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Abstract

Stochastic Gradient Descent (SGD) with gradient clipping has emerged as a powerful technique for
stabilizing neural network training and enabling differentially private optimization. While constant
clipping has been extensively studied, adaptive methods like quantile clipping have shown empirical
success without thorough theoretical understanding. This paper provides the first comprehensive
convergence analysis of SGD with gradient quantile clipping (QC-SGD). We demonstrate that
QC-SGD suffers from a bias problem similar to constant-threshold clipped SGD, but show this
can be mitigated through a carefully designed quantile and step size schedule. Furthermore, the
analysis is extended to the differentially private case. We establish theoretical foundations for this
widely-used heuristic and identify open problems to guide future research.
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1. Introduction

It is hard to imagine the success of modern Machine Learning without effective optimization, the
cornerstone of which are Stochastic Gradient Descent (SGD) type methods [4, 23]. However, SGD
is not perfect, particularly in the context of Deep Learning. Efficient neural network training often
requires modifications of SGD to stabilize optimization. For example, exploding gradients issue
[20, 21] is often tackled by the use of gradient clipping operator, which scales down the input vector’s
norm if it exceeds a certain threshold. Moreover, gradient clipping plays a vital role in privacy-
preserving machine learning [7, 8]. Rigorous differential privacy guarantees are usually established
by relying on the Gaussian mechanism [8], which requires bounded per-example sensitivity to
control the amount of noise added. The most commonly used in practice Differentially Private SGD
(DP-SGD) [1] method enforces such bound by clipping the gradients.

Clipped SGD was shown to be superior to vanilla SGD for minimizing generalized smooth
functions [26] and when stochastic gradient noise is heavy-tailed [27]. However, the effectiveness
of gradient clipping hinges critically on the choice of the clipping threshold, denoted as 7. This
introduces an additional hyperparameter that requires careful tuning, a challenge that is especially
pronounced in private optimization settings where performance can be highly sensitive to this
threshold [5, 14]. Furthermore, each training run incurs an additional privacy loss, making extensive
hyperparameter search prohibitively expensive from a privacy perspective [19].

Adaptive clipping. The problem described above has been addressed [2] in the setting of private
Federated Learning [11, 13, 15, 16]. Specifically, Andrew et al. [2] proposed to adaptively select the
clipping threshold based on the distribution of gradient norms (or updates) of the participating clients.
Their method efficiently estimates a quantile and applies it as the clipping threshold. Crucially,
their privacy analysis revealed that this adaptive approach incurs only negligible additional privacy
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loss. Extensive empirical evaluations have shown [2] that quantile clipping is competitive with,
and often outperforms, carefully tuned constant clipping baselines. This adaptive strategy offers
the additional benefit of adjusting to the evolving gradient distribution throughout the federated
optimization process. This adaptability is particularly valuable given the significant variability
observed across different machine learning tasks and datasets (see Figure 1), suggesting that a
uniform clipping schedule may be suboptimal. The success of the adaptive clipping technique has
led to its widespread adoption for multiple applications [24, 25], even beyond privacy-constrained
settings [6], and implementation in Federated Learning libraries [3, 10].

However, despite its practical success and adoption, the theoretical properties of stochastic
gradient quantile clipping remain largely unexplored. This research gap motivates our current
study. We aim to provide a comprehensive optimization analysis of SGD with quantile clipping.
In particular, by building upon recent work [17], we demonstrate that SGD with quantile clipping
(QC-SGD in short) suffers from a bias problem, preventing convergence, similar to that observed in
constant clipped SGD. We design a quantile and step size schedule that effectively eliminates the
identified bias problem. Our analysis reveals the crucial relationship between the chosen quantile
value and the step size in QC-SGD, providing insights into how this interplay affects convergence.

