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Abstract
Monotone inclusions have a wide range of applications, including minimization, saddle-point, and
equilibria problems. We introduce new stochastic algorithms, with or without variance reduction,
to estimate a root of the expectation of possibly set-valued monotone operators, using at every
iteration one call to the resolvent of a randomly sampled operator. We also introduce a notion of
similarity between the operators, which holds even for discontinuous operators. We leverage it to
derive linear convergence results in the strongly monotone setting.

1. Introduction

We consider stochastic monotone inclusions in a given finite-dimensional real Hilbert space X ,
which are problems of the form

Find x⋆ ∈ X such that 0 ∈ A(x⋆), where A := Eξ∼D [Aξ] (1)

and Aξ is a possibly set-valued monotone operator for every random sample ξ of a distribution
D. We recall basic notions of monotone operator theory in Section 2 and refer to the textbook
Bauschke and Combettes [6] for more details. For instance, when D is the uniform distribution over
[n] := {1, . . . , n} for some n ≥ 2, (1) becomes the finite-sum monotone inclusion

Find x⋆ ∈ X such that 0 ∈ A(x⋆) :=
1

n

n∑
i=1

Ai(x
⋆). (2)

We introduce randomized algorithms, with or without variance reduction, to solve (1). They use at
every iteration the resolvent of one randomly chosen Aξ.

1.1. Motivation

Monotone inclusions [6, 73] have a wide range of applications [19, 32, 46], in mechanics [36, 37],
partial differential equations [2, 34, 55, 64], mean field games [12, 38], control [75], communica-
tions [61, 80], traffic equilibrium [3, 33], optimal transport [62], Nash equilibria and game theory
[11, 14, 52, 58, 81], and are of utmost importance in machine learning. Primarily, they encompass
optimization problems [4, 15, 17, 66, 74]: minimizing a convex function f : X → R ∪ {+∞}
is equivalent to (1) with A = ∂f , the subdifferential of f , and finding a stationary point of a
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smooth but possibly nonconvex function f is equivalent to (1) with A = ∇f , the gradient of f .
Nonconvex nonsmooth optimization problems have variational formulations, too [57]. Moreover,
splitting algorithms to solve structured optimization problems can be derived by formulating the
problem as a monotone inclusion in a higher-dimensional lifted space. For instance, minimizing
f +

∑n
i=1 gi(Kix), for linear operators Ki : W → Ui and functions g and hi, can be formulated as

(1) with X = W ×U1 × · · · × Un and the monotone operator

A =


∂f K∗

1u1 · · · K∗
nun

−K1x (∂g1)
−1(u1) 0 0

... 0
. . . 0

−Knx 0 0 (∂gn)
−1(un)

 , (3)

where ·∗ denotes the adjoint operator. For a suitable preconditioning linear operator P , that is
symmetric and positive definite, P−1A is monotone in X endowed with the modified inner product
⟨·, P ·⟩, and one can design iterative algorithms to solve 0 ∈ P−1A(x) [5, 13, 20–24, 26, 27, 42, 71,
72].

Besides minimization problems, monotone inclusions allow us to formulate saddle-point prob-
lems [16, 28, 29, 50, 54, 60, 67], which have many applications in machine learning [9, 40, 56], e.g.
for adversarial training [39, 53], GANs [35], and distributionally robust optimization [59].

We propose different algorithms in the framework of the Stochastic Proximal Point Method
(SPPM), with or without variance reduction. Even in the optimization setting, our study under a
similarity assumption, which is weaker than smoothness, is new, to the best of our knowledge.

2. Definitions and Properties of Monotone Operators

Let B : X → 2X be a set-valued operator on X . We define its graph gra(B) := {(x, u) ∈ X 2 :
u ∈ B(x)} and its inverse B−1 as the set-valued operator whose graph is gra(B−1) := {(u, x) ∈
X 2 : u ∈ B(x)}. x ∈ X is a zero of B if 0 ∈ B(x).

2.1. Monotone Operators

B is monotone if for every (x, u) and (y, v) in gra(B),
⟨u− v, x− y⟩ ≥ 0.

B is maximally monotone if there exists no monotone operator whose graph strictly contains gra(B).
B is (maximally) monotone if and only if B−1 is (maximally) monotone. The subdifferential ∂f of
a proper lower semicontinuous convex function f is maximally monotone.

B is µ-strongly monotone for some µ > 0 if, for every (x, u) and (y, v) in gra(B),
⟨u− v, x− y⟩ ≥ µ∥x− y∥2. (4)

In that case, γB is γµ-strongly monotone, for every γ > 0. If B is µ-strongly maximally monotone,
its zero exists and is unique.

The following assumption on the operators in (1) will be considered to analyze the proposed
algorithms.

Assumption 1 (strong monotonicity) There exists µ > 0 such that Aξ is µ-strongly maximally
monotone for every ξ ∼ D. Therefore, A := Eξ∼D [Aξ] is µ-strongly maximally monotone as well
and the solution x⋆ to (1) exists and is unique.
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A single valued operator C : X → X is β-cocoercive for some β > 0 if, for every (x, y) ∈ X 2,

⟨x− y, C(x)− C(y)⟩ ≥ β∥C(x)− C(y)∥2.

