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Abstract

Deep learning has proven to be effective in a wide variety of loss minimization problems.
However, many applications of interest, like minimizing projected Bellman error and min-
max optimization, cannot be modelled as minimizing a scalar loss function but instead
correspond to solving a variational inequality (VI) problem. This difference in setting
has caused many practical challenges as naive gradient-based approaches from supervised
learning tend to diverge and cycle in the VI case. In this work, we propose a princi-
pled surrogate-based approach compatible with deep learning to solve VIs. We propose
a surrogate-based approach that is principled in the VI setting and compatible with deep
learning. We show that our approach has three main benefits: (1) it guarantees linear
convergence under sufficient descent in the surrogate when hidden monotone structure is
present (e.g. convex-concave in with respect to model predictions), (2) it provides a unifying
perspective of existing methods, and (3) is amenable to existing deep learning optimizers
like ADAM.
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1. Introduction

Most machine learning approaches learn from data by minimizing a loss function with re-
spect to model parameters. Despite the non-convexity of such losses and lack of global con-
vergence guarantees due to deep learning, they can often still be approximately minimized
with an appropriately tuned first-order adaptive method such as ADAM (Kingma, 2014).
Unfortunately, outside of scalar loss minimization, the challenges of using deep learning
are exacerbated: the dynamics of variational inequality (VI) problems (e.g., min-max) are
often plagued with rotations and posses no efficient stationary point guarantees (Daskalakis
et al., 2021). Thus, the additional challenges posed by VI problems do not allow one to
easily plug in existing techniques from supervised learning.

Despite these optimization challenges, loss functions are typically well-grounded and
chosen carefully, admitting monotonicity (e.g. a convex-concave min-max objective) and
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smoothness with respect to model outputs. More precisely, such problems admit a hidden
structure corresponding to the following VI problem: find z∗ such that

⟨F (z∗), z − z∗⟩ ≥ 0 ∀z ∈ Z = cl{g(θ) : θ ∈ Rd}. (1)

Where the mapping g : Rd → Z ⊆ Rn maps model parameters to model outputs, and the
set Z encodes the closure of the set of realizable outputs from the chosen model. Since F
is defined over model outputs, it will often be monotone and smooth.

In this work, we leverage the structure in model outputs in VI problems by extending
the use of surrogate losses (Johnson and Zhang, 2020; Vaswani et al., 2021) from scalar
minimization. The surrogate loss approach has been shown to be scalable with deep learning
and has been used in modern reinforcement learning policy gradient methods (Schulman
et al., 2015, 2017; Abdolmaleki et al., 2018).

Our approach reduces the VI (1) to the approximate minimization of a sequence of
surrogate losses {ℓt}t∈N for which are then used to produce a sequence of parameters {θt}t∈N.
To ensure convergence we propose a new α-descent condition on ℓt, allowing for a dynamic
inner-loop that makes no assumption on how the surrogate losses are minimized, thereby
allowing for any deep-learning optimizer to minimize the scalar loss ℓt. With our α-descent
condition we provide convergence guarantees to a solution in the space of model predictions
{zt = g(θt)}t∈N → z∗ for a sufficiently small α. Our general method as described above is
summarized in Algorithm 1. Our contributions can be summarized as follows:

• Extension of surrogate losses to VI problems and challenges. This work
provides the first extension of surrogate losses to VI problems. Although scalar mini-
mization is as a special case, we show there is a clear separation in problem difficulty.
In the scalar minimization case any progress on the surrogate loss is sufficient for
convergence (Vaswani et al., 2021; Lavington et al., 2023); meanwhile, we show that
it is possible to diverge in the VI case with consistent progress on the surrogate losses
even if F is strongly monotone.

• Inner-loop condition and convergence guarantees. In contrast to existing ap-
proaches, we control our inner-loop via an α-descent condition. This condition allows
for global convergence without forcing a global upper bound on all losses {ℓt}t∈N.

• Unifying perspective of pre-conditioning methods. With our surrogate loss
approach we are able to unify existing pre-conditioning methods (Bertsekas, 2009;
Mladenovic et al., 2022; Sakos et al., 2024). In Section 4 we show they are equivalent
to picking the Gauss-Newton method as the optimizer A in Algorithm 1.

