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Abstract
We study the oracle complexity of nonsmooth nonconvex optimization, with the algorithm allowed
access only to local function information. It has been shown by Davis, Drusvyatskiy, and Jiang
(2023) that for nonsmooth Lipschitz functions satisfying certain regularity and strictness condi-
tions, perturbed gradient descent converges to local minimizers asymptotically. Motivated by this
and other recent algorithmic advances in nonconvex nonsmooth optimization, we consider the ques-
tion of obtaining a non-asymptotic rate of convergence to local minima for this problem class.

We provide the following negative answer to this question: Local algorithms acting on regular
Lipschitz functions cannot, in the worst case, provide meaningful local guarantees in terms of
function value in sub-exponential time, even when all near-stationary points are global minima.
This sharply contrasts with the smooth setting, for which standard gradient methods are known
to do so at a dimension-free rate. Our result complements the rich body of work in the theoretical
computer science literature that provide hardness results conditional on conjectures such as P ̸= NP
or cryptographic assumptions, in that ours holds unconditional of any such assumptions.

1. Introduction

Nonconvex optimization problems are ubiquitous throughout the computational and applied sci-
ences. Since globally optimizing nonconvex objectives is infeasible in general, optimization theory
has long pursued iterative algorithms that find solutions satisfying some local optimality guaran-
tees. For example, given a sufficiently smooth objective f : Rd → R, a folklore result asserts
that gradient descent, when applied with a suitable step-size, converges to a stationary point at a
dimension-independent rate. Similarly, the perturbed gradient descent update

xt+1 ← xt − ηt∇f(xt) + ξt, (1.1)

where ξt is a mean-zero random variable, is known [28] to asymptotically converge only to local
minimizers of f for suitable choices of (ηt, ξt)t∈N. Moreover, under a “strictness” assumption [23]
stating, roughly, that critical points are either sufficiently negatively curved or local minimizers, this
convergence is known to have a favorable polynomial rate nearly independent of the dimension [27].

Even though the state of affairs is relatively well understood for smooth objectives, many mod-
ern applications in machine learning, operations research, and statistics (e.g., deep learning with
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ReLU activations [34], piecewise affine regression [7]) require solving nonconvex problems that
are also inherently nonsmooth. This structure presents several important challenges: As a promi-
nent example, it calls into question the correctness of automatic differentiation with PyTorch and
TensorFlow [30]. Aiming at this regime, Davis and Drusvyatskiy [12] studied (nonsmooth) weakly-
convex functions,1 showing that strictness enables proximal methods to asymptotically converge to
local minimizers. Subsequently, this convergence was shown to have a polynomial rate [15, 26],
thus extending to a nonsmooth setting what was previously known only for smooth objectives.

However, many prominent contemporary optimization problems such as neural network training
fall outside this class of weakly convex objectives.2 In this regard, Davis et al. [17] proved a vast
generalization of the previously mentioned results, asserting that for nonsmooth Lipschitz functions
satisfying mild regularity properties and a strictness assumption, the dynamics dictated by (1.1)
asymptotically converge only to local minimizers. Another asymptotic result of similar spirit was
also obtained in [4]. These developments motivate the following natural question:

Is it possible to obtain non-asymptotic convergence guarantees to local minima, when
optimizing sufficiently regular Lipschitz objectives that satisfy a strictness property?

A priori, recent advances in nonsmooth nonconvex optimization suggest that there is room for
optimism for such finite-time guarantees. Following the work of Zhang et al. [50], a surge of recent
results showed that it is possible to converge, at a dimension-free polynomial rate, to approximate-
stationary points in the sense of Goldstein [24] when optimizing Lipschitz functions [16, 49]. This
remains an active area of research, with recent works obtaining finite-time guarantees for optimizing
Lipschitz functions in terms of Goldstein-stationarity under a variety of settings such as stochastic
[8], constrained [25], and zeroth-order optimization [33, 35].

Nevertheless, as our main result (Theorem 2.1) will soon show, obtaining any non-trivial conver-
gence rate in terms of local function decrease is impossible even for strict functions. In particular,
we prove that even under suitable regularity assumptions and the non-existence of non-strict sad-
dles, any algorithm whatsoever based on local queries will necessarily get stuck, in the worst case,
at points at which there is significant local decrease, unless the number of iterations grows expo-
nentially with the dimension. In fact, this statement holds even under the supposedly easier case in
which all approximate-stationary points below some constant (sub)gradient norm are in fact global
minima – which trivially precludes the existence of non-strict saddles.

