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Abstract
Adaptive gradient optimization methods, such as Adam, are prevalent in training deep neural net-
works across diverse machine learning tasks due to their ability to achieve faster convergence.
However, these methods often suffer from suboptimal generalization compared to stochastic gradi-
ent descent (SGD) and exhibit instability, particularly when training Transformer models. In this
work, we show the standard initialization of the second-order moment estimation (v0 = 0) as a
significant factor contributing to these limitations. We introduce simple yet effective solutions:
initializing the second-order moment estimation with non-zero values, using either data-driven or
random initialization strategies. Empirical evaluations demonstrate that our approach not only sta-
bilizes convergence but also enhances the final performance of adaptive gradient optimizers.

1. Introduction

First-order optimization methods, such as stochastic gradient descent (SGD), have been founda-
tional in training deep neural networks due to their robust convergence properties across various
applications [3]. However, as deep learning architectures have grown more complex, there has been
increasing interest in adaptive gradient optimizers, which dynamically adjust learning rates based
on the gradients of individual parameters [6]. These methods often lead to faster convergence in cer-
tain tasks [12]. Among them, Adam has emerged as one of the most widely used adaptive gradient
methods, successfully applied to fields such as computer vision, natural language processing, and
reinforcement learning [17]. By combining the benefits of momentum and adaptive learning rates,
Adam has proven particularly effective in training generative models and large language models
[44]. Theoretical studies have further elucidated its convergence properties in non-convex settings,
providing insights into convergence rates [45]. With careful hyperparameter tuning, Adam has
achieved significant success, especially in transformer-based architectures [15, 31, 37].

Despite its fast-convergence property, Adam has been observed to suffer from instability and
poor generalization in certain non-convex optimization problems, such as training transformers for
language models [23, 36]. This instability often causes the optimizer to converge to suboptimal
local minima, thereby limiting the model’s performance. Several modifications have been proposed
to address these issues. For instance, AdaBound [26] improves generalization by bounding the
step size with a smooth parameter update, while RAdam [23] rectifies the variance of the second-
order moment to stabilize the learning rate during early iterations. AdaBelief [47] adapts the step
size based on the “belief” in the observed gradients, enhancing generalization. A broader range
of studies has introduced further refinements to stabilize convergence and improve generalization
performance [1, 16, 43]. The warmup heuristic, which employs a small learning rate during the
initial training epochs, has been adopted to improve stability and generalizability in Adam [42].
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INITIALIZATION OF ADAPTIVE OPTIMIZATION

The update rule of Adam can be understood as a combination of update direction, determined by
the sign of the stochastic gradients, and update magnitude [2]. Recent works have explored the role
of Sign Gradient Descent (SignGD) as a surrogate for understanding Adam’s behavior [19, 20]. We
identify a critical factor contributing to Adam’s instability: its default initialization of the second-
order moment estimation (v0 = 0), which causes Adam to exhibit sign-descent behavior in its
initial steps. This default setting introduces high variance in the second-moment estimation and
update step size, resulting in unstable convergence, particularly during the early stages of training.
This instability often prevents the optimizer from reaching well-generalized optima. To address this
issue, we propose a simple yet effective modification: initializing the second-order moment estima-
tion with non-zero values. These initial values can be derived from data-driven statistics of squared
gradient, or even assigned as random positive numbers. This modification reduces the variance
of the second moment and stabilizes the optimization process. Our empirical evaluations across a
wide range of tasks demonstrate that the proposed initialization of the second-order moment signif-
icantly improves the stability and overall performance of adaptive gradient optimizers, particularly
in non-convex settings.

2. Second-order Moment Initialization of Adam

2.1. Revisiting the Adam Optimizer

Update rule of Adam. The update rule for Adam is given by the following equations [17]:

mt = β1mt−1 + (1− β1)gt = βt
1m0 + (1− β1)

t−1∑
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t−1∑
k=0

βk
2g

2
t−k, v̂t =
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θt = θt−1 − α
m̂t√
v̂t + ϵ

(3)

where mt and vt represent the first and second moments, gt is a gradient of objective function.
β1, β2 are the decay rates for the first and second-moment estimates, α is the learning rate, and ϵ is
a small constant preventing division by zero.

