

τ (n− 1)
·
√
ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2 + 2n (τ − 1)

τ (n− 1)
∥γMγ (xk)∥

√
ε2
n

·
n∑

i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥
≤ 2 (n− τ)

τ (n− 1)
·
√
ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥2
+

2n (τ − 1)

τ (n− 1)
∥γMγ (xk)∥

√
ε2
n

·
n∑

i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(xk)

∥∥∥
≤

4
√
ε2 (n− τ)

τ (n− 1)
· γLmax

1 + γLmax

(
γMγ (xk)− γMγ

inf

)
+

4
√
ε2n (τ − 1)

τ (n− 1)
· γLmax

1 + γLmax
∥xk − x⋆∥ ∥γ∇Mγ (xk)∥

(20)

≤
4
√
ε2 (n− τ)

τ (n− 1)
· γLmax

1 + γLmax

(
γMγ (xk)− γMγ

inf

)
+

4
√
ε2n (τ − 1)

τ (n− 1)
· Lmax

µ
∥γ∇Mγ (xk)∥2 . (43)

Combining (41), (42) and (43), we have

3∑
i=1

Ti ≤ 2

(
ε2 +

2
√
ε2 (n− τ)

τ (n− 1)
+

(n− τ)

τ (n− 1)

)
· γLmax

1 + γLmax
·
(
γMγ (xk)− γMγ

inf

)
+

(
n (τ − 1)

τ (n− 1)
+

4
√
ε2n (τ − 1)

τ (n− 1)

)
· Lmax

µ
· ∥γMγ (xk)∥2 . (44)

36

INEXACT FEDEXPROX

Therefore, it is easy to see that we can pick

A =

(
ε2 +

2
√
ε2 (n− τ)

τ (n− 1)
+

(n− τ)

τ (n− 1)

)
· γLmax

1 + γLmax

B =

(
n (τ − 1)

τ (n− 1)
+

4
√
ε2n (τ − 1)

τ (n− 1)

)
· Lmax

µ
, C = 0.

Applying Theorem 4 of [16], we list the corresponding values of A,B,C, b, c ≥ 0 below,

A =
γLmax

1 + γLmax

(
ε2 +

2
√
ε2 (n− τ)

τ (n− 1)
+

(n− τ)

τ (n− 1)

)
B =

n (τ − 1)

τ (n− 1)

(
1 +

4
√
ε2Lmax

µ

)
, C = 0

b =
µ− 2

√
ε2Lmax

µ
, c = 0.

We know that the PL constant of γMγ is given by γµ
4(1+γLmax)

and the corresponding smoothness
constant is γLγ . As a result, when α > 0 satisfies

α <
1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4ε2Lmax + 4
√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

)︸ ︷︷ ︸
:=B′

1

,

and

α <
4 (1 + γLmax)

γ
(
µ− 2

√
ε2Lmax

)︸ ︷︷ ︸
=B2

,

we can obtain a convergence guarantee for the algorithm. Notice that B′
1 ≤ B1 < B2

6, thus we can
further simplify the range of α to

α ≤ 1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4ε2Lmax + 4
√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

)︸ ︷︷ ︸
:=B′

1

.

Given that we select α properly, we have

E [EK] ≤

(
1− α ·

γ
(
µ− 2

√
ε2Lmax

)
4 (1 + γLmax)

)K

E0.

Specifically, if we choose the largest α possible, we have

E [EK] ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2, τ)

)K

E0,

6. The definition of B1 is given in (32)

37

INEXACT FEDEXPROX

where S (ε2, τ) is defined as

S (ε2, τ) =

(
µ− 2

√
ε2Lmax

) (
1− 2

√
ε2

Lmax
µ

)
µ+ 4ε2Lmax + 4

√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

) ,
satisfying

0 < S (ε2, τ) ≤ 1.

Using smoothness of γLγ , if we denote ∆k = ∥xk − x⋆∥2 where x⋆ is a minimizer of both Mγ and
f since we assume we are in the interpolation regime (Assumption 2), we have

E0 ≤
γLγ

2
∆0.

Using star strong convexity (quadratic growth property), we have

EK ≥ γµ

2 (1 + γLmax)
∆K .

As a result, we can transform the above convergence guarantee into

E [∆K] ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2, τ)

)K

· Lγ (1 + γLmax)

µ
∆0.