2. Background and Related Work

We use standard notation from optimization, for more details please see Appendix A.

Surrogate Loss Background. In scalar minimization, such as supervised learning, a
non-convex loss function of the form f(g(θ)) is minimized where the non-convexity is due
to the model parametrization. In this case g(θ) ∈ Rn where n is the number of samples, each
prediction is zi = gi(θ) = h(xi, θ), for some feature vector xi and fixed model architecture h.
Despite the non-convexity with respect to θ, the loss function is often convex and smooth
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Algorithm 1: α-descent on surrogate

Input: Outer loop interations T , initial parameters θ1 ∈ Rd, η stepsize for surrogate
loss, α ∈ (0, 1), optimizer update A : L × Rd → Rd.

for t = 1← to T do
Compute VI operator: F (g(θt))
Set loss: ℓt(θ) =

1
2∥g(θ)− (g(θt)− ηF (g(θt))∥2

θs ← θt
while ℓt(θs)− ℓ∗t > α2(ℓt(θt)− ℓ∗t ) do

Update parameters with optimizer: θs ← A(ℓt, θs)
θt+1 ← θs

return θT+1

with respect to the closure of the predictions Z = cl{g(θ) : θ ∈ Rd}. The optimization
problem can then be often reframed as the constrained convex optimization problem

min
θ

f(g(θ)) = min
z∈Z

f(z). (2)

If Z is convex then projected gradient descent zt+1 = Π(zt − η∇f(zt)) is guaranteed to
converge (Beck, 2017). However, the projection Π is expensive since it is with respect to
the set Z ⊆ Rn. In general, the model and data dependent constraint Z may not be convex,
and is a limitation of our analysis. However, this assumption is satisfied in two extreme
cases, when a model is linear or with large capacity neural networks where Z = Rn.

Beyond supervised learning, similar hidden structure exists in losses within machine
learning such as: generative models and min max optimization (Gidel et al., 2021). However,
these applications cannot be written as minimizing a loss and we must instead consider the
VI problem (1). In the min-max case, the min and max players’ strategies may be given by
two separate networks h1(θ1), h2(θ2), respectively, with the following objective:

min
θ1

max
θ2

f(h1(θ1), h2(θ2)), (3)

where f is convex-concave. Similar to the scalar minimization case we can rewrite the min-
max problem in parameter space as a constrained problem with respect to model predictions
but instead within the the VI (1); where θ = (θ1, θ2), and g(θ) = (h1(θ1), h2(θ2)), with
operator F (z) = F (g(θ)) = [∇z1f(z

1, z2),−∇z2f(z
1, z2)]⊤ where z1 = h1(θ1) and z2 =

h2(θ2). If F is well-conditioned and Z is closed and convex, then the projected gradient
method zt+1 = Π(zt − ηF (zt)) converges to a solution z∗ with an appropriate stepsize η
(Facchinei and Pang, 2003; Bauschke and Combettes, 2017).

To solve problems of the form (1) and take advantage of the structure given by g and F ,
we extend surrogate losses (Johnson and Zhang, 2020; Vaswani et al., 2021). At iteration
t, θt+1 is selected by descending the surrogate loss

ℓt(θ) =
1

2
∥g(θ)− [g(θt)− ηF (g(θt))]∥2. (4)

Denoting z∗t as the exact projected gradient step Π(zt − ηF (zt)), minimizing the surrogate
exactly would ensure that zt = g(θt) = z∗t and therefore guarantee convergence of {zt}t∈N.
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Related work. The surrogate losses proposed by Johnson and Zhang (2020) and Vaswani
et al. (2021), apply to supervised learning and RL respectively.1 They did not study the
VI case, nor do they exploit any convexity properties that may be present in the scalar
minimization case. Lavington et al. (2023) also study the scalar minimization case and
provide convergence to a neighbourhood of a global minimum of (2) and allow for stochas-
ticity. The neighbourhood of convergence depends both on an upperbound on the errors
ϵt = ∥zt+1 − z∗t ∥ and a variance term. Therefore, the neighbourhood of convergence scales
with the worst error ϵt across the trajectory {zt = g(θt)}t∈N. Shrinking the neighbour-
hood necessitates a double loop algorithm that might unecessarily spend too much time
optimizing the surrogate.