A function f is L-smooth for some L > 0 if it is differentiable and its gradient ∇f is L-Lipschitz
continuous; that is, for every (x, y) ∈ X 2,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

In that case, ∇f is L−1-cocoercive, according to the Baillon–Haddad theorem. This equivalence be-
tween Lipschitz-continuity and cocoercivity only holds for operators which are gradients of convex
functions. In general, a monotone operator can be Lipschitz-continuous without being cocoercive.
A prominent example is the skew operator (x, y) ∈ X 2 7→ (K∗y,Kx) for any linear operator K
on X , which is ∥K∥-Lipschitz continuous but not cocoercive. Thus, monotone inclusions are much
more general than optimization problems. In particular, the forward algorithm generalizing gradient
descent, which iterates xk+1 := xk − γA(xk) for a maximally monotone single-valued operator A
and a stepsize γ > 0, converges if A is cocoercive, but not if it is merely Lipschitz-continuous (take
−I as an example, where I denotes the identity: the iteration diverges for every γ > 0 and x0 ̸= 0).
This is why robust iterative fixed-point algorithms to solve monotone inclusions use the resolvent
of the monotone operators, as we describe in the next section.

2.2. The Resolvent and the Proximal Point Method

The resolvent of B is the operator (I + B)−1. According to the Minty theorem, if B is maxi-
mally monotone, its resolvent is defined everywhere and single-valued. The resolvent of a strongly
monotone operator is contractive:

Lemma 1 (contractivity of the resolvent) Let B : X → 2X be a µ-strongly maximally monotone
operator, for some µ > 0. Then its resolvent is (1+ µ)−1-contractive; that is, for every (x, y) ∈ X ,

∥x+ − y+∥ ≤ 1

1 + µ
∥x− y∥, (5)

where x+ = (I +B)−1(x), y+ = (I +B)−1(y).

The resolvent of the subdifferential ∂f of a function f is its proximity operator proxf = (I +

∂f)−1 : x ∈ X 7→ argminy
(
f(y)+ 1

2∥y−x∥2
)
. Optimization algorithms making use of proximity

operators are called proximal algorithms [27, 63, 70]. The iteration xk+1 := proxf (x
k) to minimize

a function f , and by extension the iteration xk+1 := (I + B)−1(xk) to find a zero of the operator
B, is called the proximal point algorithm, or proximal point method (PPM) [68]. It follows from
Lemma 1 that if B is µ-strongly maximally monotone, the PPM converges linearly to its zero
x⋆ = (I + B)−1(x⋆), which exists and is unique, since ∥xk+1 − x⋆∥ ≤ 1

1+µ∥x
k − x⋆∥ for every

k ≥ 0.

2.3. Similarity Between Operators

It is natural to consider that there exists some level of similarity or homogeneity between the op-
erators Ai, in particular in machine learning where they express characteristics of underlying data
[18, 43, 76]. To capture this property, we define two notions of similarity.
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Assumption 2 (expected similarity) In Problem (1), there exist a solution x⋆ and a constant δ > 0
such that, for every x ∈ X , D-almost every ξ and every aξ ∈ Aξ(x), there exists a⋆ξ ∈ Aξ(x

⋆) such

that Eξ′∼D

[
a⋆ξ′
]
= 0 and

Eξ∼D

[∥∥aξ − Eξ′∼D
[
aξ′
]
− a⋆ξ

∥∥2] ≤ δ2∥x− x⋆∥2. (6)

This assumption can be satisfied by set-valued operators with discontinuities and is even weaker
than assuming every Aξ −A to be Lipschitz-continuous at x⋆ (see an example in Appendix A ).

Assumption 3 (average similarity) In Problem (2), there exist a solution x⋆ and δ̃ > 0 such that,
for every xi ∈ X and ai ∈ Ai(xi), i ∈ [n], there exist a⋆i ∈ Ai(x

⋆), i ∈ [n], such that
∑n

i=1 a
⋆
i = 0,

and

1

n

n∑
i=1

∥∥∥∥∥∥ai − 1

n

n∑
j=1

aj − a⋆i

∥∥∥∥∥∥
2

≤ δ̃2

n

n∑
i=1

∥xi − x⋆∥2. (7)

Assumption 3 is stronger than Assumption 2 with D the uniform distribution over [n], since (7) with
x1 = · · · = xn = x implies (6).

Related definitions of similarities have been considered in several works [43, 47, 49, 51, 76, 77].
For instance, the property that for every (x, y) ∈ X 2

1

n

n∑
i=1

∥Ai(x)−A(x)−Ai(y) +A(y)∥2 ≤ δ2∥x− y∥2,

in the case where the Ai = ∇fi are gradients of smooth functions fi, is called Hessian variance in
Szlendak et al. [77] and δ-average second-order similarity in Lin et al. [51]. Indeed, if the functions
fi are twice differentiable, this property is equivalent to the one that, for every x ∈ X ,

1

n

n∑
i=1

∥∥∇2fi(x)−∇2f(x)
∥∥2 ≤ δ2;

that is, the variance of the Hessians ∇2fi is uniformly bounded.

3. The Stochastic Proximal Point Method (SPPM)

The Stochastic Proximal Point Method (SPPM; Algorithm 1, Appendix D) consists of iterating
the resolvent of an operator Aξk chosen randomly at every iteration k. Under Assumption 1, it
converges linearly to a neighborhood of x⋆.