1.1. Related Work

There has been a long line of work on developing efficient algorithms for various classes of noncon-
vex programs, some of which we discuss in Appendix A. Here, we focus on lower bounds. There
has been extensive effort providing hardness results on reaching different solution concepts in nons-
mooth nonconvex optimization. The computational intractability of globally minimizing a Lipschitz
function up to a small constant tolerance was known since the works of Nemirovski and Yudin [37]
and Murty and Kabadi [36]. More recently, Zhang et al [50] showed that local, first-order algo-
rithms acting on nonsmooth nonconvex functions cannot attain either small function error or small
gradients: Indeed, approximately-stationary points can be easily “hidden” inside some arbitrarily

1. A function f is called weakly-convex if there exists ρ > 0 such that x 7→ f(x) + ρ
2
∥x∥2 is convex.

2. Indeed, this is the case even for a single negated ReLU neuron, namely z 7→ −max{0, z}.
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small neighbourhood, which cannot in general be found in a finite number of iterations. Subse-
quently, Kornowski and Shamir [32] considered if, for general Lipschitz functions, instead of trying
to find approximately-stationary points, the more relaxed notion of getting near an approximately-
stationary point is more tractable. Via the construction of a novel hard function, [32] answer this
question negatively (for both deterministic and randomized algorithms). This hardness result was
subsequently adapted by Tian and So [47], for the case of deterministic algorithms, endowing it
with Clarke regularity by employing a Huber-type smoothing. Next, Jordan et al. [29] provide an
improved understanding of achieving Goldstein stationarity by showing that no deterministic algo-
rithm can achieve a dimension-free rate of convergence. The work of Tian and So [48] extend this
to deterministic general zero-respecting algorithms for achieving Goldstein stationarity.

Our work adds to this line of hardness results: For oracle-based algorithms seeking to achieve
local optimality in Lipschitz functions, we prove a lower bound that is exponential in dimension,
even when the algorithm is allowed to employ randomization, the function is Clarke regular, and all
near-stationary points of the function are in fact global minima.

In a somewhat different direction, it is interesting to compare our result to a rich body of work
in the theoretical computer science literature. Some of the earliest such works include those of
Sahni [45, 46], which showed that global optimization of a general quadratic program is NP-hard,
and those by Murty and Kabadi [36], Pardalos and Schnitger [40], which showed that it is NP-hard
to test whether a given point is a local minimizer for constrained nonconvex quadratic program-
ming. The recent work of Ahmadi and Zhang [1] shows that unless P = NP, there cannot be a
polynomial-time algorithm that finds a point within Euclidean distance cn (for any constant c ≥ 0)
of a local minimizer of an n-variate quadratic function over a polytope. Additionally, they show that
the problem of deciding whether a quadratic function has a local minimizer over an (unbounded)
polyhedron, and that of deciding if a quartic polynomial has a local minimizer are NP-hard. In the
process, [1] answers a question posed by Pardalos and Vavasis [41]. Another open problem listed
by [41] was recently settled by Fearnley et al. [22], who showed that the problem remains hard even
if we are searching only for a Karush-Kuhn-Tucker (KKT) point. In particular, they show that the
quadratic-KKT problem is CLS-complete (a problem class introduced by [10]), which, by another
result of [21], is unlikely to have polynomial-time algorithms.

The most important difference of these results from ours is that while the above lower bounds
rely on conditional hardness assumptions from complexity theory (such as P ̸= NP), our framework
of oracle complexity, which reduces optimization to information theoretic notions, enables proving
lower bounds that are entirely unconditional. Furthermore, many of these results are stated in terms
of hardness of verification, which, in general, does not imply hardness of search — namely, finding
points of interest, as opposed to verifying that a given point is such. Finally, verification complexity
results typically focus on non-Lipschitz polynomials or other function classes, which, as is, do not
directly correspond to known complexity upper bounds discussed in our introduction.

1.2. Preliminaries

Nonsmooth Analysis. We say a function f : Rd 7→ R is L-Lipschitz if for any x,y, we have
|f(x) − f(y)| ≤ L∥x − y∥. Recall that by Rademacher’s theorem [42], Lipschitz functions are
differentiable almost everywhere (in the sense of Lebesgue). Throughout our paper, we will be
working with L-Lipschitz functions for some L (we specify our exact set of assumptions in Sec-
tion 2). We therefore next collect some relevant quantities associated with Lipschitz functions.
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Definition 1.1 For any Lipschitz function f : Rd 7→ R, the (ordinary) directional derivative of f
at a point x in the direction v is defined as f ′(x;v) := limt→0+

f(x+tv)−f(x)
t .