In contrast to the existing surrogate loss approaches, we propose a simple α-descent
condition on ℓt (Definition 1) that does not require all errors to be bounded or summable
apriori. This condition allows for convergence without fully minimizing ℓt and better models
implementations in practice where a fixed number of gradient descent steps are used.

Definition 1 (α-descent) Let ℓt be the surrogate defined in (4) and ℓ∗t = infθ∈Rd ℓt(θ).
The trajectory {θt}t∈N satisfies the α-descent condition if at each step t the following holds

ℓt(θt+1)− ℓ∗t ≤ α2 (ℓt(θt)− ℓ∗t ) , α ∈ [0, 1), (5)

Given the α-descent condition we can define a general purpose algorithm (Algorithm 1).
With any black-box optimizer update A and a double-loop structure, we can construct a
trajectory that satisfies the condition so long as A can effectively descend the least-squares
loss ℓt. In general ℓ∗t may not be zero and so this condition cannot be verified directly,
however, this condition can often be met via first-order methods for a fixed number of steps
or can be approximated with ℓ∗t = 0.

Hidden monotone problems and preconditioning methods. Gidel et al. (2021)
study the existence of equilibria in zero-sum games with hidden monotonicity but do not
propose an algorithm to take advantage of the hidden structure. For games that admit a
hidden strictly convex-concave structure, Vlatakis-Gkaragkounis et al. (2021) prove global
convergence of continuous time gradient descent-ascent. Similarly, Mladenovic et al. (2022)
propose natural hidden gradient dynamics (NHGD) with continuous time convergence guar-
antees. A more general and discretized version of NHGD was studied by Sakos et al. (2024),
the preconditioned hidden gradient descent method (PHGD), to solve VIs of the form (1).
PHGD and stochastic variants were also studied in the linear case by Bertsekas (2009). In
Section 4 we show that PHGD is equivalent to taking one step of the Gauss-Newton method
(GN) (Björck, 1996) on the surrogate loss.

3. Convergence and divergence under α-descent on surrogate losses

Under the α-descent condition (1) with a sufficiently small α, and Assumption 2, Theorem
3 guarantees linear convergence of {zt = g(θt)}t∈N to the solution z∗ of the VI (1).

1. We note that Johnson and Zhang (2020) and Vaswani et al. (2021) provide a more general loss using
Bregman divergences.
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Assumption 2 In the VI (1), Z is closed and convex. There exists a solution within the
relative interior, z∗ ∈ riZ. F is both L-smooth ∥F (x) − F (y)∥ ≤ L∥x − y∥ and µ-strongly
monotone ⟨F (x)− F (y), x− y⟩ ≥ µ∥x− y∥2 for any x, y ∈ Z and some µ > 0.

Theorem 3 Let Assumption 2 hold and let {zt = g(θt)}t∈N be the iterates produced by
Algorithm 1. If α and η are picked such that ρ := 1− 2η(µ− αL) + (1 + α2)η2L2 < 1 then,
zt converge linearly to the solution z∗ at the following linear rate:

∥zt+1 − z∗∥2 ≤ ρt∥z1 − z∗∥2. (6)

Particularly, if α < µ
L and η < 2(µ−αL)

(1+α2)L2 then ρ < 1 and if α ≤ µ
2L and η = 2µ

5L2 then

ρ ≤ 1− µ2

5L2 .

Divergence with α < 1. In the scalar minimizing case, α < 1 guarantees convergence to
a stationary point with a smooth non-convex loss function (see Proposition 7). However, for
the VI case, we show that α small enough is necessary for convergence. Our construction
uses the strongly convex-concave min-max problem minxmaxy

1
2x

2+xy− 1
2y

2 to show that
gradient descent-ascent on f(x, y) = xy satisfies the α-descent condition with α = 1√

2
.

Proposition 4 There exists an L-smooth and µ-strongly monotone F , and a sequence of
iterates {zt}t∈N verifying the alpha descent condition with α < 1 yet zt diverges for all η.