Theorem 1 In Problem (1), let Assumption 1 hold, and for every ξ ∼ D, let a⋆ξ ∈ Aξ(x
⋆), such

that Eξ∼D

[
a⋆ξ

]
= 0. Such a⋆ξ exist by definition of x⋆. If they are not unique, we define them as

ones minimizing
σ2
⋆ := Eξ∼D

[∥∥a⋆ξ∥∥2] . (8)

Then in SPPM with any stepsize γ > 0 and initial estimate x0 ∈ X , we have, for every k ≥ 0,

E

[∥∥∥xk − x⋆
∥∥∥2] ≤ ( 1

1 + γµ

)2k ∥∥x0 − x⋆
∥∥2 + 1− (1 + γµ)−2k

(1 + γµ)2 − 1
γ2σ2

⋆ (9)

≤
(

1

1 + γµ

)2k ∥∥x0 − x⋆
∥∥2 + γσ2

⋆

2µ+ γµ2
. (10)
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Our result is tight: (9) is satisfied with an equality with the operators Aξ(x) = µ(x − x⋆) + a⋆ξ for

some µ > 0, x⋆ ∈ X , and a⋆ξ ∈ X such that Eξ∼D

[
a⋆ξ

]
= 0.

Even in the optimization setting, Theorem 1 is new. In Bertsekas [7], the SPPM, called incre-
mental proximal algorithm, was studied to minimize a finite sum of functions, but the convergence
bounds depend on the number of functions, so they are not applicable to our setting where the dis-
tribution D is arbitrary. In Bianchi [10] and Toulis et al. [78], convergence results with decreasing
stepsizes are derived. SPPM-type algorithms have been studied for stochastic optimization in Asi
and Duchi [1], with a focus on stability in the case of inexact computation of the proximity operator.
In Davis and Drusvyatskiy [30] the SPPM is studied for optimization, but their convergence analysis
(Theorem 4.4) relies on the decay of the function values, so it is not applicable to our setting.

In Ryu and Boyd [69, Theorem 7], in the convex optimization setting, by simply using the trian-
gular inequality ∥xk+1−x⋆∥ ≤ ∥

(
I + γAξk

)−1
(xk)−

(
I + γAξk

)−1
(x⋆)∥+∥

(
I + γAξk

)−1
(x⋆)−

x⋆∥ ≤ (1 + γµ)−1∥xk − x⋆∥ + γ∥ã⋆
ξk
∥, where ã⋆ξ is the minimum-norm element of Aξ(x

⋆), they
obtain

E
[
∥xk − x⋆∥

]
≤
(

1

1 + γµ

)k

∥x0 − x⋆∥+ (1 + γµ)σ̃⋆
µ

,

where σ̃⋆ = Eξ∼D

[
∥ã⋆ξ∥

]
. The neighborhood size does not tend to zero when γ → 0, as is the case

in (10). In Patrascu and Necoara [65, Theorem 10], the following result is obtained in the convex
optimization setting with smooth functions:

E

[∥∥∥xk − x⋆
∥∥∥2] ≤ 2

(
1

1 + γµ

)2k ∥∥x0 − x⋆
∥∥2 + 2(1 + γµ)2σ2

⋆

γ2
.

The neighborhood size tends to +∞ when γ → 0, whereas it should tend to zero. In the same
setting, Khaled and Jin [47, eq. 19] derived

E

[∥∥∥xk − x⋆
∥∥∥2] ≤ ( 1

1 + γµ

)k ∥∥x0 − x⋆
∥∥2 + γσ2

⋆

µ
.

The rate and the neighborhood size are larger than in (10). Thus, even in the optimization setting,
our result is new and tight, with a simple and elegant proof.

4. The SPPM with Variance Reduction

SPPM with Operator Correction (SPPM-OC) The SPPM does not converge to the exact so-
lution x⋆ of (1) but only to its neighborhood. To correct this shortcoming, we propose a new
algorithm, the SPPM with Operator Correction (SPPM-OC; Algorithm 2 in the Appendix). It is
variance-reduced [41]; that is, it converges to the exact solution under Assumptions 1 and 2. This is
achieved by adding a shift to xk before applying the resolvent of a randomly chosen Aξk , to correct
for the difference between Aξk and its expectation A.

Theorem 2 In Problem (1), let Assumptions 1 and 2 hold. Then, with a suitable selection of a
stepsize, the iteration complexity of SPPM-OC to achieve ϵ-accuracy for any ϵ > 0 is

O

((
δ2

µ2
+ 1

)
log

(∥∥x0 − x⋆
∥∥2

ϵ

))
.
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Thus, SPPM-OC converges linearly to the solution x⋆. But it requires to select an element ak in
A(xk) at every iteration, which can be costly or even impractical. Therefore, in the next section, we
study another algorithm, in which this selection is performed with a small probability only.

The Loopless Stochastic Variance-Reduced Proximal Point Method (L-SVRP) In the opti-
mization setting with convex differentiable functions, the Stochastic Variance-Reduced Proximal
Point Method (SVRP) was proposed in Khaled and Jin [47]. It was discovered independently in
Traoré et al. [79], with an analysis based on the decay of the function values, which is not applica-
ble to our setting. This algorithm is a proximal analog of the Stochastic Variance-Reduced Gradient
Method (SVRG) [45, 82], hence its name. More precisely, it is a proximal analog of loopless ver-
sions of SVRG called L-SVRG [44, 48]. That is why we call the algorithm the Loopless Stochastic
Variance-Reduced Proximal Point Method (L-SVRP), to emphasize its loopless nature. We intro-
duce and study L-SVRP (Algorithm 3, Appendix F) in the much more general setting of set-valued
monotone inclusions.

