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Abstract
Distributionally Robust Optimization (DRO) is a powerful modeling technique to tackle the chal-
lenge caused by data distribution shifts. This paper focuses on Sinkhorn distance regularized DRO.
We generalize Sinkhorn distance allowing broader function choices to model ambiguity set and
derive the lagrangian dual taking the form of nested stochastic programming. We also design the
algorithm based on stochastic gradient descent with easy-to-implement constant learning rate. Un-
like previous work doing algorithm analysis for convex and bounded loss function, our algorithm
provides convergence guarantee for non-convex and possible unbounded loss function under proper
choice of sampling batch-size. The resultant sample complexity for finding ϵ-stationary point re-
veals independent relationship with data size and parameter dimension, and thus our modeling and
algorithms are suitable for large-scale applications.
Keywords: stochastic algorithm, distributionally robust optimization, Sinkhorn distance

1. Introduction

In classic machine learning, the primary goal is to achieve good predictive performance on the test
set after training the model on a designated training set. The training problem is typically formu-
lated by the expected risk minimization problem. In particular, stochastic gradient descent (SGD)
[17] and its variants [13, 21, 22] have been introduced to solve this type of problem. However,
expected risk minimization assumes that the training set and the test set follow the same underlying
distribution, which is often unrealistic and may result in bad test performance when data distribution
shift exists.

The shifts on data distribution is prevalent in real-world scenarios. It can be caused by many
factors such as sampling bias, presence of anomalies, data merging and change of measurements,
etc. To tackle this challenge, Distributionally Robust Optimization (DRO) [18] was proposed, which
formulates the objective function as a min-max problem. DRO aims to learn a robust model by
minimizing the expected risk over the worst-case data distribution within a predefined ambiguity
set. This formulation offers a principled framework to learn the optimal resilient solution in the face
of distribution uncertainty.

One key factor in DRO problems is the selection of an appropriate divergence measure for mod-
eling the ambiguity set. Specifically, the divergence measure should not only be computationally
tractable but also yield a solution that avoids excessive conservatism. In the existing literature, var-
ious divergence-based ambiguity sets have been studied. In [14, 15, 25, 33], the authors focus on
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reformulating the expressions of loss functions under the worst-case distributions into a tractable
form and exploring possible algorithms to tackle DRO problems under Wasserstein metric based
ambiguity sets. For more information, we refer the readers to [23] for a comprehensive survey on
Wasserstein DRO. In [12, 19, 24], the authors analyze alternative expressions of loss functions under
the worst-case distribution and develop algorithms to solve DRO problems under Kullback–Leibler
(KL) divergence-based and f -divergence-based ambiguity sets. However, the aforementioned di-
vergence measures have certain limitations. For example, it is known that DRO with Wasserstein
distance requires high computational complexity [5, 28]. Both KL and f -divergence are not sym-
metric when assessing distributions. Furthermore, these two divergence measures require that the
distributions share the same probability support, a strong condition that may fail to capture extreme
distributions at certain points.

The Sinkhorn distance, first introduced in [10], was designed to address the aforementioned
limitations. Sinkhorn distance is symmetric and allows distributions from the same sample space to
have different probability support. Furthermore, Sinkhorn distance is a convex function with respect
to distributions, ensuring computation tractability and efficiency for large-scale problems. In [37],
Sinkhorn DRO was initially investigated. Specifically, they derived the dual formulation of a con-
strained Sinkhorn DRO problem, which can be effectively solved by the mirror descent algorithm.
However, the convergence analysis conducted in their work assumed that the loss function is convex
and bounded, which may not hold in practical modern machine learning applications.

Motivated by these limitations, in this study, we consider the regularized Sinkhorn DRO prob-
lem (see (1)) with nonconvex and possibly unbounded loss. Our contributions are summarized as
follows.

• We introduce a generalized Sinkhorn distance based on the class of f -divergence measures.
This generalized notion not only retains the advantages of the original Sinkhorn distance but
also allows to use a broader range of divergences to model the ambiguity set.

• We derive an equivalent dual formulation of the regularized Sinkhorn DRO problem with
strong duality guarantee. The dual problem takes the form of nested stochastic programming.