First step of Adam as sign descent. In Adam’s standard implementation, the first- and second-
order momentum terms are initialized to zero, m0 = 0, v0 = 0. Ignoring ϵ, as a result, the first step
of the optimization process degenerates into sign descent. This behavior is illustrated as follows:

∆θ1 = −α
g1√

g21 +
β2

1−β2
v0

= −α · sign(g1). (4)

In this first step, Adam performs a pure sign-descent update due to the zero initialization of m0 =
0, v0 = 0. Over subsequent iterations, as more gradient information is accumulated, the influence
of the initial sign descent diminishes, and the optimizer transitions into its adaptive behavior.

2.2. Instability of Adam optimizer

Training Transformer models often relies on a learning rate warmup strategy [4, 5, 8]. Remov-
ing the warmup phase, however, has been observed to increase training loss [23]. To explore this
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phenomenon, we conducted experiments training a Transformer model on the IWSLT’14 DE-EN
dataset for a neural machine translation task. We evaluated three approaches: vanilla Adam without
warmup (denoted as v0,0), vanilla Adam with warmup, and our proposed data-driven initialization
of Adam without warmup (denoted as v0,data, described in the next section). As illustrated in Fig-
ure 1(a), vanilla Adam without warmup exhibits increased training loss during the early stages.
We attribute this instability to Adam’s initial sign-descent behavior, which is exacerbated by the
standard zero-initialization of the second-order moment (v0 = 0). While the learning rate warmup
strategy effectively addresses this issue, it requires using a very small learning rate during the ini-
tial stages, limiting parameter updates and slowing down convergence. In this work, we propose
a non-zero initialization strategy to directly stabilize the optimizer. Unlike warmup, our approach
avoids restrictive learning rate constraints, enabling faster convergence while maintaining training
stability. The detailed discussion on the impact of sign descent and shrinking gradients is presented
in Appendix A.1.
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Figure 1: Training Transformers on the IWSLT’14 De-En dataset.

2.3. Non-zero Initialization of Second Order Moment

Special case: linear loss. To build intuition for initializing the second-order moment, we first
study a simplified setting. Consider the linear loss function f(θt) = ⟨θt, gt⟩ with a Noisy Gradient
Oracle with Scale Parameter (NGOS), a widely used framework for analyzing training dynamics of
optimizers [22, 28]. In this setting, the stochastic gradient gt is sampled from a Gaussian distribution
with mean ḡ and and variance σ2I , i.e. gt ∼ N (ḡ, σ2I). This setup mimics mini-batch training
in neural networks, where the stochastic gradient is provided as a noisy approximation of the full
gradient. Using this framework, the expectation of first- and second-order moments is given by

E[vt] = βt
2v0 + (1− β2)

t−1∑
k=0

βk
2 (ḡ

2 + σ2I) = βt
2v0 + (1− βt

2)(ḡ
2 + σ2I) (5)

These results indicate that, after a sufficient number of steps, E[vt] ≈ ḡ2 + σ2I . For vt, which
represents the second-order moment of the gradient, it must satisfy E[vt] > 0. This makes the
standard zero initialization (v0 = 0) inherently inconsistent with its purpose. To assess the stability
of the optimization process and the influence of the initial state, we define the drift of the second-
order moment as driftvt(v0) = ∥E[v∞]| − E[v0]∥. This term quantifies the adjustment required for
the second moment to transition from its initial value to its steady-state. Since vt directly determines
the adaptive learning rate, a smaller drift term indicates better stability of optimization process.
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For vanilla Adam, v0 = 0, the drift value is driftvt(v0 = 0) = ḡ2 + σ2. This large drift causes
significant initial adjustments of vt, leading to potential instability in optimization. For non-zero
initialization, the drift value is driftvt(v0 = ḡ2+σ2I) = 0. With this initialization, vt is immediately
aligned with its steady-state value, eliminating the need for adjustments and ensuring stability from
the start. When β2 closer to 1, vt becomes nearly deterministic and tightly concentrates around
vt ≈ ḡ2 + σ2I . Ignoring ϵ for simplicity, the Adam update rule becomes:

θt ≈ θt−1 − α
mt√

ḡ2 + σ2I
(6)

This ensures a stable adaptive learning rate: α ·(ḡ2+σ2I)−1/2. Such stability aligns with the defini-
tion of an adaptive learning rate, where vt incorporates local geometry (e.g., Hessian information).
For the linear loss case, this stability results in more consistent updates. Further illustration of the
stability provided by a non-zero v0 in RMSprop is presented in Appendix A.2.