2. Problem and Assumptions

We consider a classical stochastic optimization problem

min [ £(z) = Bewnlfe(@)]], 1)
z€R4

where f¢ : R? — R is a loss of machine learning model parametrized by vector z € R? on data point
&. Thus, f is excess loss over the distribution of data & ~ D. To enable optimization analysis, we
rely on standard assumptions for non-convex stochastic optimization.

Assumption 1 (Stochastic gradient) Stochastic gradient estimator is unbiased E [V f¢(x)] =
V f(x) and has bounded g-th moment for q € (1, 2]

(Benn [V fe(@) = VI@IDY < op, Vo R )

Condition (2) is usually referred as heavy tailed noise [27] for ¢ € (1,2). For ¢ = 2, it recovers
classical bounded variance assumption [9, 18].

Assumption 2 (Function) The function f is differentiable and L-smooth, meaning there exists
L > 0 such that

flo b < (@) + (VS0 + S Ve h e RY ®

Additionally, f is lower-bounded by f™ € R.

3. Stochastic Gradient Descent with Quantile Clipping
We consider the following Stochastic Gradient Descent type method with step size v > 0

t+1

g =2t — y4t, )



ON CONVERGENCE OF DP-SGD WITH ADAPTIVE CLIPPING

where g* = g(«") has the form of a clipped stochastic gradient estimator g* = at (2')V fer (2) for

= min 77—(@
(o) = {1’ A } ®

and 7(x) is p-th quantile (of random variable ||V f¢(x)||) clipping threshold, defined as

Prob(||V fe(z)]| < 7(2)) = p. ©)

We use the name SGD with Quantile Clipping (QC-SGD) for the described algorithm. Note that
Clipped SGD is a special case of QC-SGD for 7(x) = 7. This algorithm was originally introduced
in the seminal work by Merad and Gaiffas [17] in the context of robust optimization with a corrupted
oracle. They analyzed it as a Markov chain, while we are interested in optimization properties with a
focus on differentially private settings.

3.1. Preliminaries
At first, we present some crucial properties of the described gradient estimator g(x') and clipping

threshold 7(z) needed for convergence analysis.

Lemma 1 (Merad and Gaiffas [17]) Assume that stochastic gradient estimator V f¢(x) satisfies
Assumption 1, ag(x) is chosen as (5), and p-th quantile clipping threshold T(x) satisfies (6). Then
forall x € R
(@) < IV f(@)] +0q (1 —p) "/, @)
IE [ag (2)V fe ()] — @(2)V f (2)|| < oq (1= p)' 4, ®)
where @(x) = E [ag(z)).
Note that (8) is different from typical results [12, 27] characterizing the bias of gradient clipping due

to the additional multiplier &(x) before the gradient V f(x). This has a significant impact on the
convergence analysis of QC-SGD and makes it different from Clipped SGD.

3.2. Convergence analysis

Our analysis relies on the following recursion.

Lemma 2 Suppose f is L-smooth (2) and stochastic gradients satisfy Assumption 1. Then, for
B > 0 the iterates of QC-SGD (4) satisfy

E[f(a") | 2'] < f(a") — % (@@a") - B/2 = wL) | V(") ®
+ 287 (1= p) 0 0% P Loy (1 —p)

Equipped with Lemma 2, we provide a general convergence result for QC-SGD.

Theorem 3 (General case) Suppose f is L-smooth (2) and stochastic gradients satisfy Assump-
tion 1. Then, for the step size chosen as

2p— B —c

<
0<’Yt_ 27, )

(10)
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where ¢, 3 € (0,1) and B + ¢ < 2p the iterates of QC-SGD (4) satisfy

c = 20) —E [f(2T

T-1
1
+ 02— K29 (2L + B1R?), (11
2 UqFT§7t (2Lv + B ), (11)

where I'p == Z;*F:_Ol v and h =1 — p.

Theorem 3 indicates that QC-SGD can find an approximate stationary point. Importantly, more
aggressive clipping (smaller p) requires decreasing the step size ~; according to (10). However,
overall performance heavily depends on h and the sequence ;. Next, we discuss how 2 possible
choices affect convergence.