Appendix I. Experiments

We describe the settings for the numerical experiments and the corresponding results to validate
our theoretical findings. We are interested in the following optimization problem in the distributed
setting,

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi (x)

}
.

Here n denotes the number of clients, d is the dimension, each function fi : Rd 7→ R has the
following form

fi(x) =
1

2
x⊤Aix+ b⊤i x+ ci,

where Ai ∈ Sd+, bi ∈ Rd, ci ∈ R. Specifically, we pick n = 20 and d = 300 for the experiments.
Notice that we have

∇fi(x) = Aix− bi; ∇2fi(x) = Ai ⪰ Od,

which suggests that each fi is convex and smooth. We can easily compute that in this case, we have

proxγfi (x) =

(
Ai +

1

γ
Id

)−1(1

γ
x− bi

)
.

All experiment codes were implemented in Python 3.11 using the NumPy and SciPy libraries. The
computations were performed on a system powered by an AMD Ryzen 9 5900HX processor with
Radeon Graphics, featuring 8 cores and 16 threads, running at 3.3 GHz. Code availability: https:
//anonymous.4open.science/r/Inexact-FedExProx-code-E783/

38

https://anonymous.4open.science/r/Inexact-FedExProx-code-E783/
https://anonymous.4open.science/r/Inexact-FedExProx-code-E783/

INEXACT FEDEXPROX

0 200 400 600 800 1000

Iterations

100

101

‖x
−
x ?
‖2

γ = 0.01, ε1 = 0.001, ε2 = 0.01

FedProx Exact γ = 0.01

FedExProx Exact γ = 0.01

FedExProx Inexact γ = 0.01, ε1 = 0.001

FedExProx Inexact γ = 0.01, ε2 = 0.01

0 200 400 600 800 1000

Iterations

10−2

10−1

100

101

‖x
−
x ?
‖2

γ = 0.1, ε1 = 0.001, ε2 = 0.01

FedProx Exact γ = 0.1

FedExProx Exact γ = 0.1

FedExProx Inexact γ = 0.1, ε1 = 0.001

FedExProx Inexact γ = 0.1, ε2 = 0.01

0 200 400 600 800 1000

Iterations

10−9

10−7

10−5

10−3

10−1

101

‖x
−
x ?
‖2

γ = 1, ε1 = 0.001, ε2 = 0.01

FedProx Exact γ = 1

FedExProx Exact γ = 1

FedExProx Inexact γ = 1, ε1 = 0.001

FedExProx Inexact γ = 1, ε2 = 0.01

(a)

0 200 400 600 800 1000

Iterations

10−7

10−5

10−3

10−1

101

‖x
−
x ?
‖2

γ = 10, ε1 = 0.001, ε2 = 0.01

FedProx Exact γ = 10

FedExProx Exact γ = 10

FedExProx Inexact γ = 10, ε1 = 0.001

FedExProx Inexact γ = 10, ε2 = 0.01

0 200 400 600 800 1000

Iterations

10−6

10−4

10−2

100

‖x
−
x ?
‖2

γ = 100, ε1 = 0.001, ε2 = 0.01

FedProx Exact γ = 100

FedExProx Exact γ = 100

FedExProx Inexact γ = 100, ε1 = 0.001

FedExProx Inexact γ = 100, ε2 = 0.01

0 200 400 600 800 1000

Iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

101

‖x
−
x ?
‖2

γ = 1000, ε1 = 0.001, ε2 = 0.01

FedProx Exact γ = 1000

FedExProx Exact γ = 1000

FedExProx Inexact γ = 1000, ε1 = 0.001

FedExProx Inexact γ = 1000, ε2 = 0.01

(b)

Figure 1: Comparison of FedProx, FedExProx with exact proximal evaluations, FedExProx with
ε1-absolute approximation and FedExProx with ε2-relative approximation. In this
case, we fix ε1 = 0.001, ε2 = 0.01 respectively and pick the local step size γ ∈
{1000, 100, 10, 1, 0.1.0.01}. The y-axis is the squared distance to the minimizer of f ,
and the x-axis denotes the iterations.