For random initialization, v0 = λI, λ > 0, the the drift term becomes: driftvt(v0 = λI) =
|ḡ2+σ2−λ|. For any 0 < λ < 2(ḡ2+σ2), this drift term is smaller than that of zero initialization:
driftvt(v0 = λI) < driftvt(v0 = 0). This reduced drift results in a more stable optimization process
compared to v0 = 0, even with random initialization.

Initialization of v0. Inspired by the analysis of linear loss cases with stochastic gradients, we
propose two different non-zero initialization strategies for the second-order moment v0.
• Data-driven Initialization, denoted as v0,data. In the data-driven strategy, v0 is initialized using

the gradient statistics calculated from sampled training data (xi, yi) ∼ D, where D represents the
training set. Specifically, for sampled data (xi, yi), the gradient of the loss function is computed
as: g(xi, yi) = ∇θf(xi, yi) for (xi, yi). The second-order moment is then initialized as:

v0 = σ ·
(
E[g(xi, yi)]

2 +VAR[g(xi, yi)]
)
, where (xi, yi) ∼ D. (7)

Here, σ is a hyperparameter that controls the scale of v0.

• Random Initialization, denoted as v0,rnd. This is computationally efficient and avoids the over-
head associated with data-driven initialization. As shown in the previous analysis, any small
positive value for v0 enhances the stability of vt, making random initialization a practical choice.
We propose initializing v0 using a scaled Chi-squared distribution 1:

v0 ∼
σ

fan in + fan out
· χ2

1, (8)

where χ2
1 denotes a chi-squared distribution with one degree of freedom. fan in and fan out are

the input and output dimensions of the weight matrix θ ∈ Rfan out×fan in, and σ is a hyperparam-
eter that controls the scale of the distribution. Furthermore, the squared value g2t of a Gaussian
random gradient gt naturally follows a scaled chi-squared distribution, providing a principled
foundation for this initialization strategy.

Under the proposed initialization v0,data and v0,rnd, the first update step is influenced by both the
magnitude and direction of the gradient, avoiding the pure ”sign descent” behavior seen with v0 =
0. Such stabilization is particularly crucial for deep learning tasks with shrinking gradients, such
as training Transformers. A discussion comparing the proposed initialization strategy with other
optimization approaches is presented in Appendix A.3.

1. Which is also can be described as Gamma distribution v0 ∼ Gamma
(

1
2
, 2(fan in+fan out)

σ

)
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3. Experiments

To evaluate the effectiveness of our approach, we conducted extensive experiments across a variety
of tasks, including image classification with convolutional neural networks (CNNs) [10], image
generation with generative adversarial networks (GANs) [7], language modeling with long short-
term memory networks (LSTMs) [13], and neural machine translation with Transformers [42]. We
empirically evaluate the performance of two initialization strategies — v0,data (Equation (7)) and
v0,rnd (Equation (8)) — across several widely used adaptive gradient optimization methods. These
methods include SGD with momentum [34, 38], Adam [17], AdamW [25], AdaBound [26], RAdam
[23], and AdaBelief [47]. For each optimizer, we use the standard initialization (v0 = 0) as the
baseline and compare it against the proposed strategies (v0,rnd and v0,data). Detailed experimental
setup information is provided in Appendix B.1. To illustrate Adam’s instability and the impact of
initialization, we first conduct a toy experiment, detailed in Appendix B.2.

Image Classification with CNN. We evaluate the ResNet-34 architecture [10] on the CIFAR-10
image classification dataset [18]. The test accuracy at the final epoch is summarized in Table 1. The
results demonstrate that the proposed initialization of v0, represented as v0,rnd and v0,data, enhances
the performance of adaptive gradient optimization methods, including Adam, AdamW, AdaBound,
RAdam, and AdaBelief. To further validate the effectiveness of our algorithm on a larger dataset,
we conducted experiments on the ImageNet dataset, detailed in Appendix B.3.

