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Abstract
We present Tensor-GaLore, a novel method for efficient training of neural networks with higher-
order tensor weights. Many models, particularly those used in scientific computing and computer
vision, employ tensor-parameterized layers to capture complex, high-dimensional relationships.
However, these tensor structures lead to significant memory requirements during training. Our
method addresses this memory challenge through low-rank subspace optimization using Tucker
decomposition, overcoming limitations of previous approaches restricted to matrix-parameterized
weights, including those operating on complex-valued data. We showcase its effectiveness on
Fourier Neural Operators (FNOs), a class of models crucial for solving partial differential equa-
tions. Across various PDE tasks, we achieved performance gains ranging from 11% to 50% bet-
ter generalization while reducing optimizer memory usage by up to 76%. These consistent im-
provements, coupled with substantial memory savings across AI for science, demonstrate Tensor-
GaLore’s potential.

1. Introduction

Foundation models have revolutionized AI, demonstrating unprecedented performance across di-
verse domains [1, 5]. However, their immense scale presents significant computational challenges,
particularly in terms of memory requirements for training and deployment. While recent work has
focused on parameter-efficient fine-tuning methods for two-dimensional weight structures, many
models, especially those in scientific computing, are built on higher-dimensional tensor weight
structures. Tensors, as multidimensional arrays, offer a natural framework for representing and ma-
nipulating complex, high-dimensional data structures with applications in computer vision, signal
processing, and scientific computing. Current memory-efficient training methods often fail to ad-
dress the tensor nature of these models, either ignoring higher-dimensional structures or attempting
to reshape them into matrices, potentially losing important spatial and dimensional relationships.

In particular, scientific computing has seen a significant paradigm shift towards applying AI
to classical problems. The neural operator, specifically the FNO [10], is one of the most promis-
ing new architectures in this domain. FNOs are a class of neural network architecture designed to
learn mappings between function spaces to solve parametric partial differential equations (PDEs),
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Figure 1: Comparison of our proposed Tensor-GaLore algorithm with standard AdamW and Ga-
Lore. GaLore applies matrix-based low-rank projection after reshaping tensors. Our
Tensor-GaLore method leverages tensor decomposition to perform low-rank projection
directly on tensor gradients, preserving multidimensional structure..

a cornerstone of modern scientific computing. Unlike traditional neural networks, FNOs involve
high-dimensional tensor operations. For our case, in an FNO the spectral convolution layer employs
a weight tensor W ∈ CN1×N2×N3×N4 to perform operations in the Fourier domain: (Kvl)(x) =
F−1(R · TKFvl)(x), where F and F−1 are the Fourier transform and its inverse, R is a learnable
transformation, and TK truncates to the lowest K Fourier modes. While these tensor operations are
powerful for capturing complex, high-dimensional relationships in scientific data, they pose unique
challenges related to memory consumption during training. The primary issue lies not in the acti-
vation memory induced by forward and backward passes, but in the memory overhead required for
optimization. This is due to the need to store the Fourier coefficients and perform operations in the
frequency domain [12]. This memory bottleneck is exacerbated by modern optimizers, which often
store multiple tensors for each weight tensor to track gradients, momentum, and other quantities,
as in the case of Adam. Consequently, the optimizer state comprises a significant portion of the
memory overhead in training large-scale NOs.

To address the memory requirements of optimization, recent work has shown that these stored
gradients often exhibit low-rank structures during training, suggesting that the most important gra-
dient information can be preserved at a fraction of the memory cost. GaLore (Gradient Low-Rank
Projection) [17] leveraged this insight to reduce memory usage in large language model training
by projecting gradients onto a low-rank subspace and performing optimization on the resultant
low-rank gradients. The key steps of GaLore are mentioned in Appendix C. However, GaLore’s
approach was limited to matrix operations which is not directly applicable to the tensor gradients
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encountered in NOs. In particular, the limitations of matrix-based approaches like GaLore when
applied to tensor operations (also in Appendix E) are twofold:

1. Tensor Structure: NOs often involve inherently tensor-structured gradients. Flattening
these tensors into matrices loses the multi-dimensional relationships crucial for capturing complex
physical phenomena.