4. A Nonlinear Least Squares Perspective on Surrogate Minimization

The surrogate loss perspective and our α-descent condition allows for convergence so long
as the surrogate losses {ℓt}t∈N are sufficiently minimized. One approach to minimizing ℓt is
to view it as the following non-linear least-squares problem

min
θ

f(θ) = min
θ

1

2
∥r(θ)∥2, (7)

with a residual function r : Rd → Rn, where ℓt(θ) = f(θ) if r(θ) = g(θ)− g(θt) + ηF (g(θt)).
Due to the specific structure of f we can consider specialized methods such as Gauss-
Newton (GN), Damped Gauss-Newton (DGN), and Levenbergh-Marquardt (LM) (Björck,
1996; Nocedal and Wright, 1999). These methods can be viewed as quasi-Newton methods
that use a linear approximation of r, r(θ) ≈ r(θt) +Dr(θt)(θ − θt).

The GN method is defined by the update rule θt+1 = θt−(Dr(θt)
⊤Dr(θt))

†Dr(θt)
⊤r(θt).

GN inherits the same local quadratic convergence properties as Newton’s method when the
Hessian at the minimum ∇2f(θ∗) ≈ Dr(θ∗)

⊤Dr(θ∗). However, GN is known to struggle
with highly non-linear problems, those with large residuals, or if Dr(θt) is nearly rank-
deficient (Björck, 1996; Nocedal and Wright, 1999). Fortunately, the GN direction is a
descent direction of f , the DGN method takes steps in the GN direction with a stepsize
parameter ηGN and converges for a sufficiently small stepsize or with line search (Björck,
1996). In cases where Dr(θt) is nearly rank deficient the LM method can be used instead.

To minimize the surrogate we can therefore consider taking multiple steps of gradient
descent (GD), DGN or LM. Denoting θst as sth intermediate step between θt+1 and θt we
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consider the following updates:

θs+1
t = θst − ηGDDg(θst )

⊤(g(θst )− g(θt) + ηF (g(θt)) (GD)

θs+1
t = θst − ηGN (Dg(θst )

⊤Dg(θst ))
†Dg(θst )

⊤(g(θst )− g(θt) + ηF (g(θt)) (DGN)

θs+1
t = θst − (Dg(θst )

⊤Dg(θst ) + λ Id)−1Dg(θst )
⊤(g(θst )− g(θt) + ηF (g(θt)). (LM)

Note that we used the fact that Dr(θ) = Dg(θ), and if ηGN = 1 then DGN is the same as
GN. Also, note that one step of GN recovers the PHGD method from Sakos et al. (2024),
θt+1 = θt − η(Dg(θt)

⊤Dg(θt))
†Dg(θt)

⊤F (g(θt)).
In Appendix C we compare GD, PHGD, DGN, LM, in two domains from Sakos et al.

(2024), the hidden matching pennies game and hidden rock-paper-scissors.
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Åke Björck. Numerical methods for least squares problems. SIAM, 1996.

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of
constrained min-max optimization. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1466–1478, 2021.

Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and
complementarity problems. Springer, 2003.

Barbara Franci and Sergio Grammatico. Convergence of sequences: A survey. Annual
Reviews in Control, 53:161–186, 2022. ISSN 1367-5788. doi: https://doi.org/10.1016/j.
arcontrol.2022.01.003. URL https://www.sciencedirect.com/science/article/pii/

S1367578822000037.

Gauthier Gidel, David Balduzzi, Wojciech Czarnecki, Marta Garnelo, and Yoram Bachrach.
A limited-capacity minimax theorem for non-convex games or: How i learned to stop
worrying about mixed-nash and love neural nets. In International Conference on Artificial
Intelligence and Statistics, pages 2548–2556. PMLR, 2021.