Corollary 4 (Constant parameters) For constant step size vy = v < (2p — 8 — ¢)/(2L) conver-
gence bound (11) reduces to

= 0y _ T
t=0

Obtained result shares similarities with classical SGD (with bounded stochastic gradient variance)
convergence guarantees. Namely, the first term in upper bound (12) is basically the same and
decreases with rate O(1/T). The second term is larger by factor h~2/9as h = 1 —p € [0,1)
indicating that more aggressive clipping (smaller p) increases the neighborhood. However, the
fundamental difference to SGD is that exact convergence to the stationary point (making gradient
arbitrary small: E HV f(x H < £2) can not be guaranteed for any constant step size ~y as the third
term in (12) can not be controlled. This means that the method has an irreducible bias, unlike standard
SGD, which enjoys convergence rate O(1/v/T') by choosing step size v as O(1/v/T).

In addition, our analysis indicates a trade-off between convergence speed and the size of the
neighborhood. Specifically, larger 8 decreases the latter (third term in (12)) but requires choosing a
smaller step size' v < O (p — ) leading to slower convergence due to the first term in (12) inversely
proportional to .

Time-varying parameters. By using Theorem 3, we can also jointly design schedules of step size
~¢ and quantile values p; = 1 — h; to guarantee convergence to the stationary point. Namely, for
v = O(t*~1) and hy = O(t") we have I'r = O(T?) and the upper bound (11) will be of order?

) (T_g 4 T0-1-2v/q + TQV(l—l/Q)> , (13)

which is minimized for § = (1 — ¢~1)/(2 — ¢~!) and v = —¢q/2. Thus for standard bounded
variance case ¢ = 2 the step size has to be decreased as y; = O(t_Q/ 3) and quantile increased as
pt = 1 — O(t™1) to obtain convergence of order O(T~ /). This confirms the intuition that the
method can converge exactly if clipping bias is eventually eliminated. However, our result does not
necessarily require decreasing the clipping threshold as norms of stochastic gradients HV fe(z H
may not converge to zero for increasing t.

1. And potentially a larger p to ensure positive step size v > 0.
2. We use O notation to suppress constants other than ¢, 7.



ON CONVERGENCE OF DP-SGD WITH ADAPTIVE CLIPPING

3.3. Comparison to fixed clipping

The latest analysis on SGD with constant clipping (7(x) = 7) we are aware of is due to Koloskova
et al. [12]. Their (simplified) result indicates that with a proper step size choice, for ¢ = 2,0, = o,
and for L-smooth function, the expected squared gradient norm is upper bounded by

FON2 o ) ' , ot
O<<7T7'> +7—T—|—'yLU +m1n<0,7_2) , (14)

where FO := f(2") — E [f(27)]. This result is fundamentally similar to quantile clipping (12) as
the last term is also irreducible via decreasing step size 7. However, upper bound (14) can be made
arbitrary small by choosing step size as v = O(T~/?) and clipping threshold as 7 = O(T?), A €
(0,1/4). While the approach of increasing 7 can solve the problem in theory, from a practical
perspective, it is not satisfying. As shown by Andrew et al. [2], the evolution of the distribution of
the norm of the updates (or pseudo-gradients [22]) may show very different behavior in federated
training. Figure 1 shows that norms of the updates may, in fact, increase during optimization. In
addition, for differentially private settings bigger 7 requires adding larger noise at every iteration
resulting in degraded utility of the model [5].

3.4. Bias due to clipping

In the discussion after 4, we mentioned that our result indicates that for any non-trivial fixed quantile
p € (0, 1), exact convergence to the stationary point can not be guaranteed for any step size . In
order to demonstrate that this effect is not just a result of our (potentially suboptimal) analysis but
that the method’s estimator is indeed limited, we present the following function (based on [12]).