2. Dimension-specific Information: Simply ”rolling up” tensor dimensions into matrix form
doesn’t guarantee convergence and can lead to losing important dimension-specific information.
For instance, in an FNO, different dimensions might correspond to spatial, temporal, or channel
information, each requiring distinct treatment.

These challenges motivate the need for a tensor-specific approach to gradient projection and op-
timization. In this paper, we introduce Tensor-GaLore, a novel approach that extends the principles
of gradient low-rank projection to tensor operations. Our contributions are summarized as follows:

1. We introduce Tensor-GaLore, a novel method for efficiently training NOs through low-
rank gradient projections. To the best of our knowledge, Tensor-GaLore is the first work to ex-
plore low-rank subspace learning for gradients of higher-order tensors that seeks low-rank represen-
tation while offering a significant advancement in memory-efficient optimization and topologically
preserving the structure.

2. We demonstrate the effectiveness of Tensor-GaLore on various PDE tasks, showing signifi-
cant reductions in memory usage (upto 30%) while improving model performance (up to 50%).

2. Tensor GaLore

We mention the details of tucker decomposition in Appendix D. In particular, to extend GaLore
to methods with learned tensor weights, we replace the matrix-based SVD with tensor decompo-
sition methods. This extension, called Tensor-GaLore, allows us to handle multi-dimensional data
and complex network architectures more efficiently. For a gradient tensor G ∈ CI1×I2×···×IN , the
Tucker-based Tensor-GaLore as shown in Algorithm F performs the following steps:

1. Compute the Tucker decomposition of the gradient tensor:

G ≈ C ×1 U
(1) ×2 U

(2) · · · ×N U (N) = JC;U (1), U (2), . . . , U (N)K (1)

where C ∈ CR1×R2×···×RN is the core tensor and U (n) ∈ CIn×Rn are factor matrices.

2. Project the gradient tensor onto the low-rank subspace and update the optimizer states and
model parameters using the projected gradient Gproj.

Gproj = JGcoreU
(1), U (2), . . . , U (N)K (2)

3. Project the gradient back when updating.

Gcore = JGprojU
(1)T , U (2)T , . . . , U (N)T K (3)
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2.1. Implicit Regularization

Tucker decomposition also allows for a separate rank along each mode of the tensor, meaning that
all key information can be preserved explicitly. Additionally, the factors learned in iterative Tucker
decomposition can be initialized to non-random factors, meaning that as learning progresses, results
from a previous decomposition can be used to ’warm-restart’ the decomposition, leading to conver-
gence in fewer iterations. The low-rank tensor approximation acts as an implicit regularizer, helping
to prevent overfitting and promoting smoother optimization trajectories and hence why we observe
much better convergence (generalization) in our experiments. In particular we consistently observed
that a rank of around 25% of the full rank provided optimal performance across various tasks. This
sweet spot suggests that Tensor-GaLore is acting as an implicit regularizer, preventing overfitting
by constraining the model to learn more robust, low-rank representations of the underlying physics.
This aligns with findings from [14], which demonstrated that tensor factorization naturally tends
towards low-rank solutions.

3. Experimental Setup

We conduct a comprehensive evaluation of GaLore and Tensor-GaLore on a diverse set of bench-
mark datasets for NOs. We select 3 datasets representing a range of PDEs with varying complexity
and dimensionality. In particular they are the Burger’s, Darcy and ElectroMagnetic Wave propaga-
tion dataset. Their details are in Appendix G.

3.1. Model Architecture and Training

We implement Tensor-GaLore with the FNO architecture. Models are trained using the Adam opti-
mizer with a learning rate of 10−3 and weight decay of 10−4. Other hyperparameters, such as batch
size and number of epochs, are detailed in the Appendix for each dataset and model configuration
K. For Tensor-GaLore, we investigate the impact of varying the rank of the decomposition’s. We
explore ranks ranging from 1% to 100% of the full rank, allowing us to assess the trade-off between
model compression and performance. Similarly, for the GaLore implementation, we conduct exper-
iments with different ranks. Additionally, for tensor inputs, we explore various ways of reshaping
the tensor to a matrix before applying GaLore. Specifically, we examine each possible ”rollout”
dimension, where we flatten all dimensions except one into a single dimension. This allows us to
compare the effectiveness of different tensor-to-matrix projections.