• To solve the nested stochastic problem with nonconvex and unbounded loss, we design a
Nested-SGD algorithm with guaranteed convergence. Our Nested-SGD is specifically tai-
lored for solving large-scale regularized Sinkhorn DRO problems.

2. Related Work

DRO. The DRO framework shares strong connections with contrastive learning [38], multiple in-
stance learning [32], and anomaly detection [6]. The key challenge during modelings is the choice
of ambiguity set. The first stream focuses on using information divergence to construct ambiguity
set. Commonly employed divergence measures include the Wasserstein metric [14, 15, 25, 33]; KL
divergence [19, 35]; f -divergence [12, 20, 24, 26] and Sinkhorn distance [37]. Another stream for
constructing ambiguity set is using special statistics, such as geometry shape constraints [7] and
statistical moments [9, 11, 18] etc.

Sinkhorn Distance. Sinkhorn distance has successful applications in areas like generative mod-
els [16, 27], matrix factorization [30], image segmentation[31] etc. In [10], Sinkhorn matrix scal-
ing algorithms was proposed to compute optimal transport map under Sinkhorn distance objective.
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Later, in [1, 4], greedy and stochastic variants of Sinkhorn scaling algorithms were proposed to
clarify relationship between algorithm convergence and input dimensions. Some works also study
Sinkhorn distance computation over data samples with special structures. In [2, 36], their algo-
rithms specially applies to data samples over compact Riemannian manifolds and Euclidean balls
respectively.

Algorithms for Solving DRO. For Wasserstein metric ambiguity set, several works reformulate
primal problem into tractable forms such as convex programming[33], semi-definite programming
[25] and mixed integer programming [32]. Subsequent works [32, 33] directly use software toolbox
to solve their problems. In [25], they use cutting-surface method to solve semi-definite programming
for general nonlinear loss and branch-and-bound algorithms for bilinear loss. Another common
technique to transform DRO is using lagrangian duality [15, 24]. Through this way, computation
of shifted distribution can be avoided. In [29], projected SGD and acceleration is used to solve the
dual form of KL divergence constrained DRO. In [20], normalized SGD with momentum is used
to solve the dual of f -divergence regularized DRO. In [40], stochastic Frank-Wolfe is used to solve
approximation for the dual of general Cressie-Read family divergence constrained DRO. In [37],
stochastic mirror descent is used to solve the dual form of Sinkhorn distance constrained DRO.

3. DRO with Generalized Sinkhorn Distance

In DRO, the goal is to learn a model that achieves good and robust performance under uncertainty
of the underlying data distribution. Specifically, consider a machine learning problem with the
loss function denoted by ℓ(x; ξ), where x ∈ Rd denotes the collection of model parameters and
ξ corresponds to a data sample that follows an underlying nominal distribution Q. Then, with a
regularization parameter λ > 0, we study the following regularized DRO problem

min
x∈Rd

sup
Q

{
Eξ∼Q

[
ℓ(x; ξ)

]
− λWϵ(P,Q)

}
, (1)

where Wϵ(P,Q) denotes a certain function (with parameter ϵ > 0) that measures the distance
between the distributions P and Q. In particular, the operation minx supQ aims to optimize the
model under the worst-case data distribution Q to enhance model robustness against distribution
shift.

In this work, we consider the following generalized Sinkhorn distance to quantify the distribu-
tion shift. Throughout the paper, we consider a sample space Ω and σ-algebra F . We assume that
the distribution Q over a measurable subset of F is absolutely continuous with regard to a reference
measure ν, i.e., Q ≪ ν.

Definition 1 (Generalized Sinkhorn Distance) Denote Γ(P,Q) as the set of joint distributions
that have marginal distributions P,Q. For a fixed regularization parameter ϵ > 0 and a cost
metric c : Ω× Ω → R, the generalized Sinkhorn distance is defined as

Wϵ(P,Q) = inf
γ∈Γ(P,Q)

{
E(ζ,ξ)∼γ

[
c(ζ, ξ)

]
+ ϵDf (γ | P⊗ ν)

}
,
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where Df corresponds to the f -divergence1, that is,

Df (γ | P⊗ ν) =

∫
f
( dγ(ζ, ξ)

dP(ζ)dν(ξ)
)
dν(ξ)dP(ζ).