Theorem 3 (Convergence of L-SVRP; informal) In Problem (1), let Assumptions 1 and 2 hold.
Then, with an appropriate selection of stepsizes, L-SVRP (Algorithm 3) solves Problem (1) in

O
((

δ2

µ2
+

1

p

)
log

(
V 0

ϵ

))
.

The best value of p depends on how much more costly it is to pick an element ak ∈ A(xk) than to
apply the resolvent of an Aξ. In any case, there is no interest in choosing p larger than µ2

δ2
, which

is typically very small. Hence, L-SVRP can be orders of magnitude faster than SPPM-OC, which
corresponds to the particular case of L-SVRP with p = 1.

In the case of minimizing a sum of n differentiable functions fi, i.e. Problem (2) with Ai = ∇fi,
with p = 1

n , we recover the same iteration complexity as in Khaled and Jin [47].

Point-SAGA for Monotone Inclusion Problem Point-SAGA (Algorithm 4, Appendix G) is an
algorithm proposed by Defazio [31] for the minimization of a sum of convex functions, using at
every iteration the proximity operator of one randomly chosen function. It was also studied as a
randomized primal–dual algorithm in Condat and Richtárik [25]. The algorithm converges linearly
when all functions are smooth and strongly convex. We introduce and study Point-SAGA in the
general setting of set-valued monotone inclusions. Point-SAGA is an alternative to the snapshot
algorithm L-SVRP that never requires invoking the average operator A. As a counterpart, Point-
SAGA is limited to the finite-sum problem (2), since n elements of X are stored in a memory table.

Theorem 4 (Convergence of Point-SAGA; informal) In Problem (2), let Assumptions 1 and 3 hold.
Then, with an appropriate selection of stepsizes, the iteration complexity of Point-SAGA to achieve
ϵ-accuracy for any ϵ > 0 is

O

((
δ̃2

µ2
+ n

)
log

1

ϵ

)
.

To the best of our knowledge, the analysis of Point-SAGA under a similarity assumption is new,
even in the particular case of minimizing convex functions.
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nonsmooth optimization algorithms. J. Optim. Theory Appl., July 2022.

[73] S. Simons. From Hahn–Banach to Monotonicity. Springer-Verlag, Berlin, 2008.

11



STOCHASTIC PROXIMAL POINT METHODS FOR MONOTONE INCLUSIONS UNDER EXPECTED SIMILARITY

[74] S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. The MIT Press,
2011.

[75] G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, and C. N. Jones. Operator splitting methods in
control. Foundations and Trends in Systems and Control, 3(3):249–362, 2016.

[76] Y. Sun, G. Scutari, and A. Daneshmand. Distributed optimization based on gradient tracking
revisited: Enhancing convergence rate via surrogation. SIAM Journal on Optimization, 32(2):
354–385, 2022.

[77] R. Szlendak, A. Tyurin, and P. Richtárik. Permutation compressors for provably faster dis-
tributed nonconvex optimization. In Proc. of Int. Conf. Learning Representations (ICLR),
2022.

[78] P. Toulis, D. Tran, and E. Airoldi. Towards stability and optimality in stochastic gradient
descent. In Proc. of Int. Conf. Artificial Intelligence and Statistics (AISTATS), pages 1290–
1298, 2016.

[79] C. Traoré, V. Apidopoulos, S. Salzo, and S. Villa. Variance reduction techniques for stochastic
proximal point algorithms. preprint arXiv:2308.09310, 2023.
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Figure 1: Performance comparison of SPPM with, from left to right, γ = 10−3, 10−2, 10−1, SPPM-
OC, L-SVRP. SPPM-OC and L-SVRP have the same parameter values in the 3 plots, the
differences are only due to randomness.

Appendix A. Simple Example

Let us give a simple example of n = 2 maximally monotone operators A1 : x ∈ R 7→ ({1}
if x < 1, [1, 3] if x = 1, {3} if x > 1) and A2 : x ∈ R 7→ ({4x − 7} if x < 1, [−3,−1]
if x = 1, {4x − 5} if x > 1) on X = R, with D the uniform distribution on [n]. We have
A = 1

2(A1 + A2) : x ∈ R 7→ ({2x − 3} if x < 1, [−1, 1] if x = 1, {2x − 1} if x > 1), and
x⋆ = 1. For every x < 1, with a1 = 1 ∈ A1(x), a2 = 4x − 7 ∈ A2(x), a⋆1 = 2, a⋆2 = −2, we
can check that (6) is satisfied with δ = 2, as the left-hand side is (2x − 2)2. For every x > 1, with
a1 = 3 ∈ A1(x), a2 = 4x − 5 ∈ A2(x), a⋆1 = 2, a⋆2 = −2, we can check that (6) is satisfied with
δ = 2, as the left-hand side is (2x− 2)2 as well. At x = x⋆ = 1, for every a1 ∈ [1, 3] = A1(x) and
a2 ∈ [−3,−1] = A2(x), with a⋆1 = 1

2(a1 − a2) = −a⋆2, (6) is satisfied with any δ, as the left-hand
side is zero. Overall, (6) is satisfied δ = 2.