Example 1 Forr > 0andw € (1/2,1) define

1 (z+7)? with probability w

fe(z) = 92 { z2, with probability 1 — w. (1>

Then V f(x) = E [V fe(x)] =  + rw, which brings minima for f(z) = E [f¢(x)] at 2* = —rw.

Suppose quantile p is chosen in such a way that half of the stochastic gradients are clipped at every
point x (e.g., as the median). Then estimator has the form

1, with probability w

x, with probability 1 — w, (16)

ole) = aca)Vfe(o) = {
which indicates that 27 = —w/(1 — w) is the expected fixed point of QC-SGD as E [g(z")] = 0.
Thus, if QC-SGD converges, it must do so towards its fixed points. However, for any r # 1/(1 — w)
minimum of f is different from the expected fixed point z* # x' and ||V f(z)| > 0.

4. Differentially Private case

The most standard way to make clipped SGD (¢, §)-Differentially Private (DP) is by adding isotropic
Gaussian noise with variance proportional to the clipping threshold [1] (along with subsampling/mini-
batching). This approach applied to QC-SGD results in the following update (DP-QC-SGD for
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short)
B

= g S (), g =mind1
j=1

where 2! ~ N (0, (7'(act))2 O'DPI> and opp > C+/T log(1/5)e~! for some universal constant C

independent of T, 8, € [1]. For simplicity, we assume that §§ are uniformly and independently sampled.
Next, we present our convergence result for (17).

7(xt)

]()}Vf§§($t)a (17)

Theorem 5 (DP-QC-SGD) Suppose f is L-smooth (2) and stochastic gradients satisfy Assumption 1.
Then, for the step size chosen as

p—pB/2—c
<7
Y < L (18)

where & == 1/B + 03y, and ¢, 3 € (0,1), and 3/2 + ¢ < p the iterates of DP-QC-SGD (17) satisfy

¢ %) — E[f( 3T n—2/ 1.2
DR E|[vs@)] ] FZ 1 (2%L& + B1h?/2), (19)
t=0

t=0
. \\I-1 .
where I'r := ), " vvand h :=1 —p.

Theorem 5 is similar to non-private result (11) in nature (up to numerical constants) as it shows
convergence to a neighborhood of the stationary point. However, there is an important difference
expressed in term & = 1/B+ 03, in the denominator of the step size condition (18) and convergence
bound (19). Note that G can be even smaller than 1 in private federated learning for a big enough
cohort size B and a small number of communication rounds 7. However, for centralized DP training,
G is likely to be larger, which results in a smaller step size and larger convergence neighborhood. The
latter, though, can be eliminated via a standard SGD step size strategy as the term in (19) involving
& depends on v2.

5. Conclusion and Future Directions

We provided the first non-convex convergence results for SGD with (adaptive) quantile clipping,
focusing on smooth stochastic optimization under heavy-tailed noise. Our results demonstrate
limitations of QC-SGD similar to standard clipped SGD, which can be addressed via a specially
designed quantile and step size schedule. Finally, we analyzed a differentially private extension of
QC-SGD.

The discovered limitations of the analyzed method raise the question of possible improvements
via algorithmic modifications. It is also worth noting that the current analysis is performed for an
idealized case when the exact quantile 7 () is available. This may not be feasible in certain practical
scenarios that only allow access to an approximation. Moreover, despite the great empirical success
of adaptive clipping, there are scenarios where it performs suboptimally [25], motivating future
research. We hope that our work can serve as a first step towards rigorously understanding this
practical technique and eventually will help to improve private learning.
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Figure 1: Evolution of the adaptive clipping norm at five different quantiles (0.1, 0.3, 0.5, 0.7, 0.9)
on 6 federated learning problems without Differential Privacy noise. Note that each task
has a unique shape to its update norm evolution, which further motivates an adaptive
approach. Figure taken from [2].