4. Results

Our experiments demonstrate the effectiveness of Tensor-GaLore across various datasets, showing
significant improvements in both performance and memory efficiency as shown in Table 1. For
the Burgers’ equation, our method consistently outperformed the baseline FNO, with performance
improving as rank increased. On the Darcy flow problem, Tensor-GaLore achieved up to a 50%
gain in test loss at rank 0.25, while reducing optimizer memory by 76% as shown in Appendix I.
Electromagnetic wave propagation simulations saw up to 11% gains. The results show that Tensor-
GaLore can significantly reduce the memory footprint of the optimizer states while improving model
performance in many cases.
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Table 1: Evaluating Tensor-GaLore across various tasks.
Model Rank Memory Train Test H1 Test L2 Gain

Ratio (GB) (Loss (×10−2)) (Loss (×10−2)) (Loss (×10−2)) (%)
Darcy
Baseline 1.0 8.88 0.7151 1.6230 0.2050 /
GaLore (d=2) 0.25 7.34 0.4200 1.3210 0.1680 19
Tensor-GaLore 0.25 7.32 0.2930 0.8680 0.1050 48.8
ElectroMagnetic
Baseline 1.0 4.83 2.973 0.1902 0.2000 /
GaLore (d=2) 0.25 4.83 2.392 0.1802 0.1900 5
Tensor-GaLore 0.25 4.63 2.132 0.1681 0.1782 11
Burgers (1e-4)
Baseline 1.0 3.94 0.2052 0.0050 0.0026 /
GaLore (d=2) 0.5 3.88 0.5053 0.0100 0.0062 -250
Tensor-GaLore 0.5 3.87 0.0860 0.0041 0.0025 +5

5. Applications

Tensor-GaLore has potential applications across various domains where tensor-based models are
prevalent. In the field of large language models (LLMs), it could enable training of tensor-based
architectures that capture higher-order relationships in language data, offering improved memory
efficiency and implicit regularization while preserving the natural tensor structure. In vision, Con-
volutional Neural Networks (CNNs) also heavily utilize higher-order tensor weights. CNN convo-
lution layers include 4-dimensional tensor weights. As discussed previously, these weight gradients
and optimizer states have high memory requirements, making memory consumption a significant
bottleneck in training deep CNNs [16].

6. Conclusion

Our experiments with Tensor-GaLore reveal significant insights into its performance and applica-
tions. The method consistently improves convergence across datasets, creating a more stable opti-
mization landscape that facilitates faster convergence to better solutions, as evidenced in the Darcy
flow, Burgers and EM experiments as well as reduced memory usage by a huge margin especially
the optimizer state. However, challenges remain, including the overhead of tensor decomposition
and optimal rank selection. Future work should focus on automating rank selection, expanding ap-
plications to a broader range of scientific computing tasks, and exploring potential in other domains
as well as testing on larger scale PDE Datasets like the Navier Stokes equations with high Reynolds
numbers. We expect to see much better performance gains there. Tensor-GaLore opens up new
avenues for building and scaling foundational models in scientific computing, potentially leading to
more accurate and computationally efficient models for critical applications like climate prediction
and fluid dynamics.
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Appendix A. FNO Memory Usage

As illustrated in Figure 2, the memory consumption for activations (shown in dark green) remains
relatively constant and low across different numbers of frequency modes in FNOs. However, the
memory usage for individual components, including gradients and optimizer states (shown in yel-
low), grows significantly as the number of modes increases.

Appendix B. Related Work

Our work, Tensor-GaLore, introduces a novel approach to efficiently training neural operators by
decomposing gradients. While significant work has been done in related areas, the specific approach
of gradient decomposition in tensors has not been explored before.