Definition 1.2 ([5, 43]) For any Lipschitz function f : Rd 7→ R, the generalized directional deriva-
tive of f at a point x in the direction v is defined as f◦(x;v) := lim sup

y→x, t→0+

f(y+tv)−f(y)
t .

The generalized directional derivative leads to the following definition of the Clarke subdifferential.

Definition 1.3 (Clarke [5, 6]) For any Lipschitz function f : Rd → R and point x ∈ Rd, the
Clarke subdifferential of f at x is defined as ∂f(x) := {g | ⟨g,v⟩ ≤ f◦(x;v), ∀v ∈ Rd}, with
each element g of this set termed a Clarke subgradient.

Equivalently, ∂f(x) := conv{g : g = limn→∞∇f(xn), xn → x} , namely, the Clarke subdiffer-
ential is the convex hull of all limit points of∇f(xn) over all sequences of differentiable points xn

which converge to x. If the function is continuously differentiable at a point or convex, the Clarke
subgradient there reduces to the gradient or subgradient in the convex analytic sense, respectively.
Equipped with the notation of the Clarke subdifferential, one may define a Clarke regular function.

Definition 1.4 ([5]; [6, Definition 2.3.4]) A locally Lipschitz function f : Rd 7→ R is Clarke regu-
lar at x ∈ Rd if for every direction v ∈ Rd, the ordinary directional derivative f ′(x;v) exists and
f ′(x;v) = f◦(x;v). The function f : Rd → R is regular if it is Clarke regular at all x ∈ Rd.

Finally, ∂̄f(x) := argmin{∥g∥ : g ∈ ∂f(x)} , denotes the minimal norm subgradient at a point
x, and we say that x is an ϵ-stationary point of f(·) if

∥∥∂̄f(x)∥∥ ≤ ϵ.

Local algorithms. We consider iterative algorithms that have access to local information at queried
points and proceed based on information gathered along these queries [37]. Formally, we call an
oracle local if for any point x and any two functions f, g that are equal over some neighborhood of
x, the equation Of (x) = Og(x) holds. At every iteration t ∈ N, a local algorithm which aims to op-
timize an unknown objective f : Rd → R chooses an iterate xt ∈ Rd, receives the local information
Of (xt), and proceeds to choose the next iterate xt+1 as some (possibly random) mapping of all the
oracle outputs seen thus far: (Of (x1), . . . ,Of (xt)). An important subclass of local algorithms are
first-order algorithms, which utilize an oracle of the form Of (x) = (f(x),gx) where gx ∈ ∂f(x)
is some consistent choice of a subgradient.

Organization. Due to the limit on pages, we defer all our proofs to the appendix.

2. Our Main Result

We now present our main theorem. Put simply, it states that local algorithms acting on regular
Lipschitz functions cannot, in the worst case, guarantee meaningful local guarantees in terms of
function value in sub-exponential time, even when all near-stationary points are global minima.

For comparison, recall that for smooth objectives f : Rd → R and sufficiently small δ > 0, gra-
dient descent gets after T steps to a point xT ∈ Rd such that f(xT ) ≤ minz∈B(xT ,δ) f(z)+O( δ√

T
),

namely, a point locally competitive with nearby function values up to a factor which vanishes in a
dimension-free manner. Our main result precludes precisely that when smoothness is absent.
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Theorem 2.1 For any (possibly randomized) local algorithm A and any T, d ∈ N, there is a
function f : Rd → R so that for some absolute constant c ≥ 1

100 , the following properties hold:

(i) The function f is 1-Lipschitz and Clarke regular, f(0)− inf f ≤ 2, and all c-stationary points
of f are global minima.

(ii) With probability at least 1− 2T exp(−d/36), for all t ∈ [T ] and any δ ∈ (0, 1], the following
inequality holds:

min
z∈B(xt,δ)

f(z) < f(xt)− δc . (2.1)

To contextualize Theorem 2.1, we further note that under the stated 1-Lipschitzness condition,
for any δ > 0, the local decrease f(xt) − minz∈B(xt,δ) f(z) can be at most δ. Thus, the theorem
shows that unless T ≳ exp(Ω(d)), all iterates xt suffer from a nearly-maximal local decrease; as
a result, none of these iterates can be regarded as approximate local minima. On the other hand,
it is clearly the case that with exponential dimension dependence, a trivial grid search algorithm
can guarantee getting anywhere (i.e. over a discretization of a bounded domain), and in particular
can achieve approximate local optimality somewhere along the algorithm’s trajectory. Hence The-
orem 2.1 can be seen as asserting that nothing substantially better than a trivial strategy is possible.