Appendix A. Basic and Auxiliary Facts

For all vectors a,b € R% and 8 > 0:

For asetof n > 1 vectors ay, . ..

lla+ 0l < llall + [lo[],

la+0[* < 2 all* +2 o],

[{a, ) < [lall[[o]],

2(a,0) < B lall* + 57" [Ib]*.

,an € R% it holds

2 1 n
2
<3 el
=1

n
1 Z
n“

=1

10

(20)

2D
(22)
(23)

(24)
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Appendix B. Proofs
B.1. Proof of Lemma 1

We provide the proof here for completeness. Note that

H{IVfe(x)l < 7(2)} + T{IV fe(2) || > 7(2)} = 1. (25)

1. As a reminder @(x) := E [ag(x)]. Then

E loc()V fe(x)] ~ (@)Y (2) = E (ol (@)
V@) (I fele)]| < ()]
fela) ~ VNIV el > ()]
@) = V1) (1~ LIV fela)]| > (@)D
~AWELV () ~ V@) IV @] > ()]
+E | o (V) = T LIV felo)] > (o)}
— E[(1 - () (Vela) - V(@)
FE((@(2) - 1) (Vfe(e) - VF) LIV fela)]| > 7(x)]
&()E[(Vfe() ~ VSN LIV fela)]| > 7(2)]

+ | e (Vo) = VA LIV o)l > (o)}

_ ) I o
‘E[(nwg(x)n 1><fo<> V@) LV fela)| > ()}]

€ (0,1) then |7(x)/ |V fe(x)|| — 1| € (0,1). Thus

- Vf
Vf

Next, we use the fact that if va (z) T

B loc(e)¥ fe)] ~ )V £ (@) < B [H{IVAeo)] > 7)) | Fp s = 1| 19 elo) = V@

<E[{||Vfe(@)|| > ()} |V fe(z) — Vf()]]
< (1= p)"VIR[|V fe(x) — Vf(2)]| 9
2)

< (1 - p)l_l/q Oq
2. Denote by Q,, (||V fe(x)||) = 7(x) the p-th quantile of ||V f¢(x)|| distribution. Then
(20)
r(2) = 0, (IV fela) ~ V(@) + Vi) '< V@) + & (|Vfelw) - Vr@)]).  @6)

Oz

By quantile definition and by using Markov’s inequality

1= p = Prob {]|d: ]| > Q(|lé|)} < <§[<H|ﬁsurr]>> = (Qp{ﬂ%x\l)) | =

where the last inequality holds for ¢ > 1 as (E [||0z]/])? < E[||02]|7]. Therefore Q,(||dz||) <

q
1—p)*/
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ON CONVERGENCE OF DP-SGD WITH ADAPTIVE CLIPPING

B.2. Proof of Lemma 2
By using L-smoothness (2) for iterates of algorithm (4)
7(x)

't =at —ygt, g = e (a")V fe(a! Zmin{L
: ¢ @)V e IV Fc@h)]

} Vfe(ah). (28)

we have
2
E [f() | 2] < F(a) ~ % (V). E [¢]) + LR [|o')]
2
< f(") — 3 (V(a). B[] £ al@)V ) + OB g @)V fe(a®) ]

2
2 @) = nala) [V = 20 (V). E o] — )1 + ZE (r(ah))?
@) iy ' N AN
< 1)~ wala) [V + 0 [V [E 0] - a6V + 2 (ra))
Gt

2 1) 2w [P+ 2 [V 5] Gt 2LE (19 + 00 (1))’

< f(at) =y (@(at) = %L) |V £ + 2 |V FE) HGt+%2L0 (1—p) 2
< 1t~ @) — L) [T+ L (BT +57G) + Lot (1 p) T,

where in the last step, we used Fenchel Young inequality for 5 > 0. Rearranging the terms yields the
desired result.