Tensor Methods in Deep Learning: Tensor decomposition has been widely used to compress
and improve deep networks, particularly in vision tasks [4, 9, 13]. These methods typically focus on
decomposing the weight tensors of the network to reduce parameters and computational complexity.
However, they do not address the decomposition of gradients during training.

Neural Operators: Recent advancements in learning-based approaches for solving PDEs have
led to the development of neural operators [8, 10]. Fourier Neural Operators (FNOs) in particular
have shown remarkable success in various scientific computing tasks [11]. While these methods
have made significant strides in learning solution operators for PDEs, they have not explored gradi-
ent decomposition as a means of improving memory efficiency.

Efficient Training Techniques: Various approaches have been proposed to reduce the memory
footprint of large-scale models. In the classical case, when model weights are stored as matrices,
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Figure 2: Memory usage in FNO

several techniques have demonstrated success. LoRA [3] adds a fine-tuning weight matrix created
via a low-rank decomposition to an original pre-trained, frozen weight matrix. To drive further
memory savings, GaLore [17] leverages the insight that a significant portion of memory usage
resides in the optmizer state. GaLore projects weight matrices to a low-rank subspace and optimizes
weights directly in that subspace, which brings further memory savings in the optimizer state.

In the higher-order case, FLoRA [15] extends the idea of low-rank adaptation to higher-dimensional
parameter spaces using a Tucker tensor decomposition, which has the demonstrated benefit of ap-
plying a low-rank decomposition to each dimension of a higher-order space.

In the context of neural operators, which include higher-order tensorized weights, previous
works have demonstrated the possibility of model compression via tensor factorization and low-rank
weight approximations. Kossaifi et al. [7] introduced the Multi-Grid Tensorized Fourier Neural Op-
erator (MG-TFNO), which combines tensor decomposition with a multi-grid domain decomposition
approach. However, these methods focus on model compression rather than gradient decomposi-
tion during training. In order to balance low-rank memory optimization with model performance
at higher ranks, the Incremental Fourier Neural Operator [2] incrementally scales both the size and
rank of FNO weights during training in order to boost performance.
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Appendix C. Background

C.1. Neural Operator

A neural operator Gθ : A× θ → U combines linear integral operators K with pointwise non-linear
activations σ to approximate non-linear operators, mapping initial conditions a ∈ A to solutions
u ∈ U . It is defined as Gθ := Q◦ (WL+KL)◦ · · · ◦σ(W1+K1)◦P , where P and Q are pointwise
neural networks for encoding and decoding, Wl are linear operators, Kl are integral kernel operators,
and σ are activation functions.

The FNO proposes a specific convolution operator for K, defined as (Kvl)(x) = F−1(R ·
TKFvl)(x), where F and F−1 are the Fourier transform and its inverse, R is a learnable trans-
formation, and TK truncates to the lowest K Fourier modes. This formulation allows FNO to be
discretization-invariant, producing high-quality solutions for query points not in the training grid
and enabling transfer between different grid resolutions and discretizations.

C.2. Gradient Low-Rank Projection

GaLore was introduced as a memory-efficient training strategy for Large Language Models (LLMs).
GaLore leverages the observation that gradients in deep neural networks often exhibit low-rank
structures during training. Instead of storing and updating full-rank gradients, GaLore projects
gradients onto low-rank subspace, significantly reducing memory requirements while maintaining
model performance. In its original formulation, GaLore operates on weight matrices W ∈ Rm×n

and their corresponding gradient matrices G ∈ Rm×n. The key steps of GaLore are as follows:

1. Compute the Singular Value Decomposition (SVD) of the gradient matrix:

G = USV T ≈
r∑

i=1

siuiv
T
i (4)

where U and V contain the left and right singular vectors, S is the diagonal matrix of singular
values, and r is the chosen rank.