And dγ(ζ,ξ)
dP(ζ)dν(ξ) represents density ratio of γ with respect to P⊗ ν evaluated at

(
ζ, ξ

)
.

Remark 2 Typical choices of the reference measure ν include the Lebesgue measure or the Gaus-
sian measure. We note that the divergence term Df (γ | P ⊗ ν) is equivalent to Df (γ | P ⊗ Q) up
to a constant, and we consider the former term for simplicity.

The proposed generalized Sinkhorn distance allows the data distributions P and Q to have different
probability support. This provides more flexibility to model distribution uncertainty compared to
other divergence-based measures [20, 24]. Moreover, our generalized Sinkhorn distance is based
on the f -divergence, which generalizes the KL-divergence adopted in the definition of the standard
Sinkhorn distance [37].

The primal regularized DRO problem in (1) is hard to solve, since it is challenging to obtain an
analytical form of the worst-case distribution Q. In the next section, we study its dual formulation
and develop efficient estimators of its stochastic gradients.

4. Dual Formulation and Gradient Estimation

The generalized Sinkhorn distance involves special structures that can transform the primal regu-
larized DRO problem in (1) into a simpler dual form. To elaborate, we first decompose the joint
distribution as γ(ζ, ξ) = γζ(ξ)P(ζ), where γζ corresponds to the conditional distribution over ξ.
Moreover, by the interchangeability [34] between Eζ∼P and supγζ , the primal problem in (1) can be
rewritten as

min
x∈Rd

Eζ∼P

[
sup
γζ

(
Eξ∼γζ

[
ℓ(x; ξ)− λc(ζ, ξ)

]
− λϵDf (γζ | ν)

)]
. (2)

Following inverse c.d.f sampling argument in [24], the inner supremum term supγζ (·) has the fol-
lowing equivalent dual formulation

min
η∈R

{
Lζ(x, η) := λϵEξ∼ν

[
f∗

(ℓ(x; ξ)− λc(ζ, ξ)− η

λϵ

)]
+ η

}
,

where η is the dual variable and f∗ denotes the conjugate function of f 2. For simplicity of presen-
tation, we denote η∗x(ζ) ∈ argminη Lζ(x, η) and define

Ψζ(x) := Lζ(x, η
∗
x(ζ)), Lζ,ξ(x, η) := λϵf∗(ℓ(x; ξ)− λc(ζ, ξ)− η

λϵ

)
+η.

Then, the problem (1) can be written as the following nested stochastic problem

min
x∈Rd

Eζ∼P
[
Ψζ(x)

]
, where Ψζ(x) = min

η
Lζ(x, η). (3)

1. For f -divergence, the function f :
[
0,+∞

)
→

[
− ∞,+∞

]
is convex and satisfies f(1) = 0 and f(0) =

limt→0+ f(t).
2. The conjugate function is defined as f∗(v) = supt∈dom(f)

{
vt− f(t)

}
4
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The hardness of the above problem is due to the nested structure, where both the inner and outer
problems are stochastic optimization problems. Moreover, it is different from a standard bi-level
optimization problem, since the inner optimizer η∗x(ζ) varies with regard to the data ζ.

To make sure the problem is well-defined, we adopt the following assumptions throughout the
paper.

Assumption 4.1 The functions in problem (3) satisfy:

• For every ξ, ℓ(·; ξ) is G-Lipschitz continuous, and ℓ(·; ξ) is differentiable and L-smooth.

• Function f∗(·) is differentiable and M -smooth.

• The function Eζ∼P
[
Ψζ(x)

]
is bounded below.

Note that the loss function ℓ(x; ξ) is not necessary to be convex.
In addition, we adopt the following assumptions that both the loss function and the cost metric

have bounded variance.

Assumption 4.2 There exists σ, δ > 0 such that:

• For every x, the variance of ℓ(x; ·) is bounded by σ2.

• For every ζ, the variance of c(ζ, ·) is bounded by δ2. And for every ξ, the variance of c(·, ξ)
is bounded by δ2.

To solve the nested stochastic optimization problem (3), intuitively, one can apply the standard SGD
algorithm to solve the outer-level problem minx∈Rd Eζ∼P

[
Ψζ(x)

]
. The following lemma, proved

in [20], provides an analytical formula for computing the exact stochastic gradient.

