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Abstract
We propose a novel method to apply graph neural networks (GNNs) to combinatorial optimization
problems. Unlike existing approaches that use GNNs to directly solve problem instances, our
method instead uses them to predict hyperparameters for a heuristic solver. The model is trained in
a supervised fashion on a small dataset of graphs, with corresponding hyperparameters obtained
through conventional hyperparameter optimization routines. During inference, the model predicts
near-optimal hyperparameters for unseen instances that minimize the runtime of the heuristic
solver. Experiments show that our method generalizes well to much larger graphs, and outperforms
manually hand-tuned parameters. The framework is flexible and can be applied to a wide variety of
combinatorial optimization problems or heuristic solvers.

1. Introduction

Due to their discrete and highly non-convex nature, problems in combinatorial optimization (CO) are
generally intractable from a complexity theory perspective to solve exactly [15]. Because of this,
countless heuristic algorithms have been proposed that find near-optimal or approximate solutions,
such as branch-and-bound algorithms [26, 27, 34], Markov chain Monte Carlo methods (simulated
annealing [17], parallel tempering [37]), continuous-state dynamical systems (simulated bifurcation
machines [9], chaotic amplitude control [19, 31, 32]), or modern boolean satisfiability (SAT) solvers
[4, 24, 35],

A series of recent works have focused on applying methods from machine learning to solve
combinatorial optimization problems, with several of them relying on graph neural networks (GNNs)
as a backbone[6, 29, 36, 41]. However, it has been argued that the vast majority of these models, if
not all of them, are outperformed by a simpler heuristic algorithm such as simulated annealing or
even greedy search [2, 3]. In addition, there have been many works recently which use GNNs to do
algorithm selection for combinatorial optimization [11, 45] with some success at improving solving
times. Our method differs in the sense that we focus on a specific heuristic algorithm and try to find
good hyperparameters for this algorithm.

In this paper, we propose a novel method to use GNNs for combinatorial optimization. Instead
of using a GNN to solve the problem itself or select an algorithm from a list of solvers, we use it
to predict hyperparameters for another specific heuristic solver. In the offline phase, the GNN is
trained using supervised learning on a dataset composed of pairs of input graphs generated from
various random distributions, along with optimal hyperparameters obtained via an automated tuning
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algorithm. When a new, unseen problem is presented (or online phase), the GNN rapidly infers
near-optimal parameters tailored to the problem type, significantly reducing the running time of the
heuristic algorithm. The time required for parameter inference is significantly less than the runtime
of the CO solver, allowing us to exploit prior knowledge about the correlation between problem
structure and good parameters. We show that our method is able to generalize well to graphs much
larger than those seen during training.

2. Automatic Hyperparameter Selection

2.1. Problem Statement

Given an instance G to a CO problem and a heuristic solver with hyperparameters α and an associated
computational cost function L(G;α), the set of optimal hyperparameters for G is given by

α∗
G = argmin

α
L(G;α) (1)

The problem of automatic hyperparameter selection is to learn the mapping G 7→ α∗
G.

For small instances G or instances with a particular structure, equation (1) can be solved using
standard hyperparameter optimization routines. However, learning the mapping for general instances
G is generally intractable and remains yet to be solved.

2.2. Proposed framework

Our method for inference of good parameters for the solver can be divided into two submodules:

1. A hyperparameter optimization module is performed per instance of the problem which
determines a set of parameters that minimizes the computational cost of the solver. We
measure computational cost in terms of the expected time-to-solution (TTS) to find the optimal
solution with 99% probability, which given by

TTS = K · log(1− 0.99)

log(1− p0)
(2)

where p0 is the probability that the solver finds the optimal solution in a single trial, and K is
some measure of the cost of a single trial, for example the number of matrix multiplications.
We perform this optimization for all small instances where the optimal solution is known (for
example, by using brute-force search).

This results in a dataset containing instances of the Ising problem and a set of good parameters
for the solver for each instance.

2. A deep neural network that is trained on the data generated above. Since our instances are
graphs, we use a GNN to map an input graph to a set of parameters for the solver. Here we
face the additional challenge of allowing the neural network to generalize to larger graphs, as
we are primarily interested in these graphs where the optimal solution is not known.

To resolve this issue, we use a learnable scaling function for some hyperparameters. This is
discussed in more detail in section 2.4.

A schematic of our method is shown in Figure 1.
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Hyperparameter opt. submodule

Inference submodule

Heuristic solver

Hyperparameter optimization α, β, γ, · · ·

GNN α̂, β̂, γ̂, · · · L

Figure 1: Our proposed framework for automatic hyperparameter selection. Greek letters here
represent the hyperparameters of the solver, and L is the loss function between the ground-truth and
the GNN predictions.