The proof of Theorem 2.1 consists of constructing a variant of the function which was previously
used to prove a strong lower bound on the complexity of getting near stationary points of Lipschitz
functions [32]. Our analysis further reveals that our constructed function satisfies that all near-
stationary points are in fact global minima. The prior construction by [32] does not apply to Clarke
regular functions, which is an important consideration for our purposes in two aspects. First, for
the sake of interest of the derived result, the upper bounds in the context of local minimality, as
discussed throughout the introduction, crucially rely on this property.3 Second, Clarke regularity
implies the so called “Lyapunov property”, asserting that the subgradient flow decreases the function
value proportionally to the subgradient norm (see [9] for an elaborate discussion on this property
and function classes for which it holds). Therefore, having established a Clarke regular function
for which the algorithms’ iterates are nowhere near a point with sub-constant subgradient norm,
the Lyapunov property further ensures that by tracking the subgradient flow, the local decrease in
function value is significant, hence implying our desired lower bound in terms of function value.
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Appendix A. Notation and Preliminaries

We let N = {1, 2, . . . , } be the natural numbers starting from one. We let boldfaced letters (e.g.,
x) denote vectors. We denote the d-dimensional Euclidean space by Rd and by ⟨·, ·⟩ and ∥ · ∥ its
associated inner product and norm, respectively. We use 0d (or simply 0 when d is clear from
context) to denote the zero vector in Rd and e1, e2, . . . for the standard basis vectors. Given a vector
x, we denote by xi its i-th coordinate, by x1:i := (x1, . . . , xi) its truncation, and by x̄ = x

∥x∥ the
normalized vector (assuming x ̸= 0). We use B(x, δ) to denote the closed Euclidean ball of radius
δ > 0 centered at x.

Fact A.1 ([6, Proposition 2.3.6]) Let f be Lipschitz near x.

(i) If f is continuously differentiable at x, then f is regular at x.
(ii) If f is convex, then f is regular at x.

(iii) A finite linear combination by nonnegative scalars of functions regular at x is regular at x.

Finally, we state the following important facts from subdifferential calculus that we use.

Fact A.2 (Proposition 2.3.3 and Theorem 2.3.9 [6]) We have that ∂(g1 + g2) ⊆ ∂g1 + ∂g2, and
if g1 is univariate, then ∂(g1 ◦ g2)(x) ⊆ conv {r1r2 : r1 ∈ ∂g1(g2(x)), r2 ∈ ∂g2(x)}.

Fact A.3 ([44, Theorem 10.29]) If F is regular, and g is regular at all F (x), then f(x) = g(F (x))
is regular at all x.

Related Work. There has been a long line of work in the optimization literature on studying
convergence of first-order methods for various classes of nonconvex programs. Some early works
include those of Benaı̈m et al. [3], Ermol’ev and Norkin [20], Norkin [38], Nurminskii [39]. More
recently, Davis et al. [14] showed the first rigorous convergence guarantees for the stochastic subgra-
dient method on Whitney stratifiable functions by building on techniques from Drusvyatskiy et al.
[18], Duchi and Ruan [19]. For well-behaved problems with ρ-weakly convex objective functions,
Davis and Drusvyatskiy [11], Davis and Grimmer [13] studied convergence to stationary points of
the Moreau envelope and provide dimension-free convergence rates for finding these points. As
alluded to earlier, the work of Zhang et al [50] provided the first finite-time dimension-free guar-
antees for converging to a Goldstein stationary point of a given Lipschitz function, a result that
was subsequently strengthened to hold under standard first-order oracle access [16, 49]. Finally,
by slightly restricting the class of nonsmooth objectives, Kong and Lewis [31] develop a simple
de-randomized version of the algorithm of [50] with increased, but still dimension-free, complexity
and quantify how the cost in complexity of optimizing nonsmooth objectives grows with their level
of nonconvexity.

Appendix B. Proof of Our Main Result (Theorem 2.1)

In this section, we prove our main result (Theorem 2.1). We first state Proposition B.1 (deferring
its proof to Appendix C.3), a technical result on one-dimensional functions that we crucially use for
the construction of our hard instance for Theorem 2.1.

Proposition B.1 For any γ > 0 and T ∈ N, there exists ρ > 0 so that the following holds: For
any (possibly randomized) local algorithm A, there exists a function h̄ : R→ [2,∞) such that
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(i) h̄ is 1-Lipschitz, convex, and satisfies h̄(0) ≤ 3.

(ii) h̄ has a unique minimizer x∗ ∈ (0, 1), and ∀x ̸= x∗ :
∣∣∂̄h̄(x)∣∣ ≥ 1

8 .
(iii) PrA[∃t ∈ [T ] : |xt − x∗| ≤ ρ] < γ.