Lemma 3 Let Assumption 4.1 hold and consider any fixed x and ζ. Then, the function Ψζ(x) is
differentiable and satisfies ∇Ψζ(x) = ∇1Lζ(x, η

∗
x(ζ)), where η∗x(ζ) ∈ argminη Lζ(x, η).

However, as can be seen from the above lemma, calculating the stochastic gradient requires access to
the exact minimizer η∗x(ζ) of the inner stochastic problem, which is often hard to obtain in practice.
To address this issue, in the following theorem, we develop an approximation of the stochastic
gradient based on an inexact solution of the inner stochastic problem.

Theorem 4 Suppose we obtain x and ηx(ζ) such that the gradient taken over second argument
satisfy ∣∣∇2Lζ(x, ηx(ζ))

∣∣ ≤ ϵ1. (4)

Then, for any ζ, the gradient taken over first argument satisfy

∥∇Ψζ(x)−∇1Lζ(x, ηx(ζ))∥ ≤ Gϵ1. (5)

The above theorem indicates that, an accurate estimate of the stochastic gradient can be constructed
based on an inexact solution ηx(ζ) of the inner problem. Note that the stationary condition in (4) is
an optimality condition due to convexity of the inner problem.
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5. Nested-SGD and Convergence Analysis

Theorem 4 naturally inspires us to design a SGD-like algorithm with nested loops, i.e., the inner
SGD loop solves the inner stochastic problem for ever sampled ζ to obtain the inexact solution
ηx(ζ) (see Algorithm 2), and the outer SGD loop solves the outer stochastic problem based on the
stochastic gradient estimator proposed in the above theorem (see Algorithm 1).

Specifically, in the Nested-SGD Algorithm 1, we design a mini-batch SGD algorithm to update
x. At each iteration t, the algorithm samples one ζ and a batch of

{
ξ
}
B1

with batch size B1 to
construct a stochastic gradient estimator taking the form

ĝBt =
1

B1

B1∑
i=1

f∗′
(ℓ(xt; ξi)− c(ζ, ξi)− ηxt(ζ)

λϵ

)
∇ℓ(xt; ξi). (6)

In Algorithm 2, we use mini-batch SGD to find an approximation of η∗x(ζ). At each iteration d, the
algorithm samples a batch of

{
ξ
}
B2

with batch size B2 to construct a stochastic gradient estimator
taking the form

vBd = 1− 1

B2

B2∑
i=1

f∗′
(ℓ(x; ξi)− c(ζ, ξi)− ηdx(ζ)

λϵ

)
. (7)

Since Lζ(x, η) is a convex function with regard to η, when output ηd̄x(ζ) with the minimal gradient
norm, it can be guaranteed that the obtained ηx(ζ) is close to η∗x(ζ).

Algorithm 1: Nested-SGD for solving
Eζ∼P

[
Ψζ(x)

]
Data: T ∈ N, initialization x0, η0, learning

rate γt
for t = 0....T − 1 do

Sample
{
ζ
}

and
{
ξ
}
B1

with batch size
B1

Construct estimator ηxt(ζ) via
Algorithm 2

Compute gradient estimator ĝBt via
equation (6)

Update xt+1 = xt − γtĝ
B
t

end
Result: Output xt̄, where t̄ is sampled from{

0....T − 1
}

uniformly at random

Algorithm 2: Construct Estimator ηx(ζ)

Data: D ∈ N, learning rate αd

for d = 0....D − 1 do
Utilize the ζ sampled in Algorithm 1
Sample

{
ξ
}
B2

with batch size B2

Compute gradient estimator vBd via
equation (7)

Update ηd+1
xt

(ζ) = ηdxt
(ζ)− αdv

B
d

end
Result: Output ηd̄xt

(ζ), where
d̄ ∈ {0, ..., D − 1} corresponds to
the index with minimal gradient
norm

To analyze the convergence of Nested-SGD, we first prove some smoothness conditions for the
functions Eζ∼P

[
Ψζ(x)

]
and Lζ(x, η). Note that when x and η are arbitrary chosen, the function

Eζ∼P
[
Lζ(x, η)

]
satisfies generalized smoothness condition proposed in [8, 39]. However, if η is

carefully chosen such that η∗x(ζ) ∈ argminη Lζ(x, η), the generalized smoothness condition re-
duces to the smoothness condition as shown in the following Lemma 5.