2.3. Hyperparameter Optimization Submodule

A large number of algorithms for hyperparameter optimization appear in the literature. Among the
simplest include grid search [18] or random search [1], but more sophisticated ones include model-
based algorithms such as Bayesian optimization with random forests [13] or tree-structured parzen
estimators [42], evolutionary or population-based algorithms [21, 40], or budget-based algorithms
[8, 22].

In this paper we choose to use the BOHB algorithm [8] because of its ability to handle both dis-
crete and continuous hyperparameters, its budget-based resource allocation method, and its provable
bounds on optimality. An open-source implementation is freely available via the hpbandster1

package for Python.
We run the entire BOHB algorithm separately on each graph in our dataset. In each iteration, the

algorithm proposes a new set of hyperparameters and allocates a resource budget, runs the solver
using those hyperparameters, and records the TTS (see equation (2)). The final set of hyperparameters
which we use for our ground-truth dataset is the one that i) is allocated the maximum allowed budget
and ii) has the lowest TTS among all such runs.

2.4. Inference Submodule

With a ground-truth dataset generated using hyperparameter optimization, we can now do supervised
learning to predict hyperparameters for previously unseen instances. To this end, we use a graph
neural network (GNN), a specialized class of neural architecture that deal specifically with graph-
structured data. Though many architectures exist within this class [16, 30, 39, 43], we opt to use one
of the simplest, a graph convolutional network [16].

More specifically, our model architecture consists of the following:

1. https://github.com/automl/HpBandSter
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i. A number of graph convolutional layers, where the output node features X(ℓ) are given in
terms of the input node features X(ℓ−1) as

X(ℓ) = σ
(
ÃX(ℓ−1)W (ℓ)

)
(3)

where W (ℓ) is a weight matrix, Ã = D−1/2(A+ I)D−1/2 is the normalized adjacency matrix
of the graph, D is the degree matrix, and σ is any non-linear activation function. The initial
features X(0) are chosen randomly and fixed.

ii. A readout layer that averages over the final node features before applying a dense layer:

Z = σ
(
W · AvgPool(X(L)) + b

)
(4)

iii. A post-processor that scales the readout as a trainable function of the graph size:

Ẑ = Z ⊙ f(N ; a) (5)

where f : N → R|Z| is a trainable function parametrized by a, N is the number of nodes in
the graph, and ⊙ denotes the element-wise product.

Some hyperparameters, e.g. the number of solver iterations, may have some scaling behaviour
with respect to the size of the graph. Since the ground-truth dataset contains comparatively smaller
instances than real-world graphs, the parameters in the dataset may not be representative of those.
The post-processing step accounts of this by learning how the parameters scale as a function of the
size of the graph, and so is more able to generalize by extrapolating the scaling beyond the sizes
seen in training. The scaling behaviour itself can be learned by varying the sizes of the graphs in the
dataset.

The function f(N ; a) in equation (5) can be parametrized in any way. In this paper we choose to
either use the identity function or an exponential function a0N

a1 , depending on the hyperparameter.
More sophisticated methods include parameterizing a Taylor expansion in N , or using neural
arithmetic logic units (NALUs) [38] or its variants [12, 23]. These parameters are trained in
conjunction with the rest of the model parameters.

The model is trained via gradient descent to minimize the mean-squared error between the
predicted hyperparameters and the ground-truth hyperparameters found by the first submodule.

3. Experiments

3.1. Setting

We evaluate our framework on a heuristic solver for the Ising problem known as chaotic amplitude
control (CAC) [19, 20]. CAC belongs to the class of continuous-state dynamical systems [9, 19, 20,
31], which have been shown to perform significantly better than MCMC methods when properly
tuned on hardware that allows parallelization, such as GPUs. The solver has 5 parameters: the
non-linear coupling β, rate of change of error variables ξ, gain p, time step ∆, and running time T .
More details are given in appendix B.

We measure the computational cost in terms of the number of matrix-vector multiplications K,
since these are the most expensive operations per step for this particular solver. The expected time-
to-solution is given by equation (2). We train on graphs with number of nodes N ∈ {100, 200, 300},
and edge weights chosen uniformly at random from {−1,+1}.
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3.2. Results

To evaluate the performance of the trained model, we use the GNN to predict hyperparameters for a
graph not seen during training, then run the solver using those hyperparameters and record the TTS.
Again, we are primarily interested in the ability of the model to generalize to larger graphs.