The above proposition considers the class of Lipschitz, convex functions bounded from below and
with a certain minimum slope at all points that are not the function minimizers. Then, for any
randomized local algorithm, there exists a function in this function class, such that, with high prob-
ability, the said algorithm cannot reach its local minimum.

By embedding the one-dimensional hard instance of Proposition B.1 into higher dimensions, a
simple reduction enables us to extend Proposition B.1 to functions beyond merely one dimension.

Lemma B.2 For any γ > 0, T ∈ N, and d ≥ 2, there exists ρ > 0 (which depends only on
γ, T ) so that the following holds: For any (possibly randomized) local algorithm A, there exists a
function h̄ : R→ [1,∞) satisfying the following properties.

(i) h̄ is 1
2 -Lipschitz, convex, and satisfies h̄(0) ≤ 3

2 .
(ii) h̄ has a unique minimizer x∗ ∈ (0, 1), and ∀x ̸= x∗ :

∣∣∂̄h̄(x)∣∣ ≥ 1
16 .

(iii) When applying A to h(x) := 1
32 ∥x1:d−1∥+ h̄(xd), we have, for x∗ = (0d−1, x

∗), that

Pr
A
[∃t ∈ [T ] : ∥xt − x∗∥ ≤ ρ] < γ .

Proof [Proof of Lemma B.2] Since our goal is to provide a lower bound when applying the local
algorithm A, we can assume without loss of generality that A has access to an even stronger oracle
of the form

O(x) =
({

h(z1:d−1, xd) | z1:d−1 ∈ Rd−1
}
,Oh1d

(xd)
)
,

where h1d is a one-dimensional function we will soon choose. Note that oracle O as defined here
provides a full description of the function h over the affine subspace {z | zd = xd} in addition to the
local information with respect to the last coordinate.4 Moreover, given the algorithm A with such
an oracle, one can simulate a local algorithm A′ which optimizes the one-dimensional function h1d
by restricting to the d’th coordinates ((xt)d)t∈N of the iterates (xt)t∈N.

We let h1d be the one-dimensional function given by Proposition B.1 when applied to γ, T,A′.
With this choice of h1d, we let h̄ = 1

2h1d. Then, Lemma B.2(i) and Lemma B.2(ii) are immediate
by Proposition B.1(i) and Proposition B.1(ii). We also have h̄ : R 7→ [1,∞) from the range [2,∞)
of h1d from Proposition B.1. Finally, by combining the fact that A can simulate A′ and using
Proposition B.1(iii) for A′, we have the following inequality, which establishes Lemma B.2(iii):

Pr
A
[∃t ∈ [T ] : ∥xt − x∗∥ ≤ ρ] ≤ Pr

A′
[∃t ∈ [T ] : |(xt)d − x∗| ≤ ρ] < γ .

For our subsequent proofs, we use the setup described next, in Definition B.3.

4. As an example, in the canonical case of a (sub)gradient oracle, O provides the partial derivatives with respect to the
first d − 1 coordinates at all points, while revealing the partial derivative only with respect to the last coordinate at
the queried point.

11
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Definition B.3 We let A be a local algorithm, T, d ≥ 2, and set γ := T exp(−d/36). We denote
by h : Rd → [1,∞), x∗ ∈ Rd, ρ > 0 the function, minimizer, and positive constant, respectively,
given by Lemma B.2(iii) when applied to A, T, d. Given any w ∈ Rd \ {0} and µ > 0, we denote
w̄ := w

∥w∥ and construct

fw,µ(x) := max {h(x)− σµ(q(x− x∗)), 0} , (B.1)

where q : Rd → R and σµ : R→ R are defined as follows:

q(x) := ⟨w̄,x+w⟩ − 1
2 ∥x+w∥ and σµ(z) :=


0, z ≤ 0
z2

8µ , z ∈ (0, µ]
z
4 −

µ
8 , z > µ

. (B.2)

We need the following technical result about fw,µ, the proof of which we defer to Appendix D.

Lemma B.4 For the setup in Definition B.3 and w such that w ⊥ ed and ∥w∥ = 1000µ, the
following hold:

(i) fw,µ is non-negative, 1-Lipschitz, and Clarke regular.
(ii) For c = 1

100 , any c-stationary point x of fw,µ satisfies fw,µ(x) = 0. In particular, any
c-stationary point of fw,µ is a global minimum.