Table 1: Test accuracy ↑ (%) of ResNet-34 on CIFAR-10 dataset.

Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 96.19±0.09 95.25±0.11 95.36±0.11 95.38±0.07 95.61±0.16 95.94±0.07

v0,rnd - 95.87±0.09 95.94±0.09 95.80±0.07 95.83±0.11 96.11±0.07
v0,data - 96.02±0.09 95.95±0.09 95.96±0.07 95.90±0.12 96.24±0.07

Language Modeling with LSTM. We evaluate a 2-layer LSTM network [13] on the language
modeling task of Penn Treebank dataset [29]. The test perplexity (lower is better) is summarized in
Table 2. The results demonstrate that both v0,rnd and v0,data significantly improve the performance
of adaptive gradient methods.

Table 2: Test perplexity ↓ of 2 Layer LSTM on Penn Treebank dataset dataset.

Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 67.25±0.20 67.11±0.20 73.61±0.15 67.69±0.24 73.61±0.25 66.75±0.11

v0,rnd - 66.70±0.17 68.35±0.14 66.94±0.19 68.55±0.17 66.12±0.10
v0,data - 66.37±0.17 69.31±0.14 66.90±0.19 69.32±0.17 65.87±0.10

Neural Machine Translation with Transformer. We evaluated a small Transformer model
[42] using the Fairseq package [30] on the IWSLT’14 German-to-English machine translation
dataset. The BLEU scores [32] are summarized in Table 3. The results demonstrate that the pro-
posed initialization strategies, v0,rnd and v0,data, provide significant performance improvements for
adaptive gradient optimization methods.

Image Generation with GAN. We evaluated a deep convolutional GAN (DCGAN) [35] on
the CIFAR-10 image generation task. The performance is measured using the Frechet Inception
Distance (FID, lower is better) [11], which quantifies the similarity between generated images and
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Table 3: BLEU score ↑ of Transformer on IWSTL’14 DE-EN dataset.

Optimization SGD Adam AdamW RAdam AdaBelief
Vanilla v0,0 28.22±0.21 30.14±0.39 35.62±0.11 34.76±0.14 35.60±0.11

v0,rnd - 33.71±0.19 36.06±0.11 34.97±0.14 36.12±0.11
v0,data - 33.64±0.20 35.98±0.11 34.84±0.14 36.18±0.11

Table 4: FID score ↓ of GAN on CIFAR-10 dataset dataset.

Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 237.77±147.9 54.22±4.21 52.39±3.62 118.75±40.64 48.24±1.38 47.25±0.79

v0,rnd - 48.60±3.19 46.94±3.21 92.36±35.76 47.70±1.32 45.91±0.78
v0,data - 47.02±3.20 45.25±3.07 85.45±36.31 47.84±1.24 45.02±0.78

the real dataset. As shown in Table 4, the proposed initialization strategies, v0,rnd and v0,data,
stabilize the optimization process for adaptive gradient methods, resulting in additional performance
gains.

(a) Vanilla Adam (b) Adam v0,rnd

Figure 2: Comparison of the loss landscape around the convergent points of Transformer.

Loss landscape. To analyze the converged behavior of Adam with v0,rnd, we visualize the
loss landscapes around the convergent points of Transformer models trained with Vanilla Adam
and Adam v0,rnd on the IWSLT’14 DE-EN task. The landscapes, plotted along two normalized
random directions, are shown in Figure 2. Adam v0,rnd produces a flatter loss landscape compared
to Vanilla Adam, which is often associated with better generalization performance [9, 46]. Despite
similar training losses, the flatter landscape explains Adam v0,rnd’s s superior testing accuracy.