For SK instances, we randomly generate graphs with size N ∈ {400, 500, 700, 800, 900, 1000},
and compute the median and standard deviation of the TTS over these instances. The results are
shown in Table (1), along with the ground-truth instances for comparison. We see that, even though
the model is not trained on graphs of these sizes, it is still able to achieve a good TTS.

For the sparse, 2D toroidal, and scale-free graphs, we evaluate the performance on the GSET
instances [5]. For comparison purposes we also include the results in [31], which use hand-tuned
hyperparameters for the same solver. The results for graphs of size N = 800 are shown in table (2),
and for graphs of size up to N = 2000 in table (3) in appendix A. We observe that, in the majority of
instances, the hyperparameters predicted by the model outperform the hand-tuned ones. This again
shows the ability of our method to generalize to much larger graphs.

TTS of Training Data
N Median STD

100 2.08× 103 2.83× 103

200 8.59× 103 8.79× 103

300 2.11× 104 8.77× 104

TTS with Parameters Predicted by GNN Hand-tunedwith post-processing without post-processing
N Median STD Median STD Median

400 3.51× 104 1.30× 105 2.92× 104 1.73× 105 1.20× 105

500 5.00× 104 2.06× 105 1.08× 105 1.87× 105 2.00× 105

700 1.40× 105 7.16× 105 1.05× 106 NaN 5.00× 105

800 2.20× 105 6.82× 105 1.23× 106 NaN 9.00× 105

900 2.50× 105 2.98× 106 5.40× 106 NaN 1.00× 106

1000 3.05× 105 2.01× 106 NaN NaN 1.50× 106

Table 1: Medians and standard deviations of the TTS of 100 fully-connected SK instances of size
N . (Top) instances in the training dataset, (bottom) model predictions with and without the post-
processing step. For reference, the median TTS found by hand tuning CAC shown in [20] are
included.

4. Conclusion and Outlook

We presented our novel method to apply GNNs to combinatorial optimization by predicting hyperpa-
rameters for a heuristic solver, and demonstrated that the trained model is able to generalize to much
larger graphs than those seen during training.

The framework presented in this work can be generalized to other heuristic solvers, hyperpa-
rameter tuning algorithms such derivative-free optimization methods [28, 33], and different GNN
architectures such as GATs [39] or GINs [43], providing a flexible approach that can be adapted to
various combinatorial optimization tasks.
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Instance N GNN TTS Hand-tuned TTS

G1 800 3.73× 104 9.08× 104

G2 800 6.30× 105 9.20× 105

G3 800 9.41× 104 1.70× 105

G4 800 1.69× 105 2.09× 105

G5 800 1.24× 105 2.27× 105

G6 800 6.24× 104 1.89× 105

G7 800 8.48× 104 5.62× 105

G8 800 2.10× 105 4.31× 105

G9 800 2.67× 105 4.12× 105

G10 800 1.21× 106 1.39× 106

G11 800 2.73× 105 3.38× 105

Instance N GNN TTS Hand-tuned TTS

G12 800 1.91× 105 2.24× 105

G13 800 9.97× 105 3.91× 105

G14 800 1.99× 107 1.73× 107

G15 800 4.72× 105 5.22× 105

G16 800 1.03× 106 4.94× 105

G17 800 4.27× 106 3.09× 106

G18 800 5.02× 105 5.57× 105

G19 800 1.57× 105 1.22× 106

G20 800 3.66× 104 1.07× 105

G21 800 5.85× 105 3.99× 106

Table 2: TTS of the solver on the GSET instances of size N = 800, using hyperparameters predicted
by the GNN vs. those hand-tuned in [31].
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Appendix A. Supplementary Tables and Figures

