
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Applications of fractional calculus in learned optimization

Teodor-Alexandru Szente TEODOR.SZENTE@IMAR.RO
Institute of Mathematics of the Romanian Academy

James Harrison JAMESHARRISON@GOOGLE.COM
Google DeepMind

Mihai Zanfir MIHAI.ZANFIR@NEWTON.RO
Newton

Cristian Sminchisescu SMINCHISESCU@GOOGLE.COM

Google DeepMind, Institute of Mathematics of the Romanian Academy

Abstract
Fractional gradient descent has been studied extensively, with a focus on its ability to extend tradi-
tional gradient descent methods by incorporating fractional-order derivatives. This approach allows
for more flexibility in navigating complex optimization landscapes and offers advantages in certain
types of problems, particularly those involving non-linearities and chaotic dynamics. Yet, the chal-
lenge of fine-tuning the fractional order parameters remains unsolved. In this work, we demonstrate
that it is possible to train a neural network to predict the order of the gradient effectively.

1. Introduction

In conventional first order optimization, the target function is typically approximated as locally
linear using a Taylor expansion. It is possible to benefit from nonlinear approximations that capture
the behavior of the function over a larger vicinity, offering a more accurate representation than
local linear approximations. Fractional gradient descent methods were developed to take advantage
of such approximations [6, 17, 20]. As shown in [9] they can greatly improve the convergence
rate of the gradient descent algorithm in the convex case. These methods rely on the concept of
fractional derivatives. The fractional derivative can be thought as an ”interpolation” between two
conventional derivatives. For example, the half derivative (i.e. fractional order α = 0.5), denoted
as d0.5f

dx0.5 , represents an interpolation between the function f itself and its first derivative. However,
little insight into determining the optimal fractional order for a specific problem is shown. Adaptive
methods have been developed [11, 13] but they depend on additional hyper-parameters (e.g bounds
limits, terminal points). Meanwhile, in the field of learned optimization, improvements have been
made for fine tuning expressive optimizers [7, 8, 14]. In this paper, we illustrate how learned
optimization can be employed to fine-tune the fractional order.

© T.-A. Szente, J. Harrison, M. Zanfir & C. Sminchisescu.

APPLICATIONS OF FRACTIONAL CALCULUS IN LEARNED OPTIMIZATION

1.1. Fractional Calculus

The fractional derivative can be represented as a non-integer extension of the Cauchy formula for
repeated integration [1, 16]

Iαf(x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t) dt (1)

Dαf(x) = I−αf(x) (2)

However, for negative α values, the first equation is undefined. One approach to circumvent this
issue is to make use of the ceiling function. For instance, to compute D1.2, we can first take the
second derivative and then integrate with an order of 0.8 . This allows us to compute fractional
derivatives based on negative α values

Dαf(x) =
d[α]

dx[α]
(I [α]−αf(x)) (3)

By substituting I , we derive the Riemann–Liouville (RL) fractional derivative [10]

Dαf(x) =
1

Γ([α]− α)

d[α]

dx[α]

∫ x

a
(x− t)[α]−α−1f(t) dt (4)

The properties of the Riemann–Liouville (RL) derivative have been extensively studied, and numer-
ous other formulations have been proposed. One major drawback of this specific formulation is the
handling of constant functions, i.e. Dαc = cx−α

Γ(1−α) ̸= 0. To circumvent this, we can reverse the
order in which differentiation and integration are applied in (3) [15]

Dαf(x) = I [α]−α(
d[α]f

dx[α]
(x)) (5)

Dαf(x) =
1

Γ([α]− α)

∫ x

a
(x− t)[α]−α−1d

[α]f

dx[α]
(t) dt (6)

This is called the Caputo derivative, and while it is widely used in many applications, it may be
too computationally expensive when applied to optimization tasks. A more direct approach is to
generalize the finite difference form obtaining the Grünwald–Letnikov derivative [15]

Dαf(x) = lim
h→0

1

hα

⌊ x
h⌋∑

k=0

(−1)k
(
α

k

)
f(x− kh) (7)

1.2. Geometric interpretation

One way to conceptualize the derivative is as an approximation of a linear map near a given point
of a function. Take for example f : R2 → R2

f(x, y) = (x2 − y2, 3xy) (8)

Given the Jacobian matrix defined as:

Jf =

(
2x −2y
3y 3x

)
(9)

2

APPLICATIONS OF FRACTIONAL CALCULUS IN LEARNED OPTIMIZATION

we define a transformation TJf
(x) = Jfx. In this context, T serves as the best linear approximation

to the function f at a given point x. However when defining the fractional Jacobian matrix:

Jα
f =

x−α(2x2

Γ(3−α) −
y2

Γ(1−α)) y−α
(

x2

Γ(1−α) −
2y2

Γ(3−α)

)
3yx1−α

Γ(2−α)
3xy1−α

Γ(2−α)

 (10)

this changes. The transformation TJα
f

provides a linear approximation only when α = 1. As the
difference between α and 1 increases, the non-linear behavior in Jα

f becomes more pronounced,
deviating further from the linear approximation. While losing linear properties, the fractional Ja-
cobian evolves to follow the global curvature of the function more closely. This enables a more
faithful approximation of the objective function, potentially capturing more complex behaviors

0.015 0.016 0.017 0.018 0.019 0.020

0.0002

0.0004

0.0006

0.0008

0.0010

(a)

0.015 0.016 0.017 0.018 0.019 0.020

0.0002

0.0004

0.0006

0.0008

0.0010

(b)

0.015 0.016 0.017 0.018 0.019 0.020

0.0002

0.0004

0.0006

0.0008

0.0010

(c)

Figure 1: Grid transform near origin for (a) TJf
(b) TJ1.2

f
(c) TJ1.25

f

2. Methodology

2.1. Meta-learning on classical functions

We start by learning to optimize on a collection of classical functions1. We consider each function
to be parameterized by a state vector Xt. We train a neural network Fθ, that takes as input the
current state, normalized gradients, magnitudes of the gradient and Fourier features γ(Xt) [19], and
outputs the order of the fractional derivative, αt ∈ [0, 1] and the magnitude of the update step, ηt,
which are then used to compute the next state Xt+1

Fθ(Xt,
∇f(Xt)

|∇f(Xt)|
, |∇f(Xt)|, γ(Xt)) = (αt, ηt) (11)

Afterwards we can compute the next target function state based on the predicted order and magni-
tude

Xt+1 = Xt − ηDαf(Xt) (12)

where Dα is approximated by first order truncated Taylor expansion,

Dαf(X+∆X) =

(
α

0

)
1

Γ(1− α)
f(X) +

(
α

1

)
1

Γ(α)
∆X

∂f

∂X
. (13)

1. https://www.sfu.ca/ ssurjano/optimization.html

3

APPLICATIONS OF FRACTIONAL CALCULUS IN LEARNED OPTIMIZATION

Then using AdamW [12] we train the neural network and optimize the objective function

Lθ = log(f(Xt+1))− log(f(Xt)) (14)

We train this neural network in 2 regimes:

• with supervision at each step sample from all the classical functions and merge them in one
single batch.

• without supervision at each step sample from classical functions except the target function.

During training, we experimented with using different functions in every batch to help our network
generalize better. This indeed helped, albeit only after including Fourier features [19]. Without
them it was difficult for the network to learn high frequency details in low level dimensions.

2.2. Chaotic systems

As there are more than one definitions of chaotic systems, it is easier for us to describe chaotic
systems by their properties. Most importantly for our work is the sensitivity of the system to the
initial conditions. Take for example the target function2

f(x) = log(x2 + 1 + sin(3x)) + 1.5 (15)

Applying classical gradient descent on f exhibits chaotic behavior (shown in fig. 2) as a small
change in the initial condition (e.g. learning rate, momentum) induces a big change in the final
value x over a large enough horizon. We can try to apply our proposed fractional gradient descent,
but computing the fractional gradient already presents significant challenges from a numerical per-
spective. We presented a way to approximate it using a first order Taylor expansion in (13), but, for
more complex problems, this is not accurate enough. Therefore, in the context of chaotic systems
we propose to analyze the Fractional Gradient Flow (FGF) equation by extending (12) in continuous
time

dαX(t)

dt
= −∇f(X(t)) (16)

There are several methods available to approximate fractional differential equations (FDEs) [3, 9,
18]. In [3], the following approximation is proposed:

Xk+1 = −ηα∇f(Xk) +

(
αXk −

α(α− 1)

2
Xk−1 + . . .+

α(α− 1) . . . (α− k)

(k + 1)!
(−1)kX0

)
(17)

This discretization form has a convergence rate of O(1
tα) for locally Lipschitz continuous functions.