Rie Johnson and Tong Zhang. Guided learning of nonconvex models through successive
functional gradient optimization. In Hal Daumé III and Aarti Singh, editors, Proceedings
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Appendix A. Notation

We use ⟨x, y⟩ =
∑n

i=1 x
iyi to denote the standard inner product over Rn and ∥x∥ =

√
⟨x, x⟩

to be the Euclidean norm. We write ∥x∥2Ξ to mean ⟨x,Ξx⟩, and ∥x∥Ξ is a norm if and
only if Ξ is positive definite. For a set X we denote clX its closure and riX its relative
interior. For a given set, which will be clear from context, we denote Π(x) as the Euclidean
projection of x onto the set and similarly ΠΞ(x) the projection with respect to the norm
∥x∥Ξ. We use Id to denote the identity matrix. A matrix A has lower and upper bounded
singular values if there exists σmin, σmax ∈ (0,∞) such that for any x we have σ2

min∥x∥2 ≤
⟨x,A⊤Ax⟩ ≤ σ2

max∥x∥2. If a matrix A is invertible we write A−1 otherwise we denote the
pseudo-inverse as A†. For a given function g : Rd → Rn we write Dg(θ) as its Jacobian
evaluated at θ. We say Dg⊤ has uniformly lower and upper bounded singular values if there
is a constant upper and lower bound to the singular values of Dg(θ)⊤ for all θ ∈ Rd. We
use ∆n = {x ∈ Rn :

∑
i x

i = 1, xi ≥ 0} to denote the (n− 1)-dimensional simplex.

Appendix B. Proofs

Remark 5 If g is continuous, and {g(θ) : θ ∈ Rd} is convex with Z as its closure, then
the least-squares surrogate loss ℓt(θ) =

1
2∥g(θ)− zt+ηF (zt)∥2 admits a unique point z∗t ∈ Z

such that

ℓ∗t =
1

2
∥z∗t − zt + ηF (zt)∥2,

and for any θ
1

2
∥g(θ)− z∗t ∥2 ≤ ℓt(θ)− ℓ∗t ,

where ℓ∗t = infθ∈Rd ℓt(θ).

Proof Let f(z) = 1
2∥z− zt+ηF (zt)∥2 be the surrogate loss with respect to the predictions

z = g(θ). We have that f(z) = ℓt(θ) for all θ ∈ Rd. Now consider the set Z = cl{g(θ) : θ ∈
Rd}, since it is closed and convex, we have that f has a unique minimum z∗t because it is
1-strongly convex. Furthermore, we have

1

2
∥z − z∗t ∥2 ≤ f(z)− f(z∗t ).

Now since z∗t ∈ Z and Z is the closure of {g(θ) : θ ∈ Rd}, there exists a sequence of
parameters {θt}t∈N such that {zt = g(θt)}t∈N → z∗t . Therefore we have that,

f(z∗t ) = lim
t→∞

f(zt) = lim
t→∞

ℓt(θt) ≥ ℓ∗t ≥ f(z∗t ).

Where we have used the continuity of f and g. The last inequality follows because {g(θ) :
θ ∈ Rd} ⊆ Z. Therefore ℓ∗t = f(z∗t ) and the result follows.

Lemma 6 If F is monotone and z∗ is in the relative interior of the constraint Z, then

ℓt(θt)− ℓ∗t ≤
η2

2
∥F (zt)− F (z∗)∥2.

Furthermore, under the α-descent condition we have

∥zt+1 − z∗t ∥ ≤ αη∥F (zt)− F (z∗)∥.

8
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Proof If z∗ is a solution then we have

⟨F (z∗), z − z∗⟩ ≥ 0 , ∀z ∈ Z.

If z∗ is in the relative interior then for any z ∈ Z there exists a λ > 1 such that z′ =
(1− λ)z + λz∗ ∈ Z (Rockafellar, 1997)[Theorem 6.4]. Therefore by optimality we have

0 ≤ ⟨F (z∗), z
′ − z∗⟩ = ⟨F (z∗), (1− λ)z + λz∗ − z∗⟩ = (1− λ)⟨F (z∗), z − z∗⟩ ≤ 0.

Where the last inequality follows from λ > 1. Altogether we have

⟨F (z∗), z − z∗⟩ = 0 , ∀z ∈ Z.

Moreover, as a consequence we have that for any two points z, z′ ∈ Z

⟨F (z∗), z − z′⟩ = ⟨F (z∗), z − z∗⟩+ ⟨F (z∗), z∗ − z′⟩ = 0.