I.1. Comparison of FedProx, FedExProx, FedExProx with absolute approximation and
relative approximation

In this section, we compare the convergence of FedProx, FedExProx and FedExProx with absolute
approximation and relative approximation. For FedProx, we simply set the server extrapolation to
be 1 while for FedExProx, we set its extrapolation parameter to be 1

γLγ
. We assume exact proximal

evaluation for the above two algorithms. For FedExProx with approximations, we fix ε1 and ε2 to
be reasonable values, respectively. We then set their extrapolation parameter to be the optimal value
under the specific setting. Throughout the experiment, we vary the value of the local step size γ to
see its effect on all the algorithms. Specifically, we select γ from the set {1000, 100, 10, 1, 0.1.0.01},
and we fix ε1 = 0.001, ε2 = 0.01 first, then we set them to ε1 = 1e− 6, ε2 = 0.001.

Notably in Figure 1 and Figure 2, in all cases, FedExProx with absolute approximation exhibits
the poorest performance and converges only to a neighborhood of the solution. This is expected,
since the bias in this case does not go to zero as the algorithm progresses. It is worth mentioning that
as the local step size γ increases, the size of the neighborhood decreases, which supports our claim
in Theorem 1. As anticipated, in all cases, FedExProx outperforms FedProx due to server extrapo-
lation. However, as γ increases, the performance gap between them diminishes. The performance

39

INEXACT FEDEXPROX

0 200 400 600 800 1000

Iterations

100

101

‖x
−
x ?
‖2

γ = 0.01, ε1 = 1e − 06, ε2 = 0.001

FedProx Exact γ = 0.01

FedExProx Exact γ = 0.01

FedExProx Inexact γ = 0.01, ε1 = 1e − 06

FedExProx Inexact γ = 0.01, ε2 = 0.001

0 200 400 600 800 1000

Iterations

10−2

10−1

100

101
‖x
−
x ?
‖2

γ = 0.1, ε1 = 1e − 06, ε2 = 0.001

FedProx Exact γ = 0.1

FedExProx Exact γ = 0.1

FedExProx Inexact γ = 0.1, ε1 = 1e − 06

FedExProx Inexact γ = 0.1, ε2 = 0.001

0 200 400 600 800 1000

Iterations

10−9

10−7

10−5

10−3

10−1

101

‖x
−
x ?
‖2

γ = 1, ε1 = 1e − 06, ε2 = 0.001

FedProx Exact γ = 1

FedExProx Exact γ = 1

FedExProx Inexact γ = 1, ε1 = 1e − 06

FedExProx Inexact γ = 1, ε2 = 0.001

(a)

0 200 400 600 800 1000

Iterations

10−7

10−5

10−3

10−1

101

‖x
−
x ?
‖2

γ = 10, ε1 = 1e − 06, ε2 = 0.001

FedProx Exact γ = 10

FedExProx Exact γ = 10

FedExProx Inexact γ = 10, ε1 = 1e − 06

FedExProx Inexact γ = 10, ε2 = 0.001

0 200 400 600 800 1000

Iterations

10−6

10−4

10−2

100

‖x
−
x ?
‖2

γ = 100, ε1 = 1e − 06, ε2 = 0.001

FedProx Exact γ = 100

FedExProx Exact γ = 100

FedExProx Inexact γ = 100, ε1 = 1e − 06

FedExProx Inexact γ = 100, ε2 = 0.001

0 200 400 600 800 1000

Iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

101

‖x
−
x ?
‖2

γ = 1000, ε1 = 1e − 06, ε2 = 0.001

FedProx Exact γ = 1000

FedExProx Exact γ = 1000

FedExProx Inexact γ = 1000, ε1 = 1e − 06

FedExProx Inexact γ = 1000, ε2 = 0.001

(b)

Figure 2: Comparison of FedProx, FedExProx with exact proximal evaluations, FedExProx with
ε1-absolute approximation and FedExProx with ε2-relative approximation. In this
case, we choose ε1 = 1e − 6, ε2 = 0.001 and pick the local step size γ ∈
{1000, 100, 10, 1, 0.1.0.01}. The y-axis is the squared distance to the minimizer of f ,
and the x-axis denotes the iterations.