We aim to use this discretization of FGF equations to reproduce the experiment defined in [8], where
the parameters of a Lorenz system need to be optimized. We compare against various other gradient
estimators methods and classic backpropagation through time, using the scheme presented in eq. 17.
The Lorenz system is defined by the following set of three coupled nonlinear differential equations:

dx

dt
= σ(y − x);

dy

dt
= x(ρ− z)− y;

dz

dt
= xy − βz (18)

where x, y, and z are functions of time t, and σ, ρ, and β are parameters that control the behavior of
the system. Our goal is to optimize for the control parameters X = [log(σ), log(ρ)], starting from
an initial state s0 = (x0, y0, z0) = (1.2, 1.3, 1.6)

2. https://lukemetz.com/exploring-hyperparameter-meta-loss-landscapes-with-jax/

4

APPLICATIONS OF FRACTIONAL CALCULUS IN LEARNED OPTIMIZATION

3. Results

3.1. Meta-learning on classical functions

We compare our method against a multitude of optimizers: a general purpose learned optimizer
(VeLO), classic gradient descent and adaptive methods. For testing, we randomly sample 1000
starting points from the target function domain and report the convergence rates for a maximum of
100 steps of optimization. We consider a solution to be converged if the value of the function at that
point is at a maximum distance of ϵ = 10−3 from the global minimum. We also report the average
number of steps to reach the solution. For learning rate based methods we search over learning rates
between 10−1 and 10−6 and present the run with the best results.

Optimizer Convergence Rate Truncated trajectory length
(1) GD 0.60% 994.03
(2) Adam 1.60% 985.15
(3) AdamW 1.60% 985.16
(4) RMSProp 3.50% 966.09
(5) Adafactor 1.10% 989.27
(6) Adagrad 0.90% 991.48
(7) VeLO [14] 0.30% 997.05
(8) Ours
w supervision 99.20% 12.156
(9) Ours
w/o supervision 71.80% 321.37

Table 1: Performance analysis on Rosenbrock 2D: our trained neural network optimizer predicts updates
that closely resemble those of a second-order method. This behavior aligns with expectations for
learned optimizers. (8) Our optimizer trained only on the target function with supervision (9) Our
optimizer trained on other classical functions except the target function.

3.2. Chaotic systems

We conducted two experiments, as described in section 2.2. The first one involves a comparison of
the loss landscape for the function in (15), between classical gradient descent and the FGF method.
This experiment can be seen in fig. 2(a).

The second experiment regarding the optimization of the Lorenz system, compares the update
step from (17) with the update step generated by classical backpropagation through time (TBTT)
and the update step generated by the gradient estimator presented in [8], NRES. Changing the
update step from classical gradient descent to fractional gradient descent makes TBTT perform the
best, as it can be seen in fig. 2(b). This approach converges faster and is more stable. Although
this is a toy problem, we believe that there may be potential for such techniques in real-world
applications. Currently, due to the chaotic nature of TBTT, Evolutionary Search gradients are used,
such as NRES. These methods, although stabilize the exploration of the loss landscape, suffer from
poor convergence rates.

5

APPLICATIONS OF FRACTIONAL CALCULUS IN LEARNED OPTIMIZATION

(a) (b)

Figure 2: a) Loss surface for the function from eq. 15 (left) classical gradient descent searching over
momentum decay and learning rates; (right): our FGF method searching over fractional
orders and learning rates. b) Loss convergence for the Lorenz optimization problem de-
fined in [8] comparing NRES and TBTT, with and without the FGF discretization scheme.

4. Limitations

We investigated various forms of the fractional derivative, which show promising results in small-
dimensional problems such as classical optimization tasks and traditional chaotic systems. Although
their application is currently limited in meta-training, we believe that further research could make
fractional calculus a viable approach. We believe that one of the problems of extending this work to
higher-dimensional problems, is that a single fractional order might not accurately describe all the
dimensions. In recent works, Transformers were used to overcome the problem of dimensionality
in learned optimization [4], but the inference time is slow. We aim to take advantage of other
advances in the field, such as faster attention mechanisms [2] or SSM [5] and make this approach
more feasible in the future. In meta-learning, the inner and outer dynamics of the system differ.
In this work we focused solely on the inner dynamics which sometimes behaves akin to a chaotic
system. Further investigation is needed to extend this work also to the outer dynamics.
Acknowledgments: This work was supported in part by project CNCS-UEFISCDI (PN-III-P4-
PCE-2021-1959). The authors thank Andrei Zanfir and Mykhaylo Andriluka for their insightful
feedback throughout various stages of this project.