B.3. Proof of Theorem 3 (QC-SGD)

Denote i := 1 — p, then Lemma 2 (with suppressed expectation condition) gives
2 —1.2— ,
E[f("*)] = fa") < =3 (p— B/2 = L) |[VH@)|* + T 870> /%07 + 7 Lazh /",
where we also used the fact that @(z) > p. Next, we choose the step size as

2p— B —c
<~y < ETE
Osms—r

to enforce condition p — 3/2 — v, L > ¢/2. This leads to
E[f(z"h)] - f(a) < —*’Yt |V f (" H + %5 Lh2=2g2 4 2 Lo2h /4.
After rearranging the terms, we have a recursion
v [VIE)|* <2 (f@) ~E [f@*)]) + ogreh ™/ (8710 + 24 L).

Summing over ¢ from 0 to 7" — 1 and dividing over I'r = ZtT;()l ¢ leads to the final result after
unrolling the recursion

T—
7Z’YtE[‘Vf H} 0)—E[f( T 3 2/q 2L7 15 1h2>

I'r :0

5 \
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ON CONVERGENCE OF DP-SGD WITH ADAPTIVE CLIPPING

B.4. Proof of Theorem 5 (DP-QC-SGD)

As a reminder the original method (4) is changed via mini-batching and adding Gaussian noise

7(at)

B
1 )
2t = gt — = Z (g§ 4 zt), g;f, — mln{l, ()}Vfg_(xt), (29)
— y

gt

where 2! ~ N <0, (7'(3%))2 O’%PI>.
Proof By inspecting the proof of Lemma B.2, namely L-smoothness inequality

E[f("h) 2] < (@) =% (V/@"),E [§'] £a(") VI (") + [H*H} (30)

it is clear that the DP-SGD extension affects the last two terms with §'. Next we show how DP
modification affects the second moment and “bias” of the gradient estimator.

Due to the independence of f;, the second moment of the stochastic gradient estimator can be
upper-bounded as

2 2

~t 1 < t t @b 1 < t t 2 < t
B =E| 5> (6 +2)| <2E|5> ¢ +2E[']" < Z gt l” + 28 || =]
2 92 &
< 52 Z (7‘(:131&))2 +2 (T(:Et))2 0'12313 =2 (T($t))2 (1/B + U%P) . (31)
j=1

Inequality (8) from Lemma 1 is modified in the following way due to [E [zt] = 0 for every ¢:

B

I [5"] - aa) Vi) | = || SE (4] - at) Vi)

=1

0 1

ZHE gJ —a(z")Vf(z )H

®)
<(1-pltYig, (32)

Convergence proof based on Section B.3 is changed in the following way
E[/@) | 0] < £") = (V7). B [31]) + 8 )]
< f(a) —yale! HVf )|I” +% (BIIVS @) +871G2) +42L (1/B + oBp) (r("))*
< f(a") = % (@) - 8/2) va I+ 387 oy (L —p)* e
+92L (1/B + odp) ([ VF@h)] + 00 (1 fp)*l/q)z
< S = (p— B/2 = 2L (1/B + oBp)) [ V£ ()|”

+ 202 (1= p) T 292 L (1B + oBp) o2 (1 —p) 20

13



ON CONVERGENCE OF DP-SGD WITH ADAPTIVE CLIPPING

Denote G := 1/B + o3, then modified step size condition would be then

p—pB/2—c
< s 33
RS 2°SL (33)
to guarantee that a(x!) — /2 — 274 LS > c. This leads to
2 Yt o,— _ _
v |[VEEH|T <E[f(@") | 2f] —f(xt)+5tﬁ Lo2p?72/1 4 292 [&o2h =21,
Summing over ¢ from 0 to 7' — 1 and dividing over I'; = Z;F:_ol ~¢ leads to the final result
¢ —E [f o o h2/q (3152
— + L 9B h* /24 2 L6) . (34
Fz E[|vs@))] <2 - Fgo /2423 L6) . (34)
|
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