4. Conclusion

In this work, we revisited the initial steps of adaptive gradient optimization methods, focusing on
the instability caused by the sign-descent behavior during early iterations. To address this issue, we
proposed two simple yet effective approaches: data-driven initialization and random initialization
of the second-moment estimate v0. Our empirical results demonstrate that these initialization strate-
gies significantly enhance the performance and stability of several adaptive gradient optimization
methods, including Adam, particularly in challenging tasks such as training Transformer models.
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Appendix A. Additional Details about Second-order Moment Initialization

A.1. Impact of sign descent and shrinking gradients

In this section, we analyze the non-convergence behavior of vanilla Adam, focusing on the large
initial step sizes observed during neural network training. Neural networks often exhibit a flat loss
landscape at the beginning of training, with gradients that are small in magnitude. This phenomenon
is particularly pronounced when training Transformers, as noted in prior works [14, 33, 41]. The
initial loss landscape of the Transformer model is visualized in Figure 1(c), where the loss is plotted
along two random directions as described in [21]. The visualization highlights that the loss land-
scape is extremely flat, and gradients are correspondingly small. When training such networks with
Adam, the ”sign descent” behavior during the initial step can amplify these small gradients dispro-
portionately, resulting in overly large parameter updates. To further investigate this phenomenon,
Figure 1(b) illustrates the norm of the update step ∥∆θt∥ during training for three optimizers: SGD,
vanilla Adam, and Adam with the proposed initialization v0,data. The results show that the first up-
date step size for vanilla Adam v0,0 is significantly larger compared to Adam v0,data or SGD. These
large initial updates can push the optimizer away from initial regions in the parameter space, making
recovery and convergence more challenging. In contrast, SGD exhibits much smaller update steps
during the initial stages, even when using a larger learning rate (lr=0.1) than Adam (lr=0.001) in our
experiments.

Figure 1(b) shows that the first update step size for vanilla Adam v0,0 is significantly larger
compared to Adam v0,data or SGD. To further illustrate the update step sizes, Figure 3 presents
histograms of the absolute values of parameter updates for different optimizers. For vanilla Adam
(Figure 3(a)), many parameters are updated with a step size equal to the learning rate in the first
step (t = 1) due to its ”sign descent” behavior. Subsequently, the update step sizes decrease. In
contrast, Adam with non-zero initialization (Figure 3(b)) achieves relatively stable update step sizes
throughout training, avoiding the large initial jumps seen in vanilla Adam. This behavior aligns
closely with SGD (Figure 3(c)), which consistently maintains stability in its updates from the start.
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(a) Vanilla Adam v0,0

10 14 10 12 10 10 10 8 10 6 10 4 10 2
Step size magnitude

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
eq

ue
nc

y

t=1
t=2
t=5
t=100

(b) Adam with v0,data
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Figure 3: Histogram of update step distribution across coordinates.

A.2. Linear Loss

To simplify the analysis, we consider the RMSprop update rule (ignoring ϵ) for a linear loss. The
update for the parameter θt can be expressed as:

E[∆θt] = −αE

[
gt√
vt

]
(9)
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Using a Taylor expansion of 1/
√
vt around E[vt], we approximate:

1
√
vt

≈=
1

E[vt]
− 1

2E[vt]
3
2

(vt −E[vt]) (10)

Substituting this into the expectation, we have:

E[∆θt] ≈ −α

(
E[gt]√
E[vt]

− E[gt(vt −E[vt])]

2E[vt]
3
2

)
(11)

Considering E[gt] = ḡ, and that gt and vt − E[vt] are uncorrelated, we have: E[gt(vt − E[vt])] =
E[gt] ·E[vt −E[vt]] = 0. This simplifies the expression to:

E[∆θt] ≈ −α
ḡ√
E[vt]

(12)

≈ −α
ḡ√

βt
2v0 + (1− βt

2)(ḡ
2 + σ2I)

(13)

Case 1: vanilla Adam ( v0 = 0). When v0 = 0, the update becomes:

E[∆θt] ≈ −α
ḡ√

(1− βt
2)(ḡ

2 + σ2I)
(14)

In this setting, the denominator is initially small due to (1− βt
2) approaching 0 as t → 0. The small

denominator leads to excessively large initial updates, particularly when ḡ is small or σ2 is large.
This instability can cause erratic optimization behavior, especially in the early stages of training.