Instance N GNN TTS Hand-tuned TTS

G1 800 3.73× 104 9.08× 104

G2 800 6.30× 105 9.20× 105

G3 800 9.41× 104 1.70× 105

G4 800 1.69× 105 2.09× 105

G5 800 1.24× 105 2.27× 105

G6 800 6.24× 104 1.89× 105

G7 800 8.48× 104 5.62× 105

G8 800 2.10× 105 4.31× 105

G9 800 2.67× 105 4.12× 105

G10 800 1.21× 106 1.39× 106

G11 800 2.73× 105 3.38× 105

G12 800 1.91× 105 2.24× 105

G13 800 9.97× 105 3.91× 105

G14 800 1.99× 107 1.73× 107

G15 800 4.72× 105 5.22× 105

G16 800 1.03× 106 4.94× 105

G17 800 4.27× 106 3.09× 106

G18 800 5.02× 105 5.57× 105

G19 800 1.57× 105 1.22× 106

G20 800 3.66× 104 1.07× 105

G21 800 5.85× 105 3.99× 106

G43 1000 8.03× 104 1.74× 105

G44 1000 1.29× 105 2.44× 105

G45 1000 4.27× 105 8.81× 105

G46 1000 5.42× 105 1.53× 106

Instance N GNN TTS Hand-tuned TTS

G51 1000 2.55× 106 3.73× 106

G52 1000 9.14× 106 3.12× 106

G53 1000 2.04× 107 1.73× 107

G54 1000 2.12× 108 2.95× 108

G22 2000 2.05× 106 2.52× 106

G23 2000 NaN NaN
G24 2000 1.96× 106 4.79× 106

G25 2000 9.80× 106 1.73× 107

G26 2000 4.68× 106 1.01× 107

G27 2000 3.73× 105 8.36× 105

G28 2000 1.26× 106 2.39× 106

G29 2000 4.84× 106 4.16× 106

G30 2000 3.99× 107 4.21× 107

G31 2000 2.16× 107 4.91× 107

G32 2000 6.92× 107 7.08× 107

G33 2000 2.36× 108 3.07× 108

G34 2000 3.26× 107 2.09× 107

G35 2000 4.19× 108 NaN
G36 2000 1.66× 109 3.68× 108

G37 2000 1.59× 109 NaN
G38 2000 3.96× 107 1.08× 108

G39 2000 4.11× 106 4.07× 106

G40 2000 5.09× 108 1.84× 109

G41 2000 2.59× 106 1.71× 107

G42 2000 2.39× 107 1.40× 107

Table 3: TTS of the solver on GSET instances up to size N = 2000, using hyperparameters predicted
by the GNN vs. those hand-tuned in [31].

Figure 2: t-SNE of the hyperparameters found by (left) the optimization submodule and (right) the
graph neural network. The distinct clusters suggest that the optimal hyperparameters for the heuristic
solver can be deduced from the graph structure.
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Appendix B. Description of CAC solver

Chaotic amplitude control (CAC) is a method for solving the Ising/Max-Cut problem in which a
continuous time dynamical system is integrated numerically [19, 20, 31]. The trajectory of this
dynamical system is used to find an approximate solution to the corresponding Ising problem. This
method is part of a larger class of algorithms sometimes called ”differential solvers" which includes
coherent Ising machines (CIM) [44], simulated bifurcation machines (SBM) [10], analog iterative
machines (AIM) [14] as well as continuous time dynamical systems to solve the boolean SAT
problem [7, 25]. For CAC, the dynamical system is defined by the following set of coupled ODEs:

dxi(t)

dt
= (p− 1)xi(t)− xi(t)

3 + βei(t)
∑
j

Jijxj(t) (6)

dei(t)

dt
= ξei(t)(a− xi(t)

2) (7)

where J is the coupling matrix corresponding to the Ising problem being solved and p, β, ξ are
hyperparameters of the continuous time dynamical system. Equations (6) and (7) are then numerically
integrated for time T using the Euler method with time step ∆ which results in the following discrete
time dynamical system:

xi(t+∆) = xi(t) + ∆ · dxi
dt

(8)

ei(t+∆) = ei(t) + ∆ · dei
dt

(9)

This gives us a full set of parameters {∆, p, β, ξ, T}, where K = T
∆ is the total number of time-steps

computed per system trajectory. Because of the complicated chaotic dynamics of this system, the
values of these parameters need to be selected precisely for each type of problem instance in order
for the algorithm to have good performance [20, 31, 33]. Although we use CAC as a test case for this
work, this problem of parameter selection is common to many differential solvers and to heuristic
Ising solvers in general.

Parameter Description Tuning Range

p rate of linear gain [−5, 1]

β non-linear coupling strength [0.01, 1]

ξ rate of change of error variables [0.01, 10]

∆ time step for Euler integration
[
2−6, 2−1

]
T total simulation time

[
N
10 , 10N

]
Table 4: Parameters used in the CAC solver along with the allowed range during hyperparameter
optimization.

12


	Introduction
	Automatic Hyperparameter Selection
	Problem Statement
	Proposed framework
	Hyperparameter Optimization Submodule
	Inference Submodule

	Experiments
	Setting
	Results

	Conclusion and Outlook
	Supplementary Tables and Figures
	Description of CAC solver