(iii) There exist w ∈ Rd, µ > 0 such that applying A to fw,µ satisfies

Pr
A
[∃t ∈ [T ] : fw,µ(xt) < 1] < 2γ .

Remark B.5 Following Lemma B.4(iii), we set w, µ so that PrA[∃t ∈ [T ] : fw,µ(xt) < 1] < 2γ
holds. For notational brevity, from hereon, we let f = fw,µ.

We already see by Lemma B.4(i) that f satisfies the regularity assumptions required by Theorem 2.1.
We therefore complete the proof by showing that it satisfies hardness in terms of getting near sta-
tionary points.

Lemma B.6 For the setup in Definition B.3, for any c = 1
100 , we have that

Pr
A

[∃t ∈ [T ] : xt is of distance < 1 to a c-stationary point of f ] ≤ 2T exp(−d/36).

Proof [Proof of Lemma B.6] By Lemma B.4, with probability at least 1− 2γ : mint∈[T ] f(xt) ≥ 1,
while for any c-stationary point x : f(x) = 0. Under this probable event, recalling that f is 1-
Lipschitz, we get that (xt)

T
t=1 must be of distance of at least 1 from any c-stationary point of f .

Finally, we complete the proof by recalling that γ := T exp(−d/36) in Definition B.3.

We finalize by showing that if an iterate is far away from any approximate-stationary point, then
it cannot be an approximate local minimum.

Lemma B.7 Let f be a Clarke regular function, and suppose x ∈ Rd, cδ > 0 are such that
B(x, cδ) does not contain any cϵ-stationary point. Then for every δ ≤ cδ :

min
z∈B(x,δ)

f(z) < f(x)− δcϵ .

12



HARDNESS OF LOCAL GUARANTEES IN NONSMOOTH NONCONVEX OPTIMIZATION

Proof [Proof of Lemma B.7] Consider the subgradient flow x(0) = x, dx(t)
dt = − ∂̄f(x(t))

∥∂̄f(x(t))∥ .

Note that the flow is well defined throughout t ∈ [0, cδ] since it has unit speed, hence x(t) ∈
B(x, t) ⊆ B(x, cδ) and by assumption B(x, cδ) does not contain any point with zero gradient.
Defining ϕ(t) := f(x(t)), we get by the chain rule

dϕ(t)

dt
= ∂̄f(x(t)) · dx(t)

dt
= −

∥∥∂̄f(x(t))∥∥ ,
thus

min
z∈B(x,δ)

f(z)− f(x) ≤ f(x(δ))− f(x) = ϕ(δ)− ϕ(0) = −
∫ δ

0

∥∥∂̄f(x(t))∥∥ dt < −δcϵ .

Proof [Proof of Theorem 2.1] To prove our main result of this paper, the function we consider
is f = fw,µ as defined in Definition B.3, with w and µ chosen so as to have Lemma B.4(iii) be
satisfied. We now state where we proved all its claimed properties. We showed in Lemma B.4(i) that
this f is 1-Lipschitz and Clarke regular. We also showed in Lemma B.4(i) that f is non-negative,
which implies inf f ≥ 0. Next, from (B.1), we have that f(0) ≤ h(0) = h̄(0) ≤ 3/2 , where
we used Lemma B.2(i) in the final step. This shows f(0) − inf f ≤ 2 as claimed. Similarly, we
showed in Lemma B.4(ii) that any c-stationary point of f is a global minimum for c = 1

100 . To show
Theorem 2.1(ii), we combine Lemma B.6 with Lemma B.7 (using cϵ = c, cδ = 1) to complete the
proof.

Appendix C. Proof of Proposition B.1

The goal of this section is to prove Proposition B.1, which we first recall below.

Proposition B.1 For any γ > 0 and T ∈ N, there exists ρ > 0 so that the following holds: For
any (possibly randomized) local algorithm A, there exists a function h̄ : R→ [2,∞) such that

(i) h̄ is 1-Lipschitz, convex, and satisfies h̄(0) ≤ 3.

(ii) h̄ has a unique minimizer x∗ ∈ (0, 1), and ∀x ̸= x∗ :
∣∣∂̄h̄(x)∣∣ ≥ 1

8 .
(iii) PrA[∃t ∈ [T ] : |xt − x∗| ≤ ρ] < γ.

Before proving this result (i.e., constructing the function h), we describe our high-level idea,
followed by definitions of the components that constitute h; our proof appears in Appendix C.3.