References

[1] Augustin-Louis Cauchy. Résumé des leçons données à l’école royale polytechnique sur le
calcul infinitésimal, volume 1. Imprimerie royale, 1823. Reprint: Completes II(4), Gauthier-
Villars, Paris.

[2] Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

6

APPLICATIONS OF FRACTIONAL CALCULUS IN LEARNED OPTIMIZATION

[3] Furkan Nur Deniz, Baris Baykant Alagoz, Nusret Tan, and Murat Koseoglu. Revisiting
four approximation methods for fractional order transfer function implementations: Stabil-
ity preservation, time and frequency response matching analyses. Annual Reviews in Control,
49:239–257, 2020. ISSN 1367-5788. doi: https://doi.org/10.1016/j.arcontrol.2020.03.003.

[4] Erik Gärtner, Luke Metz, Mykhaylo Andriluka, C Daniel Freeman, and Cristian Sminchisescu.
Transformer-based learned optimization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11970–11979, 2023.

[5] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. In The International Conference on Learning Representations (ICLR),
2022.

[6] Pham Viet Hai and Joel A. Rosenfeld. The gradient descent method from the perspective of
fractional calculus. Mathematical Methods in the Applied Sciences, 44(7):5520–5547, 2021.
doi: https://doi.org/10.1002/mma.7127.

[7] James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimiza-
tion: Stability, robustness, and inductive biases. Advances in Neural Information Processing
Systems, 35:3758–3773, 2022.

[8] Oscar Li, James Harrison, Jascha Sohl-Dickstein, Virginia Smith, and Luke Metz. Variance-
reduced gradient estimation via noise-reuse in online evolution strategies. Advances in Neural
Information Processing Systems, 36:45489–45501, 2023.

[9] Shu Liang, Le Yi Wang, and George Yin. Fractional differential equation approach for convex
optimization with convergence rate analysis. Optim. Lett., 14(1):145–155, 2020. doi: 10.1007/
S11590-019-01437-6.

[10] J Liouville. Note sur une formule pour les différentielles à indices quelconques, à l’occasion
d’un mémoire de m. tortolini. Journal de mathématiques pures et appliquées, 20, 1855.

[11] Jiaxu Liu, Song Chen, Shengze Cai, and Chao Xu. The novel adaptive fractional order gradient
decent algorithms design via robust control. ArXiv, abs/2303.04328, 2023.

[12] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[13] Weipu Lou, Wei Gao, Xianwei Han, and Yimin Zhang. Variable order fractional gradient
descent method and its application in neural networks optimization. In 2022 34th Chinese
Control and Decision Conference (CCDC), pages 109–114, 2022. doi: 10.1109/CCDC55256.
2022.10033456.

[14] Luke Metz, James Harrison, C. Daniel Freeman, Amil Merchant, Lucas Beyer, James
Bradbury, Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, and Jascha Sohl-
Dickstein. VeLO: Training Versatile Learned Optimizers by Scaling Up. arXiv e-prints, art.
arXiv:2211.09760, November 2022. doi: 10.48550/arXiv.2211.09760.

[15] K. Oldham and J. Spanier. The Fractional Calculus Theory and Applications of Differentiation
and Integration to Arbitrary Order. ISSN. Elsevier Science, 1974. ISBN 9780080956206.

7

APPLICATIONS OF FRACTIONAL CALCULUS IN LEARNED OPTIMIZATION

[16] Bernhard Riemann. Versuch einer allgemeinen Auffassung der Integration und Differentiation.
Gesammelte Werke, Lipzig, 1876. ed. publ. posthumously.

[17] Yeonjong Shin, Jérôme Darbon, and George Em Karniadakis. A caputo fractional derivative-
based algorithm for optimization. arXiv preprint arXiv:2104.02259, 2021.

[18] Zeng Liao Shu Liang, Cheng Peng and Yong Wang. State space approximation for general
fractional order dynamic systems. International Journal of Systems Science, 45(10):2203–
2212, 2014. doi: 10.1080/00207721.2013.766773.

[19] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. Advances in neural infor-
mation processing systems, 33:7537–7547, 2020.

[20] Zhiguang Zhu, Ang Li, and Yong Wang. Study on two-stage fractional order gradient descend
method. In 2021 40th Chinese Control Conference (CCC), pages 7960–7964, 2021. doi:
10.23919/CCC52363.2021.9549324.

8

	Introduction
	Fractional Calculus
	Geometric interpretation

	Methodology
	Meta-learning on classical functions
	Chaotic systems

	Results
	Meta-learning on classical functions
	Chaotic systems

	Limitations