Letting z∗t be the exact projected gradient step and zt = g(θt) the current iterate we have

ℓt(θt)− ℓ∗t =
1

2
∥ηF (zt)∥2 −

(
1

2
∥z∗t − zt + ηF (zt)∥2

)
= η⟨F (zt), zt − z∗t ⟩ −

1

2
∥z∗t − zt∥2

= η⟨F (zt)− F (z∗), zt − z∗t ⟩+ η⟨F (z∗), zt − z∗t ⟩ −
1

2
∥z∗t − zt∥2

= η⟨F (zt)− F (z∗), zt − z∗t ⟩ −
1

2
∥z∗t − zt∥2

≤ η2

2
∥F (zt)− F (z∗)∥2.

Where the last two inequalities follow by: z∗ being within the relative interior, and the
Fenchel-Young inequality.

By Remark 5 and the α-decent condition,

1

2
∥zt+1 − z∗t ∥2 ≤ ℓt(θt+1)− ℓ∗t ≤ α2(ℓt(θt)− ℓ∗t ) ≤ α2 η

2

2
∥F (zt)− F (z∗)∥2.

Proposition 7 Let f : Rn → R be L-smooth. For some g : Rd → Rn define the surrogate
loss ℓt(θ) = 1

2∥g(θ) − zt +
1
L∇f(zt)∥

2, where zt = g(θt). Then the α-descent condition
guarantees

f(zt+1) ≤ f(zt)− L(1− α2)(ℓt(θt)− ℓ∗t ).
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Proof Let ẑt = zt − 1
L∇f(zt).

f(zt+1)− f(zt) ≤ ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2

= L⟨zt − ẑt, zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2

= L

(
−∥ẑt − zt∥2 + ⟨zt − ẑt, zt+1 − ẑt⟩+

1

2
∥zt+1 − zt∥2

)
= L

(
1

2
∥ẑt − zt+1∥2 −

1

2
∥ẑt − zt∥2

)
= L (ℓt(θt+1)− ℓt(θt)) .

The second to last equality follows from exanding 1
2∥zt+1 − zt∥2 = 1

2∥zt+1 − ẑt + ẑt − zt∥2.
Using the α-descent condition we have

ℓt(θt+1)− ℓt(θt) ≤ (α2 − 1)(ℓt(θt)− ℓ∗t ),

yielding the result.

Theorem 3 Let Assumption 2 hold and let {zt = g(θt)}t∈N be the iterates produced by
Algorithm 1. If α and η are picked such that ρ := 1− 2η(µ− αL) + (1 + α2)η2L2 < 1 then,
zt converge linearly to the solution z∗ at the following linear rate:

∥zt+1 − z∗∥2 ≤ ρt∥z1 − z∗∥2. (8)

Particularly, if α < µ
L and η < 2(µ−αL)

(1+α2)L2 then ρ < 1 and if α ≤ µ
2L and η = 2µ

5L2 then

ρ ≤ 1− µ2

5L2 .

Proof First note that by definition of Algorithm 1, the iterates zt = g(θt)t∈N satisfy the
α-descent property (Definition 1), therefore Lemma 6 holds. Recall that z∗t , the exact
projection update, is a contraction if η < 2µ

L since

∥z∗t − z∗∥2 ≤ κ2∥zt − z∗∥2 (9)

where κ2 = 1− 2ηµ+ η2L2(Facchinei and Pang, 2003, Theorem 12.1.2). For the remainder,
assume that η < 2µ

L so that κ ∈ [0, 1). Denoting Ft = F (zt) and F∗ = F (z∗), we have

∥zt+1 − z∗∥2 = ∥z∗t − z∗ + zt+1 − z∗t ∥2

= ∥z∗t − z∗∥2 + 2⟨zt+1 − z∗t , z
∗
t − z∗⟩+ ∥zt+1 − z∗t ∥2

≤ ∥z∗t − z∗∥2 + 2∥zt+1 − z∗t ∥∥z∗t − z∗∥+ ∥zt+1 − z∗t ∥2 (Cauchy–Schwarz)

≤ ∥z∗t − z∗∥2 + 2αηκ∥Ft − F∗∥∥zt − z∗∥+ α2η2∥Ft − F∗∥2 (Lemma 6)

≤ ∥z∗t − z∗∥2 + 2αηL∥zt − z∗∥2 + α2η2L2∥zt − z∗∥2 (Smoothness of F and κ < 1)

≤ κ2∥zt − z∗∥2 + 2αηL∥zt − z∗∥2 + α2η2L2∥zt − z∗∥2 (Eq. 9)

= ∥zt − z∗∥2
(
1− 2ηµ+ 2αηL+ (1 + α2)η2L2

)
.