2. Form projection matrices using the top r singular vectors:

P = [u1, . . . , ur] ∈ Rm×r, Q = [v1, . . . , vr] ∈ Rn×r (5)

3. Project the gradient onto the low-rank subspace:

Gproj = PGcoreQ
T , where Gcore = P TGQ ∈ Rr×r (6)

4. Update the optimizer states and model parameters using the projected gradient Gproj.

This approach allows GaLore to maintain a low memory footprint by storing and updating only
the low-rank representations of gradients.
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C.3. SVD

1. Equivalence to SVD in 2D: In the special case of 2D tensors (matrices), the Tucker decom-
position reduces to the familiar SVD. The core tensor G becomes equivalent to the diagonal
matrix Σ in SVD, while the factor matrices correspond to the orthogonal matrices U and V
[6]. This property ensures that our method seamlessly extends the principles of matrix-based
techniques to higher-order tensors.

2. Orthogonality of factor matrices: The factor matrices U (n) in Tucker decomposition are
orthogonal, mirroring the properties of U and V in SVD. This orthogonality is crucial for the
efficiency and stability of the GaLore method. Specifically:

(a) Projection efficiency: The orthogonality allows us to project tensors onto the subspace
spanned by these matrices through simple matrix multiplication, without the need for
costly inverse computations.

(b) Easy inversion: When we need to reverse the projection, we can simply use the trans-
pose of these orthogonal matrices instead of computing their inverses. This property is
expressed mathematically as (U (n))TU (n) = I , where I is the identity matrix.

(c) Numerical stability: Orthogonal matrices have a condition number of 1, ensuring that
the projection and its inverse are numerically stable operations, even for high-dimensional
tensors.

Appendix D. Tucker Decomposition

Tensors are multidimensional arrays that generalize the concepts of vectors (first-order tensors) and
matrices (second-order tensors) to higher orders. An N th-order tensor X ∈ CI1×I2×···×IN is an N -
way array where each mode n has dimension In. Like matrices, in tensors we can decompose the
tensors into low-rank factors using the Tucker decomposition, also known as the higher-order SVD
(HOSVD), that decomposes a tensor into a core tensor multiplied by a matrix along each mode:

X ≈ G ×1 U
(1) ×2 U

(2) · · · ×N U (N) = JG;U (1), U (2), . . . , U (N)K (7)

where G ∈ CR1×R2×···×RN is the core tensor, U (n) ∈ CIn×Rn are factor matrices, and ×n

denotes the n-mode product. Two critical aspects make it crucial as discussed in the previous
section ie Appendix C.

Appendix E. Challenges of applying GaLore to neural operators

In order to use standard GaLore on tensor weights, the weights must first be reshaped into a matrix
to compute the SVD for projection into a low-rank space. GaLore takes one rank parameter r, and
projects high-rank gradients onto the first r basis vectors of the corresponding SVD rotation matrix.
When the weight matrix corresponds to an operator that maps between vectors, a single rank cutoff
can be applied while preserving most information.

However, in the tensor case, weights correspond to higher-order maps between function spaces.
Depending on the chosen strategy for reshaping tensor weights into a matrix, applying a single-
dimension rank cutoff to the matrix may discard key information - for instance, for a tensor W ∈
CA×B×m×m, where A is the number of input channels, B is the number of output channels, and
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m is the number of truncated Fourier basis modes along each dimension, reshaping W into W ′ ∈
CABm×m and cutting off the first dimension at rank r may remove all information about Fourier
modes along the first dimension, making function learning impossible. We call this method GaLore
and provide several comparisons to demonstrate its flaws.

One particular flaw is the Loss of mode-specific information: that is by collapsing multiple
tensor dimensions into one matrix dimension, we lose the ability to preserve different amounts of
information along each tensor mode. The other is fact that we have an imbalanced projection: Pro-
jecting only on one side of the reshaped matrix (e.g. only U or only V from the SVD) can severely
limit the operator’s capacity. But projecting on both sides often leads to training instability and
failure to converge. There is also the fact that we have a rank selection issues: Choosing a single
rank cutoff for the reshaped matrix makes it difficult to balance information preservation across all
the original tensor dimensions. A rank that preserves enough information for one dimension may
be too restrictive for another.