40

INEXACT FEDEXPROX

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−1

100

101

‖x
−
x ?
‖2

γ = 0.1

FedExProx Inexact ε1 = 0.001

FedExProx Inexact ε1 = 0.005

FedExProx Inexact ε1 = 0.01

FedExProx Inexact ε1 = 0.05

FedExProx Inexact ε1 = 0.1

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−2

10−1

100

101

‖x
−
x ?
‖2

γ = 1

FedExProx Inexact ε1 = 0.001

FedExProx Inexact ε1 = 0.005

FedExProx Inexact ε1 = 0.01

FedExProx Inexact ε1 = 0.05

FedExProx Inexact ε1 = 0.1

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−2

10−1

100

101

‖x
−
x ?
‖2

γ = 10

FedExProx Inexact ε1 = 0.001

FedExProx Inexact ε1 = 0.005

FedExProx Inexact ε1 = 0.01

FedExProx Inexact ε1 = 0.05

FedExProx Inexact ε1 = 0.1

(a)

Figure 3: Comparison of FedExProx with ε1-absolute approximation under different level of in-
exactness. We select γ from the set {0.1, 1, 10} and for each choice of γ, we select ε1
from the set {0.001, 0.005, 0.01, 0.05, 0.1}. The y-axis denotes the squared distance to
the minimizer and the x-axis is the number of iterations.

of FedExProx with relative approximation is surprisingly good, outperforming FedProx in several
cases. This suggests the effectiveness of server extrapolation even when the proximal evaluations
are inexact.

I.2. Comparison of FedExProx with absolute approximation under different inaccuracies

In this section, we compare FedExProx with absolute approximations under different level of inac-
curacies. We fix the local step size γ to be a reasonable value, and we vary the level of inexactness
for the algorithm. Specifically, we select γ from the set {0.1, 1, 10} and for each choice of γ, we
select ε1 from the set {0.001, 0.005, 0.01, 0.05, 0.1}.

As observed in Figure 3, the size of the neighborhood increases with ε1, further corroborating
our theoretical findings in Theorem 1. Before reaching the neighborhood, the convergence rates of
FedExProx with different level of inexactness are similar, which is expected.

I.3. Comparison of FedExProx with relative approximation under different inaccuracies

In this section, we compare FedExProx with relative approximations under different level of rela-
tive inaccuracies. We fix the local step size γ to be a reasonable value, and we vary the level of
inexactness for the algorithm. Specifically, we select γ from the set {0.1, 0.05, 0.01} and for each
choice of γ, we select ε2 from the set {0.001, 0.005, 0.01, 0.05, 0.1}.

As observed in Figure 4, in all cases, a smaller ε2 corresponds to faster convergence of the
algorithm. This supports the claim of Theorem 3. All the tested algorithm converges to the exact
solution linearly, which validates the effectiveness of the proposed technique of relative approxima-
tion to reduce the bias term.

I.4. Adaptive extrapolation for inexact proximal evaluations

In this section, we study the possibility of applying adaptive extrapolation to FedExProx with rela-
tive approximations. We do not consider the case of absolute approximation since it converges only

41

INEXACT FEDEXPROX

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−4

10−3

10−2

10−1

100

101

‖x
−
x ?
‖2

γ = 0.1

FedExProx Inexact ε2 = 0.001

FedExProx Inexact ε2 = 0.005

FedExProx Inexact ε2 = 0.01

FedExProx Inexact ε2 = 0.05

FedExProx Inexact ε2 = 0.1

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−2

10−1

100

101

‖x
−
x ?
‖2

γ = 0.05

FedExProx Inexact ε2 = 0.001

FedExProx Inexact ε2 = 0.005

FedExProx Inexact ε2 = 0.01

FedExProx Inexact ε2 = 0.05

FedExProx Inexact ε2 = 0.1

0 250 500 750 1000 1250 1500 1750 2000

Iterations

100

101

‖x
−
x ?
‖2

γ = 0.01

FedExProx Inexact ε2 = 0.001

FedExProx Inexact ε2 = 0.005

FedExProx Inexact ε2 = 0.01

FedExProx Inexact ε2 = 0.05

FedExProx Inexact ε2 = 0.1

(a)

Figure 4: Comparison of FedExProx with ε2-relative approximation under different level of inex-
actness. We select γ from the set {0.01, 0.05, 0.1} and for each choice of γ, we select ε2
from the set {0.001, 0.005, 0.01, 0.05, 0.1}. The y-axis denotes the squared distance to
the minimizer and the x-axis is the number of iterations.

to a neighborhood, which causes problems when combined with adaptive step sizes such as gradient
diversity and Polyak step size.