10
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If α < µ
L then

∥zt+1 − z∗∥2 ≤ ∥zt − z∗∥2
1− 2η (µ− αL)︸ ︷︷ ︸

>0

+(1 + α2)η2L2

 .

Taking η < 2(µ−αL)
(1+α2)L2 would guarantee a contraction.

If α ≤ µ
2L and taking η = 2µ

5L2 we have:

1− 2ηµ+ 2αηL+ (1 + α2)η2L2
α≤µ/2L≤1/2

≤ 1− ηµ+

(
1 +

1

4

)
η2L2

η= 2µ

L2
= 1− 2µ2

5L2
+

µ2

5L2
= 1− µ2

5L2
.

Proposition 9 Take θt+1 to be an approximate minima of ℓt(θ). Suppose T = Π◦(Id−ηF )
is a contraction, if ℓt(θt+1) − ℓ∗t → 0 then the induced sequence {zt = g(θt)}t∈N converges,
zt → z∗ where z∗ is the unique solution to VI(Z, F ).

Proof Let ϵt = zt+1− z∗t be the approximation error between zt+1 and z∗t the minimum of
the surrogate ℓt (exact projected gradient step).

1

2
∥zt+1 − z∗∥2 =

1

2
∥z∗t − z∗ + ϵt∥2

=
1

2
∥z∗t − z∗∥2 + ⟨z∗t − z∗, ϵt⟩+

1

2
ϵ2t

ρ>0
≤ 1

2
∥z∗t − z∗∥2 +

ρ

2
∥z∗t − z∗∥2 +

1

2ρ
ϵ2t +

1

2
ϵ2t

κ∈[0,1)
≤ κ(1 + ρ)

2
∥zt − z∗∥2 + (1 +

1

ρ
)(ℓt(θt+1)− ℓ∗t ).

Where we use the fact that 1
2ϵ

2
t = 1

2∥zt+1 − z∗t ∥2 ≤ ℓt(θt+1)− ℓ∗t from Remark 5. Take any
ρ such that κ(1 + ρ) < 1 then apply Lemma 3.9 in Franci and Grammatico (2022).

Proposition 4 There exists an L-smooth and µ-strongly monotone F , and a sequence of
iterates {zt}t∈N verifying the alpha descent condition with α < 1 such that zt diverges for
any η.

Proof

Let us consider the simple min max example with loss

min
x

max
y

1

2
x2 + xy − 1

2
y2.

11
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This problem can be written as VIP where z = (x, y) and the operator F is linear given by
the matrix

F =

[
1 1
−1 1

]
.

It is well-known that F is both smooth and strongly monotone with zt+1 = zt − ηF (zt)
being a contraction for small enough η (Facchinei and Pang, 2003). Now if we consider a
biased direction given by a matrix P , that is zt+1 = zt−Pzt, then using the fact that ℓ∗t = 0
the α-descent on the surrogate corresponds to the following bound

∥zt+1 − zt + ηFzt∥ = ∥(ηF − P )zt∥ ≤ α∥ηFzt∥.

Despite being a contraction when we follow the true gradient F , the above min max loss
causes rotations in the dynamics that are inherent to the adversarial nature of the problem.
These rotations are carefully controlled by the stepsize and strong convexity/concavity of
the loss. Our counterexample simply adds a bit of rotation that ensures α < 1 but yet is
detrimental to the convergence. Mathematically, we take P = (Id−αQ)ηF where Q is the
rotation matrix

Q =

[
1√
2
− 1√

2
1√
2

1√
2
.

]
With this construction we are guaranteed that α < 1 since

∥(ηF − P )zt∥ = ∥αQηFzt∥ = αη∥Fzt∥,

where the last equality is due the the fact that Q is an orthogonal matrix and therefore
does not change the Euclidean norm of a vector.

Now taking α = 1/
√
2 gives

P =

(
Id−α

[
1√
2
− 1√

2
1√
2

1√
2

])[
η η
−η η

]
.