Appendix B. Experiments

We perform numerical experiments for the saddle-point problem

min
y∈Rdy

max
z∈Rdz

1

n

n∑
i

fi(y, z),

for some vector dimensions dy ≥ 1 and dz ≥ 1, where each fi is a strongly convex–strongly
concave function defined as

fi : (y, z) 7→
1

2
⟨y,Miy⟩+ ⟨bi, y⟩+ ⟨z,Qiy⟩ − ⟨ci, z⟩ −

1

2
⟨z,Niz⟩ ,

with the following parameters:

• Each matrix Mi ∈ Rdy×dy and Ni ∈ Rdz×dz is generated randomly with apriori selected
eigenvalues λl(Mi) = 10l and λj(Ni) = 10j respectively, where l ∈ {0, 1, . . . , dy − 1} and
j ∈ {0, 1, . . . , dz − 1};

• The vectors bi ∈ Rdy and ci ∈ Rdz are sampled from normal distributions N (1, 5 · Idy) and
N (1, 5 · Idz) respectively;
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• Every element of the matrix Qi is sampled from the standard normal distribution, then each
column is normalized to have a full-rank matrix.

To formulate the problem as Problem (2), we define x := (y, z) and the single-valued monotone
operators Ai : x 7→ (∇⊤

y fi(y, z),−∇⊤
z fi(y, z))

⊤; that is,

Ai(x) =

(
Mi Q⊤

i

−Qi Ni

)
x+

(
bi
ci

)
= Bix+ ri.

We take n = 200, dy = 3, dz = 4. Each operator Ai is 1-strongly monotone and L-Lipschitz-
continuous with L = 1000.

We compute the similarity constant δ as follows. By Assumption 2, we have

1

n

n∑
i=1

∥Ai(x)−A(x)−Ai(x
⋆) +A(x⋆)∥2 ≤ δ2∥x− x⋆∥2,

Plugging in the expression for Ai(x) = Bix+ ri, we obtain

1

n

n∑
i=1

∥Ai(x)−A(x)−Ai(x
⋆) +A(x⋆)∥2 = 1

n

n∑
i=1

∥∥∥∥∥∥Bix− 1

n

n∑
j=1

Bjx− Bix
⋆ +

1

n

n∑
j=1

Bjx
⋆

∥∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥∥∥∥∥Bi −
1

n

n∑
j=1

Bj

∥∥∥∥∥∥
2

∥x− x⋆∥2.

Thus we have the simple and easy to compute upper bound

δ ≤ 1

n

n∑
i=1

∥∥∥∥∥∥Bi −
1

n

n∑
j=1

Bj

∥∥∥∥∥∥
2

≈ 26.5. (11)

As we can see, δ << L.
In Figure 1, we compare SPPM with 3 different values of γ, SPPM-OC with the theoretically

optimal value γ = µ
δ2

≈ 10−3, L-SVRP with p = 0.05 and the theoretically optimal value of γ in
(17). As predicted by the theory, SPPM converges only to a neighborhood of the solution, whose
size is larger if γ is larger. SPPM-OC is faster than L-SVRP, but its per-iteration cost is much higher,
as we detail in Figure 2.

In Figure 2, we compare the variance-reduced algorithms SPPM-OC, L-SVRP with different
values of p, and Point-SAGA. SPPM-OC and L-SVRP with p = 1 are identical. We show conver-
gence with respect to the number of operator calls, counting 1 for a call to an Aξ or its resolvent,
and n for a call to A in L-SVRP. As a result, L-SVRP with p = 0.1 and Point-SAGA perform best.
We should keep in mind that L-SVRP does a full pass over the n operators with a small probability,
whereas Point-SAGA requires memory storage of size n times the dimension of x. Thus, the best
algorithm depends on the problem at hand.
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Figure 2: Performance comparison of SPPM-OC, L-SVRP with different values of p =
1, 0.1, 0.05, 1/n = 0.005, and Point-SAGA. The theoretically optimal value of γ is chosen
in all cases. The error is shown with respect to the number of iterations on the left, and
the number of operator calls on the right.

Appendix C. Proof of Lemma 1

Let (x, y) ∈ X 2. From the definition of the resolvent, we have x − x+ ∈ B(x+) and y − y+ ∈
B(y+). Then it follows from (4) that

µ
∥∥x+ − y+

∥∥2 ≤ 〈(x− x+)− (y − y+), x+ − y+
〉
=
〈
x− y, x+ − y+

〉
−
∥∥x+ − y+

∥∥2.
Therefore

(1 + µ)
∥∥x+ − y+

∥∥2 ≤ 〈x− y, x+ − y+
〉
≤ ∥x− y∥∥x+ − y+∥,

so that
(1 + µ)∥x+ − y+∥ ≤ ∥x− y∥.

Appendix D. SPPM: Convergence Analysis

Algorithm 1 Stochastic Proximal Point Method (SPPM)
1: Parameters: stepsize γ > 0, initial estimate x0 ∈ X
2: for k = 0, 1, . . . do
3: Sample ξk ∼ D
4: xk+1 :=

(
I + γAξk

)−1
(xk)

5: end for

D.1. Proof of Theorem 1

Let k ≥ 0. We have
x⋆ =

(
I + γAξk

)−1
(
x⋆ + γa⋆ξk

)
, (12)
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so that ∥∥∥xk+1 − x⋆
∥∥∥2 =

∥∥∥(I + γAξk
)−1

(xk)−
(
I + γAξk

)−1
(
x⋆ + γa⋆ξk

)∥∥∥2
(5)
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆ − γa⋆ξk

∥∥∥2
=

1

(1 + γµ)2

(∥∥∥xk − x⋆
∥∥∥2 − 2γ

〈
a⋆ξk , x

k − x⋆
〉
+ γ2

∥∥∥a⋆ξk∥∥∥2) .