Appendix F. Main Algorithm
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Appendix G. Datasets

G.1. Burgers’ Equation

We consider the one-dimensional Burgers’ equation on the torus:

∂tu+ uux = νuxx, x ∈ T, t ∈ (0, T ] (8)

with initial condition u0 ∈ L2(T;C) and viscosity ν > 0. We set T = 1 and ν = 0.01. Input
functions are sampled from a Gaussian random field, and solutions are obtained using a pseudo-
spectral method. We use 1000 samples for training and 200 for testing, with an input resolution of
128 and an output resolution of 128.

G.2. Darcy Flow

The Darcy flow problem is defined by the elliptic PDE:

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2 (9)

with boundary conditions u(x) = 0 for x ∈ ∂(0, 1)2. The input a is sampled from a Gaussian
random field, and f is fixed. We use 4000 training samples and 100 test samples, with the domain
discretized on a 421 × 421 grid.

G.3. Electromagnetic Wave Propagation

Lastly, we present a dataset that represents complex-valued data inherently. We consider the prop-
agation of optical pulses in a nonlinear waveguide with second-order nonlinearity (κ2). The prob-
lem is governed by the nonlinear Schrödinger equation (NLSE) with additional terms for second-
harmonic generation:

∂A

∂z
= −i

β2
2

∂2A

∂t2
+ iγ|A|2A+ iκA∗ei∆kz (10)

where A is the complex electric field envelope, i is the imaginary unit, z is the propagation
distance, t is time, β2 is the group velocity dispersion, γ is the nonlinear parameter, κ is the coupling
coefficient for second-harmonic generation, and ∆k is the phase mismatch. Our dataset consists of
800 training samples and 200 testing samples. The input consists of several parameters: the poling
region length ranging from 2 mm to 15 mm, the poling period mismatch varying from -50 nm to
+50 nm, and the pump pulse energy spanning from a few fJ to thousands of fJ. Additionally, the
input includes the complex electric field envelope of the input pulse. The output of the system is the
complex electric field envelope of the resulting output pulse.

Appendix H. Profiling Methodology

To analyze the performance and memory usage of our Tensor-GaLore method, we implemented a
comprehensive profiling setup using PyTorch’s built-in profiler. This allowed us to gain detailed
insights into the computational and memory requirements of our algorithm compared to baseline
methods.

Detailed Memory Breakdown. We implemented a detailed memory tracking system to distin-
guish between various types of memory usage, including Model parameters, Optimizer states, Input
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data, Activations, Gradients, Autograd details, Temporary buffers. To provide a comprehensive
understanding of memory utilization in our experiments, we developed a classification system to
distinguish between different types of memory usage. This granular approach allows us to precisely
identify where memory savings occur when using Tensor-GaLore compared to baseline methods. :

• Model Parameters. Model Parameters are udentified by tracking tensors that are registered as
model parameters (instances of ‘nn.Parameter‘). It is typically constant throughout training unless
using techniques like weight decay.

• Optimizer States. Optimizer States are tracked by instrumenting the optimizer to log memory
allocations for momentum buffers, adaptive learning rate parameters, etc. For Adam optimizer,
this includes first and second moment estimates.

• Input Data. Input is monitored by tracking memory allocations that occur during data loading
and preprocessing steps.

• Activations. Activations are identified as temporary tensors created during the forward pass of
the model. it is tracked using hooks on module forward methods to capture intermediate outputs.

• Activations. Activations are identified as temporary tensors created during the forward pass of
the model. it is tracked using hooks on module forward methods to capture intermediate outputs.

• Gradients. Gradients ared recognized as tensors with ‘requires grad=True‘ that are outputs of
operations on model parameters or inputs.

• Autograd Details. It is captured by profiling PyTorch’s autograd engine internals, including
memory used for storing computational graphs and intermediate results needed for backpropaga-
tion.

• Temporary Buffers. Temporary Buffers are short-lived tensors that are created and destroyed
within a single operation or a small set of operations. For tensor-galore, it is often used in complex
computations like FFTs or tensor decompositions within galore.