C.1. Intuition for Proposition B.1

Our function h is essentially a translated version of r(N)
σ defined in (C.10). As can be seen from

this defining expression, r(N)
σ is a random piecewise-affine scalar-valued function defined over the

entire real line. The key functions that make up r
(N)
σ are ϕ

(i)
σi (Definition C.3), g(i)σi (Definition C.5),

and Φ(i) (Definition C.7).
Crucially, the randomness in the parameter σ ∼ Unif{0, 1}N of r(N)

σ determines the both the
intervals and affine functions that constitute r

(N)
σ . The intervals and their corresponding functions

13
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are carefully chosen so as to ensure continuity of r(N)
σ : in particular, within each affine function

is baked in a term of the form
(
ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . .

)−1
that leads to appropriate cancellation at the

endpoints of intervals of definition; see, e.g., (C.11) and (C.12). The Lipschitzness of r(N)
σ follows

from that of each of its pieces, which in turn follows from the chain rule applied to the composition
functions making up each of these pieces and Lemma C.6(iv), where g

(i)
σi is proven Lipschitz. The

same line of reasoning also yields a lower bound on the slope of r(N)
σ . The proof of convexity of

r
(N)
σ is made simple by our parametrization of it in terms of θ(i): the slope of the constituent affine

functions of r(N)
σ varies as cot(θ(i)). The monotonicity of the cotangent function and our chosen

range of θ(i) then imply that the slope of r(N)
σ increases as we traverse the real line from left to right,

thus immediately giving us the desired convexity. We now proceed to state these technical details
with the goal of proving Proposition B.1. The proof is in Appendix C.3.

C.2. Technical Details for Proposition B.1

Definition C.1 For i ∈ N, we define a sequence of angles {θ(i)base} and {θ(i)shift} that satisfies

θ
(1)
base = arctan(1), θ

(i)
shift =

arctan(8)− θ
(1)
base

2i
, θ

(i+1)
base = θ

(i)
base + θ

(i)
shift. (C.1)

For θ(i)base and θ
(i)
shift, now define the quantities ϵ(i) and δ(i) as follows:

ϵ(i) = 1−3

2
·

(
1

2 tan(θ
(i)
base + θ

(i)
shift) + tan(θ

(i)
base)

)
, δ(i) =

1

2
·

(
tan(θ

(i)
base + θ

(i)
shift)− tan(θ

(i)
base)

2 · tan(θ(i)base + θ
(i)
shift) + tan(θ

(i)
base)

)
.

(C.2)

Claim C.2 The δ(i) and ϵ(i) and angles θ(i)base from Definition C.1 satisfy, for all i ∈ N, that

ϵ(i) > 0, 0 < δ(i) ≤ 7
32 , and θ

(i)
base ∈ [arctan(1), arctan(8)].

Proof First, observe that θ(i)base is monotonically increasing in i (as seen from (C.1)). Hence, for all
i ∈ N, we have θ

(i)
base ≥ θ(1) = arctan(1), which finishes one part of the claim. To state a lower

bound on ϵ(i) defined in (C.2), we observe that

2 tan(θ
(i)
base + θ

(i)
shift) + tan(θ

(i)
base) ≥ 3 tan(θ

(i)
base) ≥ 3 tan(θ

(1)
base) = 3 tan(arctan(1)) = 3,

where the first step used the monotoniticity of the tangent function, the second step used the fact that
θ
(i)
base is monotonically increasing (as seen from (C.1)), and the final step is by evaluation. Therefore,

we have that
ϵ(i) ≥ 1− 3

2× 3
> 0,

which finishes the proof of the claim of positive ϵ(i) for all i ∈ N. To see the bounds on δ(i), we first
note that by monotonicity of the tangent function, tan(θ(i)base+ θ

(i)
shift) > tan(θ

(i)
base), so δ(i) > 0. For

the upper bound, we note that

δ(i) =
1

2
·

(
tan(θ

(i)
base + θ

(i)
shift)− tan(θ

(i)
base)

2 · tan(θ(i)base + θ
(i)
shift) + tan(θ

(i)
base)

)
≤ 1

2
·
tan(θ

(i)
base + θ

(i)
shift)− 1

2 tan(θ
(i)
base + θ

(i)
shift)

,

14
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where the first step is because θ
(i)
base ≥ arctan(1) for all i. Finally, noting that θ(i)base ≤ arctan(8)

for all i, we can further bound the term above as δ(i) ≤ 1
4 −

1
32 = 7

32 , as claimed.

Definition C.3 For i ∈ N, we use the δ(i) from Definition C.1 to define the functions ϕ(i)
0 and ϕ

(i)
1

as follows.