We denote by Fk the σ-algebra generated by the collection of random variables (x0, . . . , xk). Tak-
ing the expectation conditionally on Fk, we have, using the fact that Eξ∼D

[
a⋆ξ

]
= 0,

E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 − 2γ

〈
E
[
a⋆ξk | Fk

]
︸ ︷︷ ︸

0

, xk − x⋆

〉
+

γ2

(1 + γµ)2
E

[∥∥∥a⋆ξk∥∥∥2 | Fk

]
(8)
=

1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 + γ2σ2

⋆

(1 + γµ)2
.

By unrolling the recursion, we obtain

E

[∥∥∥xk − x⋆
∥∥∥2] ≤

(
1

1 + γµ

)2k ∥∥x0 − x⋆
∥∥2 + k−1∑

l=0

(
1

1 + γµ

)2l γ2σ2
⋆

(1 + γµ)2

=

(
1

1 + γµ

)2k ∥∥x0 − x⋆
∥∥2 + (1 + γµ)2 − (1 + γµ)2(1−k)

(1 + γµ)2 − 1

γ2σ2
⋆

(1 + γµ)2

=

(
1

1 + γµ

)2k ∥∥x0 − x⋆
∥∥2 + 1− (1 + γµ)−2k

(1 + γµ)2 − 1
γ2σ2

⋆

≤
(

1

1 + γµ

)2k ∥∥x0 − x⋆
∥∥2 + 1

(1 + γµ)2 − 1
γ2σ2

⋆

=

(
1

1 + γµ

)2k ∥∥x0 − x⋆
∥∥2 + γσ2

⋆

2µ+ γµ2
.

Appendix E. SPPM-OC: Convergence Analysis

Algorithm 2 Stochastic Proximal Point Method with Operator Correction (SPPM-OC)
1: Parameters: stepsize γ > 0, initial estimate x0 ∈ X
2: for k = 0, 1, . . . do
3: Sample ξk ∼ D
4: Choose ak

ξk
∈ Aξk(x

k) and ak ∈ A(xk) so that ak = Eξ∼D

[
akξ

]
5: hk := ak

ξk
− ak

6: xk+1 :=
(
I + γAξk

)−1
(xk + γhk)

7: end for
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Theorem 5 In Problem (1), let Assumptions 1 and 2 hold. Then in SPPM-OC with any stepsize
γ > 0 and initial estimate x0 ∈ X , we have, for every k ≥ 0,

E

[∥∥∥xk − x⋆
∥∥∥2] ≤ ( 1 + γ2δ2

(1 + γµ)2

)k ∥∥x0 − x⋆
∥∥2. (13)

Moreover, xk converges to x⋆, almost surely.

The contraction factor in (13) can always be made less than 1 with γ small enough. It is mini-
mized when γ = µ

δ2
, for which

1 + γ2δ2

(1 + γµ)2
=

δ2

δ2 + µ2
< 1.

With this value of γ, the iteration complexity of SPPM-OC to achieve ϵ-accuracy for any ϵ > 0 is

O

((
δ2

µ2
+ 1

)
log

(∥∥x0 − x⋆
∥∥2

ϵ

))
.

E.1. Proof of Theorem 5

For every ξ ∼ D, let a⋆ξ ∈ Aξ(x
⋆), such that Eξ∼D

[
a⋆ξ

]
= 0 and Assumption 2 holds at xk with

these elements. Let k ≥ 0. Using (12), we have∥∥∥xk+1 − x⋆
∥∥∥2 =

∥∥∥(I + γAξk
)−1

(xk + γhk)−
(
I + γAξk

)−1
(
x⋆ + γa⋆ξk

)∥∥∥2
Lemma 1

≤ 1

(1 + γµ)2

∥∥∥xk − x⋆ + γhk − γa⋆ξk

∥∥∥2
=

1

(1 + γµ)2

(∥∥∥xk − x⋆
∥∥∥2 + 2γ

〈
hk − a⋆ξk , x

k − x⋆
〉
+ γ2

∥∥∥hk − a⋆ξk

∥∥∥2) .

We denote by Fk the σ-algebra generated by the collection of random variables (xl, al, al
ξl
)kl=0.

Taking the expectation conditionally on Fk, we have, using the fact that Eξ∼D

[
a⋆ξ

]
= 0,

E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2

+
2γ

(1 + γµ)2

〈
E
[
akξk − ak − a⋆ξk | Fk

]
︸ ︷︷ ︸

0

, xk − x⋆

〉

+
γ2

(1 + γµ)2
E

[∥∥∥akξk − ak − a⋆ξk

∥∥∥2 | Fk

]
(6)
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 + γ2δ2

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2

=
1 + γ2δ2

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2. (14)

By unrolling the recursion, we obtain the desired result. Moreover, using classical results on super-
martingale convergence [8, Proposition A.4.5], it follows from (14) that

∥∥xk − x⋆
∥∥2 → 0 almost

surely.
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Appendix F. L-SVRP: Convergence Analysis

Algorithm 3 Loopless Stochastic Variance-Reduced Proximal Point Method (L-SVRP)
1: Parameters: stepsize γ > 0, initial estimates x0, w0 ∈ X , probability p ∈ (0, 1], a0 ∈ A(x0).
2: for k = 0, 1, . . . do
3: Sample ξk ∼ D
4: Choose ak

ξk
∈ Aξk(w

k) so that Eξ∼D

[
akξ

]
= ak

5: hk := ak
ξk

− ak

6: xk+1 :=
(
I + γAξk

)−1
(xk + γhk)

7: Flip a coin θk ∈ {0, 1} with Prob(θk = 1) = p.