Case 2: non-zero initialization ( v0 = ḡ2 + σ2I). When v0 = ḡ2 + σ2I , the update becomes:

E[∆θt] ≈ −α
ḡ√

ḡ2 + σ2
. (15)

In this setting, the denominator is well-scaled from the start, incorporating the correct statistical
variance. This prevents excessively large updates during early iterations, ensuring better stability.
The step sizes remain consistent across iterations, aligning with the principles of adaptive gradient
methods. Additionally, the incorporation of gradient statistics ḡ2 + σ2I ensures that vt adapts
appropriately to the local geometry of the loss function, such as the Hessian information. For a
linear loss, this stabilization leads to smoother convergence, providing a more robust optimization
process. It is worth noting that the above analysis can be readily extended to other adaptive gradient
methods, such as Adam.

A.3. Revisiting Previous Works on Stabilizing the Initial Steps of Adam

Warmup. The warmup technique [27, 42] implicitly adjusts the initialization of the second-moment
estimate v by employing a smaller learning rate during the initial steps. While the optimizer’s state
updates normally, the parameter changes are minimal due to the extremely small learning rate. This
approach effectively mitigates the sign-descent behavior observed in Adam’s early steps. However,
warmup introduces additional hyperparameters (e.g., the scheduler) that require careful tuning and
necessitates several steps of training where the network parameters are not effectively updated. This

12



INITIALIZATION OF ADAPTIVE OPTIMIZATION

can be inefficient, particularly in resource-constrained settings. In contrast, our method directly
addresses the aggressive sign-descent issue by initializing v0 with non-zero values, eliminating the
need for a warmup phase. Our experimental results demonstrate that random initialization of v0
stabilizes the training process effectively, without requiring extra tuning or wasted iterations.

RAdam. RAdam [23] avoids the sign-descent issue by behaving like SGD [27] during the
initial steps. This is achieved by introducing a rectification term, dynamically adjusting the opti-
mizer’s behavior to stabilize updates in the early iterations. While RAdam successfully addresses
initial-step instability, it adds complexity to the optimization process through the computation of
the rectification term. In contrast, our approach provides a simpler and more intuitive solution by
directly adjusting the initialization of the moment estimates, without modifying the core algorithm
or introducing additional dynamic terms.

AdaBound. AdaBound [26] tightly bounds the update size during the initial steps, preventing
excessively large updates caused by sign-descent behavior. However, this approach introduces dy-
namic bounds that require careful tuning of the bounding functions, adding additional complexity
to the optimization process. Our initialization strategy simplifies this issue by stabilizing updates
without the need for dynamic bounds, making it a more efficient and practical alternative.

AdaBelief. AdaBelief [47] reduces the impact of initial sign-descent behavior by refining the
variance estimation, leading to more reliable adaptive learning rates. However, this comes at the cost
of increased computational complexity due to the need for precise variance estimation. By contrast,
our method provides stability during the initial steps without additional computational overhead,
offering a straightforward alternative to improve early optimization dynamics.

Our initialization strategy can be seamlessly integrated into existing methods, such as RMSprop,
AdamW, RAdam, AdaBound, AdaBelief, and even Warmup. By addressing the aggressive sign-
descent behavior directly through non-zero initialization of v0, we enhance the stability of these
optimizers in their early steps. Importantly, this random initialization incurs no extra computational
costs and avoids the need for additional hyperparameter tuning.

Appendix B. Additional Details of Experiments

B.1. Experimental Setting

We empirically evaluate the performance of the proposed data-driven initialization (Equation (7))
and random initialization (Equation (8)) strategies across several widely-used adaptive gradient op-
timization methods. These include SGD with momentum (SGDM) [34, 38], Adam [17], AdamW
[25], AdaBound [26], RAdam [23], and AdaBelief [47]. Each optimizer is tested using its standard
initialization (v0 = 0) as the baseline, which is then compared against the proposed strategies v0,data
and v0,rnd. Following experimental protocols established in prior works [23, 43, 47], we perform
thorough hyperparameter tuning for learning rate, β1, β2, and ϵ. To ensure statistical robustness,
each experiment is repeated with five random seeds, and we report the mean results along with stan-
dard deviations. For data-driven initialization, gradient statistics are computed using 5,000 random
samples prior to training, with the scaling factor set to σ = 1. For random initialization, the scaling
factor is set to σ = 100, demonstrating the tuning-friendly nature of the proposed approach.