Lemma 5 The following smoothness conditions hold.
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• For any x, x′, it holds that

Eζ∼P
∥∥∇Ψζ(x)−∇1Lζ(x

′, η∗x(ζ))
∥∥2 ≤ K2

∥∥x− x′
∥∥2, (8)

where K = G2(λϵ)−1M + L.

• For any x and any η, η′, it holds that

Eξ∼ν

∥∥∇2Lζ,ξ(x, η)−∇2Lζ,ξ(x, η
′)
∥∥2 ≤ K ′2∥∥η − η′

∥∥2, (9)

where K ′ = M(λϵ)−1.

We also develop bounds for the second moment of the proposed gradient estimators.

Lemma 6 For mini-batch gradient estimator ĝBt used in Algorithm 1, it satisfies

Eζ∼P,ξB∼ν

∥∥ĝBt ∥∥2 ≤ RB1 +
8G2ϵ21
B1

+
∥∥∇1Eζ∼P

[
Lζ(xt, ηxt(ζ))

]∥∥2, (10)

where RB1 = O(G
2+G2M2(λϵ)−2σ2

B1
+G2M2ϵ−2δ−2).

For mini-batch gradient estimator vBd used in Algorithm 2, it satisfies

EξB∼ν

∥∥vBd ∥∥2 ≤ R2

B2
+
∥∥∇2Lζ(xt, η

d
xt
(ζ))

∥∥2, (11)

where R2 = 2M2(λϵ)−2(σ2 + λ2δ2).

Based on the above lemma, we obtain the following convergence result of Nested-SGD for mini-
mizing Eζ∼P[Ψζ(x)].

Theorem 7 Let Assumptions 4.1 and 4.2 hold. Denote ∆ = Eζ∼P
[
Ψζ(x0)

]
− infx Eζ∼P

[
Ψζ(x)

]
.

Run Nested-SGD for T iterations with learning rate γt = min
{

1
3K ,

√
2∆

KRB1
T

}
and error threshold

ϵ1(t) = Θ(G−1T− 1
2 ) for all t. Then, the convergence result is

E
∥∥∇Eζ∼P

[
Ψζ(xt)

]∥∥2 ≤ O
(√∆KRB1

T

)
+O

(∆K

T

)
+O

(B−1
1

√
∆K/RB1

T 3/2

)
. (12)

Moreover, to achieve E
∥∥∇Eζ∼P

[
Ψζ(xt)

]∥∥ ≤ δ1, choose B1 = Θ(1), then the sample complexity of
Algorithm 1 is Ω(∆KRB1δ

−4
1 ).

For Algorithm 2, the convergence analysis and learning rate choice follow the standard SGD
[3, 17]. The difference is we use mini-batch version to ensure convergence.

Theorem 8 Let Assumptions 4.1 and 4.2 hold. Denote ∆̂ = Lζ(xt, η
0
xt
(ζ)) − Ψζ(xt). Run Algo-

rithm 2 for D iterations with learning rate αd = min
{

1
K′ ,

√
2∆̂

K′(R2/B2)D

}
for all d. Then, the

convergence result is

E
∣∣∇2Lζ(xt, η

d
xt
(ζ))

∣∣2 ≤ O
(√∆̂K ′R2

DB2

)
+O

(∆̂K ′

D

)
. (13)

In particular, choose B2 = Θ(ϵ−2
1 ), then Algorithm 2 outputs ηd̄xt

(ζ) satisfy
∣∣∇2Lζ(x, η

d̄
x(ζ))

∣∣≤ ϵ1

after Ω(∆̂K ′R2ϵ
−2
1 ) iterations. The overall sample complexity of Alogrithm 2 is Ω(∆̂K ′R2ϵ

−4
1 ).

However, we noticed both algorithms are sub-optimal in terms of convergence rate. In the
future, we intend to enhance current algorithms with improved analysis and conduct experiments to
evaluate the performance and theoretical guarantees of proposed algorithms.
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