=

[
1
2

1
2

−1
2

1
2

] [
η η
−η η

]
=

[
0 η
−η 0.

]

We have that zt+1 = zt − Pzt =

[
1 −η
η 1

]
zt has an α = 1/

√
2 but yet diverges for any η > 0

since the Eigen values of the linear system are λ = 1 ± iη therefore the spectral radius is
strictly greater than one. Note that these dynamics are equivalent to gradient descent on
the bilinear loss f(x, y) = xy, which is known to diverge for any stepsize.

Appendix C. Min-max Experiments

To demonstrate our surrogate loss approach we compare different approaches from Section
4, namely: GN, DGN, LM, and GD. Taking only one inner step for GN and GD gives
PHGD and gradient descent-ascent (GDA) as special cases respectively.
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Surr-GD(inner=100,η=0.1)

Figure 1: Convergence of various algorithms from Section 4 on the hidden matching pen-
nies game. PHGD and GDA as presented in Sakos et al. (2024) are compared
against GN, DGN, LM, and GD. (left) Linear convergence to the equilbrium is
observed for several methods with LM and GD outperforming the rest. (middle)
Trajectories for some methods are plotted in both the parameter and prediction
space. (right) The loss ratio ℓt(θt+1)/ℓt(θt) is observed for select methods.

PHGD
GN(5)

DGN(75)
LM(1)

LM(10)
GDA
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D(10)
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Figure 2: Total runtime in seconds for executing 10,000 updates for different algorithms,
where each update may include several inner steps.
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Figure 3: Convergence in the hidden rock-paper-scissors game.

Hidden Matching Pennies. The hidden matching pennies game corresponds to a zero-
sum game of the form (3), where each player has the parameterization hi(θ) = sigmoid(αi

2CELU(α
i
1θ)).

The convex-concave objective is given by f(z1, z2) = −(2z1−1)(2z2−1)+0.75
2

(
(z1 − 1/2)2 + (z2 − 1/2)2

)
.

The parameters for player i, αi
1, α

i
2, are chosen to approximately replicate the trajectory

of PHGD presented in Sakos et al. (2024, Figure 4). In Figure 1 we observe that PHGD
converges with linear convergence in the squared distance to the equilibrium z∗ = (1/2, 1/2),
however, performs poorly if multiple inner steps are taken (GN with 5 inner steps). If η is
increased by an order of magnitude to 0.1 PHGD is observed to diverge, however, conver-
gence is possible via DGN under the same η, with multiple iterations and an appropriate
choice of ηDGN . In contrast to GN, LM is more stable with a larger η, and converges faster
than PHGD/GN. Finally we tested GD for a different number of inner steps with η = 0.1.
Convergence is observed for GDA albeit slow. The benefit of multiple steps is clear, with 10
inner steps outperforming PHGD and only surpassed by LM. Although more inner steps in-
creases the computation cost, it is marginal when compared to the cost of evaluating F (see
Figure 2). Interestingly, Figure 1 (right) shows that spending more compute to minimize
the surrogate at each iteration does not necessarily translate to faster overall convergence
with respect to the outer loop (left). GD with 10 inner steps has a larger loss ratio than
GD with 100 steps but converges faster to the equilibrium.

Hidden rock-paper-scissors. In the hidden rps game each player’s mixed strategy in
rock-paper-scissors is parameterized. Where player i’s strategy zi is given by the function
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hi(θ) = softmax(Ai
2CELU(A

i
1θ

i)), with θi ∈ R5 and randomly initialized matrices: Ai
1 ∈

R4×5, and Ai
2 ∈ R3×4. Figure 3 demonstrates the behaviour of various algorithms for a

fixed initialization of θ = (θ1, θ2) and the matrices Ai
j . We observe that PHGD and LM

with one inner step achieve linear convergence while GDA performs poorly with an unstable
behaviour. Like in the hidden matching pennies game, increasing the number of inner steps
for GD improves stability and performance, with the best performance not necessarily
corresponding to the methods with the lowest loss ratio. Both LM and GD degrade in
performance if too many inner steps are taken, with one and 10 inner steps outperforming
5 and 100 steps for LM and GD respectively.
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