To implement this detailed profiling, we used a combination of PyTorch’s memory-profiler,
custom context managers, and function decorators. Key aspects of our implementation include:

• Wrapping key operations with context managers to track memory allocation and deallocation

• Using PyTorch hooks to monitor intermediate activations and gradients

• Instrumenting the optimizer to log memory usage for each parameter update

• Implementing custom memory tracking for Tensor-GaLore specific operations

The results of this analysis formed the basis for our discussions on memory efficiency in Sec-
tions 5 and 6 of the main paper, and provided the data for Figure 2, which illustrates the memory
usage breakdown for different numbers of frequency modes in FNOs.
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Appendix I. Memory usage

Figure 3: Memory usage of Tensor-GaLore vs Baseline on the Darcy Dataset. The text above the
bar plots, represent the memory reduction of the optimizer in % compared to the baseline.

Appendix J. Additional Results

Table 2: Model performance on Darcy-flow.
Model Test Loss (1e-2) at Rank Ratio Gain (%)

0.01 0.1 0.25 0.5 0.75 1.0
FNO Baseline - - - - - 0.205 /
FNO - Tensor-GaLore 0.147 0.108 0.105 0.107 0.140 0.173 49
FNO - GaLore (d=1) 0.256 0.232 0.212 0.245 0.201 0.190 8
FNO - GaLore (d=2) 0.203 0.192 0.168 0.178 0.170 0.180 19
FNO - GaLore (d=3) 0.234 0.212 0.201 0.193 0.196 0.182 11

Appendix K. Architecture and Training Details

Sobolev Loss for PDE Training In training NOs for PDEs we employ both the L2 and Sobolev
H1 losses to provide a comprehensive assessment of model performance. While the L2 loss mea-
sures point-wise accuracy of predictions, the H1 loss, defined as ∥u− û∥2H1 = ∥u− û∥2L2 + ∥∇u−
∇û∥2L2 , accounts for both the function values and their gradients. This is particularly crucial for
PDEs, as it ensures that the learned solutions not only match the target values but also preserve the
smoothness and differential properties inherent in the physical systems being modeled.
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Sobolev Loss for Complex Wave Phenomena The Sobolev H1 loss proves especially valuable
when dealing with complex wave phenomena, as demonstrated in our experiments with the EM
Dataset using Complex-FNOs. In this case, the H1 loss not only measures the accuracy of the
predicted complex electric field envelope but also ensures that its spatial derivatives are correctly
captured. This is crucial for accurately representing the rapid oscillations and sharp peaks charac-
teristic of EM waves. Our results show that Tensor-GaLore with a rank ratio of 0.25 achieved an
11% improvement in overall test loss compared to the baseline, with the H1 loss decreasing from
0.1902 to 0.1681. This improvement is particularly significant given the challenging nature of the
EM dataset, which involves predicting the complex electric field envelope resulting from nonlinear
interactions in waveguides. The enhanced performance in H1 loss indicates that our model not only
matches the amplitude of the EM waves more accurately but also better captures the rapid spatial
variations and peak formations. This is critical in applications such as optical pulse propagation,
where precise modeling of field gradients and peak intensities is essential for predicting phenomena
like second-harmonic generation and phase matching.

Dataset Model Architecture Details Optimizer &
Scheduler

Burgers FNO
• 4 layers, 90 modes
• 256 hidden channels, 256 projection chan-

nels
• Skip Connections: ’linear’
• Positional embedding: ’grid’

Adam with step
LR 3e−4, weight
decay 2e − 6 500
epochs, batch
size 16. Trained
with H1 loss.

Darcy
Flow

FNO
• 4 layers, 64 modes
• 128 hidden channels, 128 projection chan-

nels
• Skip: ’linear’

Adam with step
LR 1e−3, weight
decay 1e − 4,
250 epochs, batch
size 2. Trained
with L2 loss.

EM Wave Complex-
FNO • 8 layers, 128 modes

• 128 hidden channels, 128 projection chan-
nels

• Skip: ’linear’
• Complex data: True
• Complex activation function: True

Complex Adam
with step LR 1e-
4, weight decay
2e-6, batch size
32, 1000 epochs.
Trained with H1

loss.

Table 3: Detailed FNO Architecture Specifications for Different Datasets
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