Image Classification with CNN. We evaluate the ResNet-34 [10] architecture on the CIFAR-
10 image classification dataset [18]. Each model is trained for 200 epochs with a batch size of 128,
and the learning rate is decayed by a factor of 0.2 at epochs 60, 120, and 160. Label smoothing [40]
with a smoothing factor of 0.1 is applied. In addition to CIFAR-10, we perform experiments on the
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ImageNet ILSVRC 2012 dataset [39] using ResNet-18 as the backbone network. Each optimizer
is executed for 100 epochs with a cosine annealing learning rate schedule, which has demonstrated
superior performance compared to step-based decay strategies [24]. For SGD, we use the momen-
tum factor of 0.9, a common default setting [10], with a tuned learning rate of 0.1. For adaptive
gradient methods (Adam, AdamW, RAdam, AdaBound, AdaBelief), we use the learning rate of
0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

Language Modeling with LSTM. We evaluate a 2-layer LSTM [13] on the Penn Treebank
dataset [29]. Models are trained for 200 epochs with a batch size of 20, and the learning rate is
reduced by a factor of 0.1 at epochs 100 and 145. For SGD, we use a learning rate of 30 and a
momentum factor of 0.9. Adam, AdamW, AdaBound, and AdaBelief use a learning rate of 0.01,
while RAdam uses a learning rate of 0.001. All adaptive methods are configured with β1 = 0.9 and
β2 = 0.999.

Neural Machine Translation with Transformer. We experiment with a small Transformer
model [42] implemented using the Fairseq package [30] on the IWSLT’14 German-to-English ma-
chine translation dataset. The model is trained with a length penalty of 1.0, a beam size of 5, and
an initial warmup step size of 10−7. Training is conducted for 55 epochs, and results are reported
as the average of the last 5 checkpoints. Adaptive learning methods use a learning rate of 0.0015.
Adam, AdamW, AdaBound, and AdaBelief are configured with β1 = 0.9, β2 = 0.98, while RAdam
uses β1 = 0.9, β2 = 0.999.

Image Generation with GAN. We evaluate a deep convolutional GAN (DCGAN) [35] on
the CIFAR-10 image generation task. Both the generator and discriminator networks use CNN
architectures. Models are trained for 200,000 iterations with a batch size of 64. Learning rate is fixed
at 0.0002 for both the generator and discriminator across all optimizers. All other hyperparameters
are set to their default values for fair comparison.

B.2. Toy Experiments of Adam’s Instability and Initialization

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
iv

e 
Fu

nc
tio

n 
Va

lu
e

Objective Function
Initial Point x0 = 1 × 10 6

(a) Saddle objective function

0 10 20 30 40 50
Iterations

0.00

0.05

0.10

0.15

0.20

Ob
je

ct
iv

e SGD
Adam v0, 0
Adam warmup
Adam v0, rnd

(b) Objective value vs. iterations

0 10 20 30 40 50
Iterations

1.0

0.5

0.0

0.5

1.0

1.5

Pa
ra

m
et

er

SGD
Adam v0, 0
Adam warmup
Adam v0, rnd

(c) Parameter vs. iterations

Figure 4: Optimization of the saddle objective function with different methods.

We conduct a toy experiment to illustrate the instability of Adam with its standard zero initial-
ization and the effectiveness of our proposed non-zero initialization. For this demonstration, we use
the random initialization strategy v0,rnd. The objective function is a non-convex saddle function:

f(x) =


(x− b)n, if x ≥ xs

−(x+ b)n, if x ≤ −xs

x2 + d, if − xs < x < xs

(16)
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Here xs is a switch point, b is a bias and d is a shift ensuring smooth transition at the switch points.

xs =
( s
n

) 1
n−1

+ b, d = (xs − b)n − x2s (17)

The parameter n represents the degree of the polynomial. In our experiment, we set n = 7, b = 1,
and s = 0.5. The purpose of the experiment is to observe the optimization behavior under different
initializations. We use the Adam optimizer with the following hyperparameters: α = 1, β1 =
0.9, β2 = 0.999. For scenarios requiring smaller learning rates, the objective function can be scaled
down to achieve similar conclusions.