8: wk+1 :=

{
xk+1 if θk = 1

wk if θk = 0

9: ak+1 :=

{
any element in A(xk+1) if θk = 1

ak if θk = 0
10: end for

Theorem 6 In Problem (1), let Assumptions 1 and 2 hold. Then in L-SVRP with any stepsize
γ > 0, probability p ∈ (0, 1], and initial estimates x0, w0 ∈ X , we have, for every k ≥ 0,

E
[
V k
]
≤ max

{
1

1 + γµ
, 1− p+

γδ2p

µ (1 + γµ)

}k

V 0, (15)

where the Lyapunov function is

V k :=
∥∥∥xk − x⋆

∥∥∥2 + γµ

p

∥∥∥wk − x⋆
∥∥∥2. (16)

Moreover, xk and wk converge to x⋆, almost surely.

The contraction factor in (15) can always be made less than 1 with γ small enough. It is minimized
when 1

1+γµ = 1− p+ γδ2p
µ(1+γµ) . This is the case for

γ =
µ

δ2 + 1−p
p µ2

, (17)

for which
1

1 + γµ
= 1− p+

γδ2p

µ (1 + γµ)
=

pδ2 + (1− p)µ2

pδ2 + µ2
< 1.

With this value of γ, the iteration complexity of L-SVRP to achieve ϵ-accuracy for any ϵ > 0 is

O
((

δ2

µ2
+

1

p

)
log

(
V 0

ϵ

))
.
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F.1. Proof of Theorem 6

For every ξ ∼ D, let a⋆ξ ∈ Aξ(x
⋆), such that Eξ∼D

[
a⋆ξ

]
= 0 and Assumption 2 holds at xk with

these elements. Let k ≥ 0. Using (12), we have∥∥∥xk+1 − x⋆
∥∥∥2 =

∥∥∥(I + γAξk
)−1

(xk + γhk)−
(
I + γAξk

)−1
(
x⋆ + γa⋆ξk

)∥∥∥2
Lemma 1

≤ 1

(1 + γµ)2

∥∥∥xk − x⋆ + γhk − γa⋆ξk

∥∥∥2
=

1

(1 + γµ)2

(∥∥∥xk − x⋆
∥∥∥2 + 2γ

〈
hk − a⋆ξk , x

k − x⋆
〉
+ γ2

∥∥∥hk − a⋆ξk

∥∥∥2) .

We denote by Fk the σ-algebra generated by the collection of random variables (xl, wl, al, al
ξl
)kl=0.

Taking the expectation conditionally on Fk, we have, using the fact that Eξ∼D

[
a⋆ξ

]
= 0,

E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2

+
2γ

(1 + γµ)2

〈
E
[
akξk − ak − a⋆ξk | Fk

]
︸ ︷︷ ︸

0

, xk − x⋆

〉

+
γ2

(1 + γµ)2
E

[∥∥∥akξk − ak − a⋆ξk

∥∥∥2 | Fk

]
(6)
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 + γ2δ2

(1 + γµ)2

∥∥∥wk − x⋆
∥∥∥2. (18)

Moreover,

E

[∥∥∥wk+1 − x⋆
∥∥∥2 | Fk

]
= (1− p)∥wk − x⋆∥2 + pE

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
.

Let α := γµ
p . Combining the two previous inequalities and using the Lyapunov function V k+1 :=∥∥xk+1 − x⋆
∥∥2 + α

∥∥wk+1 − x⋆
∥∥2, we obtain

E
[
V k+1 | Fk

]
≤ E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
+ αpE

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
+(1− p)α

∥∥∥wk − x⋆
∥∥∥2

= (1 + αp)E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
+ (1− p)α

∥∥∥wk − x⋆
∥∥∥2

(18)
≤ 1 + αp

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 + (1 + αp)γ2δ2

(1 + γµ)2

∥∥∥wk − x⋆
∥∥∥2 + (1− p)α

∥∥∥wk − x⋆
∥∥∥2

=
1 + αp

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 + (1− p+

(1 + αp)γ2δ2

α(1 + γµ)2

)
α
∥∥∥wk − x⋆

∥∥∥2
α= γµ

p

≤ max

{
1

1 + γµ
, 1− p+

γδ2p

µ(1 + γµ)

}
V k. (19)

By unrolling the recursion, we obtain the desired result. Moreover, using classical results on super-
martingale convergence [8, Proposition A.4.5], it follows from (19) that V k → 0 almost surely.
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Appendix G. Point-SAGA: Convergence Analysis