We are using the following definition of gradient diversity based extrapolation,

αk = αk,G :=
1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 .
for Polyak type extrapolation, we use

αk = αk,S :=

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1∇Mγ

fi
(xk)

∥∥∥2 .

As it can be observed from Figure 5, in all cases, the use of a gradient diversity based adaptive
extrapolation results in faster convergence of the algorithm. This suggests the possibility of devel-
oping an adaptive extrapolation for our methods. However, as we can see from Figure 6, a direct
implementation of Polyak step size type extrapolation results in divergence of the algorithm, indi-
cating that the challenge may be more complex than anticipated. In our case, this is equivalent to
designing adaptive step sizes for SGD with biased updates or CGD with biased compression. To the
best of our knowledge, this field remains open and requires further investigation, as biased updates
are quite common in practice.

42

INEXACT FEDEXPROX

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−9

10−7

10−5

10−3

10−1

101

‖x
−
x ?
‖2

γ = 1

FedExProx GradS Inexact ε2 = 0.0001

FedExProx GradS Inexact ε2 = 0.05

FedExProx Inexact ε2 = 0.0001

FedExProx Inexact ε2 = 0.05

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−8

10−6

10−4

10−2

100

‖x
−
x ?
‖2

γ = 0.1

FedExProx GradS Inexact ε2 = 0.0001

FedExProx GradS Inexact ε2 = 0.05

FedExProx Inexact ε2 = 0.0001

FedExProx Inexact ε2 = 0.05

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−1

100

101

‖x
−
x ?
‖2

γ = 0.01

FedExProx GradS Inexact ε2 = 0.0001

FedExProx GradS Inexact ε2 = 0.05

FedExProx Inexact ε2 = 0.0001

FedExProx Inexact ε2 = 0.05

(a)

Figure 5: Comparison of FedExProx with ε2-relative approximation under different level of in-
exactness using gradient diversity based extrapolation. we select γ from the set
{1, 0.1, 0.01} and for each choice of γ, we select ε2 from the set {0.0001, 0.05}. The
y-axis denotes the squared distance to the minimizer and the x-axis is the number of iter-
ations.

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−8

10−6

10−4

10−2

100

102

104

‖x
−
x ?
‖2

γ = 10

FedExProx StopS Inexact ε2 = 1e − 4

FedExProx StopS Inexact ε2 = 1e − 5

FedExProx Inexact ε2 = 1e − 4

FedExProx Inexact ε2 = 1e − 5

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−6

10−4

10−2

100

102

104

‖x
−
x ?
‖2

γ = 100

FedExProx StopS Inexact ε2 = 1e − 4

FedExProx StopS Inexact ε2 = 1e − 5

FedExProx Inexact ε2 = 1e − 4

FedExProx Inexact ε2 = 1e − 5

0 250 500 750 1000 1250 1500 1750 2000

Iterations

10−5

10−3

10−1

101

103

‖x
−
x ?
‖2

γ = 1000

FedExProx StopS Inexact ε2 = 1e − 4

FedExProx StopS Inexact ε2 = 1e − 5

FedExProx Inexact ε2 = 1e − 4

FedExProx Inexact ε2 = 1e − 5

(a)

Figure 6: Comparison of FedExProx with ε2-relative approximation under different level of in-
exactness using Polyak step size based extrapolation. we select γ from the set
{10, 100, 1000} and for each choice of γ, we select ε2 from the set {1e− 4, 1e− 5}.
The y-axis denotes the squared distance to the minimizer and the x-axis is the number of
iterations.

43

	Introduction
	Contributions

	Mathematical background
	Absolute approximation in distance
	Relative approximation in distance
	Notations
	Related work
	Facts and lemmas
	Theory of biased SGD
	Achieving the level of inexactness
	Theory of biased compression
	Analysis of inexact FedExProx in the client sampling setting
	Relative approximation in distance
	Absolute approximation in distance

	Proof of theorems and lemmas
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 11

	Experiments
	Comparison of FedProx, FedExProx, FedExProx with absolute approximation and relative approximation
	Comparison of FedExProx with absolute approximation under different inaccuracies
	Comparison of FedExProx with relative approximation under different inaccuracies
	Adaptive extrapolation for inexact proximal evaluations