The optimization process begins at an initial point x0 = −10−6, which is close to the true
optimum x⋆ = 0, as shown in Figure 4(a). Figure 4(b) and Figure 4(c) present the loss values and
parameter convergence over iterations for the various methods. As observed, standard Adam with
v0 = 0 converges to a suboptimal local minimum around x∞ ≈ −1, significantly deviating from
the true optimum. In contrast, Adam with the proposed non-zero initialization v0,rnd successfully
converges to the true optimum. For comparison, both the SGD optimizer and Adam with a warmup
strategy also converge to the true optimum, demonstrating their stability.

The final converged parameter values for each method are summarized in Table 5. These results
highlight that the proposed method achieves the lowest loss among all optimization techniques,
underscoring its effectiveness in handling this optimization task.

Table 5: Final converged parameter values for different optimization methods.

Adam (v0,0) Adam (warmup) Adam (v0,rnd) SGD
-0.96 0.01 1× 10−7 9× 10−7

B.3. Image Classification on Imagenet dataset

To further validate the effectiveness of our algorithm on a more comprehensive dataset, we con-
ducted experiments on the ImageNet dataset [39], utilizing ResNet-18 as the backbone network.
As shown in Table 6, both v0,rnd and v0,data provide significant performance gains across several
adaptive gradient optimization methods.

Table 6: Test accuracy ↑ (%) of ResNet-18 on ImageNet dataset.

Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 70.23±0.07 63.79±0.12 67.93±0.12 68.13±0.11 67.62±0.11 70.08±0.10

v0,rnd - 65.99±0.11 68.95±0.11 68.80±0.11 68.83±0.11 70.69±0.10
v0,data - 66.13±0.11 68.49±0.11 68.96±0.11 68.99±0.11 70.77±0.10

B.4. Language Modeling with 3-Layer LSTM

We evaluate a 3-layer LSTM network on the Penn Treebank dataset [29]. The test perplexity results
are summarized in Table 7. Similar to the findings with the 2-layer LSTM, the proposed initial-
ization strategies provide additional performance gains for adaptive gradient optimization methods.
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Table 7: Test perplexity ↓ of 3 Layer LSTM on Penn Treebank dataset dataset.

Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 63.52±0.16 64.10±0.25 69.91±0.20 63.52±0.11 70.10±0.16 61.33±0.19

v0,rnd - 62.68±0.19 66.43±0.18 62.75±0.11 68.05±0.16 61.29±0.15
v0,data - 62.46±0.20 66.38±0.18 62.07±0.11 68.14±0.16 60.70±0.14

B.5. Training curve
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Figure 5: Comparison of Vanilla Adam and Adam v0,rnd on (a) CIFAR-10 image classification task.
(b) Penn Treebank language modeling task. (c) IWSTL’14 machine translation task.

We compare the training curves of Vanilla Adam and Adam with random initialization v0,rnd,
as it is more computationally efficient 2. In the CIFAR-10 image classification task in Figure 5(a),
while Adam v0,rnd exhibits slightly lower accuracy in the initial steps, it achieves more stable con-
vergence and higher final accuracy. For the Penn Treebank language modeling task in Figure 5(b),
Adam v0,rnd results in lower perplexity at convergence compared to Vanilla Adam. For Transformer
models on the IWSLT’14 DE-EN machine translation dataset (with warmup) in Figure 5(c), Adam
v0,rnd demonstrates faster convergence, more stable optimization, and lower perplexity at the end
of training.

B.6. Ablation Study

The scaling factor σ is a key hyperparameter in the proposed initialization method Equations (7)
and (8). To evaluate the impact of σ,we conducted an ablation study on the CIFAR-10 image clas-
sification task, as summarized in Table 8. The results show that for a wide range of σ values, such
as σ ∈ [1, 1000], the performance consistently outperforms zero initialization. This highlights the
robustness and tuning-friendly nature of the proposed approach, as it achieves stable improvements
across different σ settings.

Table 8: Impact of σ on CIFAR-10 Test Accuracy.

σ 0 0.1 1 10 100 1000
v0,rnd 95.25 95.45 95.74 95.89 95.87 95.84
v0,data 95.25 95.70 96.02 95.92 95.85 95.72

2. We note that, The training behavior of v0,data is similar to v0,rnd.
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