Algorithm 4 Point-SAGA

1: Parameters: stepsize γ > 0, initial estimates x0, (w0
i )

n
i=1 ∈ X n, initial elements a0i ∈ Ai(w

0
i )

for every i ∈ [n], a0 := 1
n

∑n
i=1 a

0
i

2: for k = 0, 1, . . . do
3: Sample ik ∈ [n] uniformly at random
4: hk := ak

ik
− ak

5: xk+1 := (I + γAik)
−1 (xk + γhk

)
6: wk+1

j :=

{
xk+1 for j = ik

wk
j for every j ∈ [n]\{ik}

// not stored, defined only for the analysis

7: ak+1
j :=

{
any element in Aik(x

k+1) for j = ik // e.g. ak+1
ik

:= 1
γ (x

k − xk+1) + hk

akj for every j ∈ [n]\{ik}
8: ak+1 := ak + 1

n(a
k+1
ik

− ak
ik
) // = 1

n

∑n
j=1 a

k+1
j

9: end for

Theorem 7 In Problem (2), let Assumptions 1 and 3 hold. Then in Point-SAGA with any stepsize
γ > 0, initial estimates x0, (w0

i )
n
i=1 ∈ X n and elements a0i ∈ Ai(w

0
i ), we have, for every k ≥ 0,

E
[
V k
]
≤ max

{
1

1 + γµ
, 1− 1

n
+

γδ̃2

nµ(1 + γµ)

}k

V 0, (20)

where the Lyapunov function is

V k :=
∥∥∥xk − x⋆

∥∥∥2 + γµ
n∑

i=1

∥∥∥wk
i − x⋆

∥∥∥2. (21)

Moreover, xk and all wk
i converge to x⋆, almost surely.

The contraction factor in (20) can always be made less than 1 with γ small enough. It is minimized
when 1

1+γµ = 1− 1
n + γδ̃2

nµ(1+γµ) . This is the case for

γ =
µ

δ̃2 + (n− 1)µ2
,

for which
1

1 + γµ
= 1− 1

n
+

γδ̃2

nµ(1 + γµ)
=

δ̃2 + (n− 1)µ2

δ̃2 + nµ2
< 1.

With this value of γ, the iteration complexity of Point-SAGA to achieve ϵ-accuracy for any ϵ > 0 is

O
((

δ2

µ2
+ n

)
log

(
V 0

ϵ

))
.
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G.1. Proof of Theorem 7

For every i ∈ [n], let a⋆i ∈ Ai(x
⋆), such that 1

n

∑n
i=1 a

⋆
i = 0 and Assumption 3 holds at the (wk

i )
n
i=1

with these elements. Let k ≥ 0. We have

x⋆ = (I + γAik)
−1 (x⋆ + γa⋆ik

)
,

so that∥∥∥xk+1 − x⋆
∥∥∥2 =

∥∥∥(I + γAik)
−1 (xk + γhk)− (I + γAik)

−1 (x⋆ + γa⋆ik
)∥∥∥2

Lemma 1
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆ + γhk − γa⋆ik

∥∥∥2
=

1

(1 + γµ)2

(∥∥∥xk − x⋆
∥∥∥2 + 2γ

〈
hk − a⋆ik , x

k − x⋆
〉
+ γ2

∥∥∥hk − a⋆ik

∥∥∥2) .

We denote by Fk the σ-algebra generated by the collection of random variables
(
xl, (wl

i)
n
i=1, (a

l
i)
n
i=1

)k
l=0

.
Taking the expectation conditionally on Fk, we have

E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2

+
γ2

(1 + γµ)2
E

[∥∥∥akik − ak − a⋆ik

∥∥∥2 | Fk

]
+

2γ

(1 + γµ)2

〈
E
[
akik − ak − a⋆ik | Fk

]
︸ ︷︷ ︸

0

, xk − x⋆

〉

=
1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 + γ2

n(1 + γµ)2

n∑
i=1

∥∥∥aki − ak − a⋆i

∥∥∥2
(7)
≤ 1

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 + γ2δ̃2

n(1 + γµ)2

n∑
i=1

∥∥∥wk
i − x⋆

∥∥∥2. (22)

Moreover,

1

n

n∑
i=1

E

[∥∥∥wk+1
i − x⋆

∥∥∥2 | Fk

]
=

(
1− 1

n

)
1

n

n∑
i=1

∥∥∥wk
i − x⋆

∥∥∥2 + 1

n
E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
.
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Let α := nγµ. Combining the two previous inequalities and using the Lyapunov function V k+1 :=∥∥xk+1 − x⋆
∥∥2 + α

n

∑n
i=1

∥∥∥wk+1
i − x⋆

∥∥∥2, we obtain

E
[
V k+1 | Fk

]
≤ E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
+

α

n
E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
+

(
1− 1

n

)
α

n

n∑
i=1

∥∥∥wk
i − x⋆

∥∥∥2
=

(
1 +

α

n

)
E

[∥∥∥xk+1 − x⋆
∥∥∥2 | Fk

]
+

(
1− 1

n

)
α

n

n∑
i=1

∥∥∥wk
i − x⋆

∥∥∥2
(22)
≤ 1 + α/n

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 + (1 + α/n)γ2δ̃2

(1 + γµ)2
1

n

n∑
i=1

∥∥∥wk
i − x⋆

∥∥∥2
+

(
1− 1

n

)
α

n

n∑
i=1

∥∥∥wk
i − x⋆

∥∥∥2
=

1 + α/n

(1 + γµ)2

∥∥∥xk − x⋆
∥∥∥2 +(1− 1

n
+

(1 + α/n)γ2δ̃2

α(1 + γµ)2

)
α

n

n∑
i=1

∥∥∥wk
i − x⋆

∥∥∥2
α=nγµ
≤ max

{
1

1 + γµ
, 1− 1

n
+

γδ̃2

nµ(1 + γµ)

}
V k. (23)

By unrolling the recursion, we obtain the desired result. Moreover, using classical results on super-
martingale convergence [8, Proposition A.4.5], it follows from (23) that V k → 0 almost surely.
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