ϕ
(i)
0 : [0, 1]→

[
1
2 − 2δ(i), 12 − δ(i)

]
⊆ (0, 1), where ϕ

(i)
0 (x) = δ(i) · x+ 1

2 − 2δ(i),

ϕ
(i)
1 : [0, 1]→

[
1
2 + δ(i), 12 + 2δ(i)

]
⊆ (0, 1), where ϕ

(i)
1 (x) = δ(i) · x+ 1

2 + δ(i).
(C.3)

These are the unique affine maps with positive derivatives mapping [0, 1] to their respective ranges.
Our assertion that [12 − 2δ(i), 12 − δ(i)] ⊆ (0, 1) and [12 + δ(i), 12 + 2δ(i)] ⊆ (0, 1) is justified by
0 < δ(i) < 1

4 from Claim C.2. We use the functions in (C.3) to define the interval

Iσ1σ2...σk

def
= ϕ(1)

σ1
◦ . . . ◦ ϕ(k)

σk
(0, 1) ⊆ (0, 1).

We denote the left and right end point of Iσ1σ2...σk
as

inf Iσ1σ2...σk
= ϕ(1)

σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(k)

σk
(0) and sup Iσ1σ2...σk

= ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(k)

σk
(1). (C.4)

Furthermore, we note the following definitions of the specific intervals I0 and I1 :

I0 = ϕ
(1)
0 (0, 1), and I1 = ϕ

(1)
1 (0, 1).

Lemma C.4 The functions defined in Definition C.3 satisfy the following properties.

(i) For any ℓ < k, and any σ1, σ2, . . . , σℓ, . . . , σk ∈ {0, 1} , we have that Iσ1...σℓ
⊇ Iσ1...σℓ...σk

.

(ii) For any i ≥ 1, the function ϕ
(1)
σ1 ◦ . . . ◦ ϕ

(i)
σi : (0, 1) 7→ Iσ1...σi is non-decreasing.

(iii) If (σ1 . . . σk−1) ̸= (σ′
1 . . . σ

′
k−1) then for all σk, σ′

k ∈ {0, 1} : Iσ1...σk
∩ Iσ′

1...σ
′
k
= ∅.

(iv) Let k = 1
4

√
log
(
1
ρ

)
. Then dist(x, Iσ1...σN ) ≤ ρ implies x ∈ Iσ1...σk

.

Proof [Proof of Lemma C.4] We prove each of the parts below.

Proof of Lemma C.4(i). The claim follows by the following observation:

Iσ1...σℓ...σk
= ϕ(1)

σ1
◦ . . . ◦ ϕ(ℓ)

σℓ
(ϕ(ℓ+1)

σℓ+1
◦ . . . ◦ ϕ(k)

σk
(0, 1)) ⊆ ϕ(1)

σ1
◦ . . . ◦ ϕ(ℓ)

σℓ
(0, 1) = Iσ1...σℓ

.

Proof of Lemma C.4(ii). Observe that from Definition C.3, the function ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ϕ

(i)
σi is

a composition of affine functions and is therefore itself affine; furthermore, by applying the chain
rule, one may infer that the derivative of a composition of affine functions equals the product of the
derivatives of the individual composing functions, which in our case is the product δ(1) ·δ(2) . . . δ(i),
which is positive since each δ(i) is as well.
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Proof of Lemma C.4(iii). Suppose i ≤ k−1 be the minimal index for which σi ̸= σ′
i and assume,

without loss of generality, that σi = 0 and σ′
i = 1. Consider a point x satisfying x ∈ Iσi...σk

. In
other words, for some u ∈ (0, 1), we have that x = ϕ

(1)
σ1 ◦ . . . ◦ ϕ

(k)
σk (0). Then, we have:

ϕ(1)
σ1
◦ . . . ◦ ϕ(k)

σk
(u) ≤ sup

u∈(0,1)
ϕ(1)
σ1
◦ . . . ◦ ϕ(i−1)

σi−1
◦ ϕ(i)

0 ◦ ϕ
(i+1)
σi+1

. . . ◦ ϕ(k)
σk

(u)

≤ sup
u∈(0,1)

ϕ(1)
σ1
◦ . . . ◦ ϕ(i−1)

σi−1
◦ ϕ(i)

0 (u)

< ϕ(1)
σ1
◦ . . . ◦ ϕ(i−1)

σi−1

(
1
2

)
≤ inf

u∈(0,1)
ϕ(1)
σ1
◦ . . . ◦ ϕ(i−1)

σi−1
◦ ϕ(i)

1 (u)

= inf
u∈(0,1)

ϕ(1)
σ1
◦ . . . ◦ ϕ(i−1)

σi−1
◦ ϕ(i)

σ′
i
(u)

≤ inf
u∈(0,1)

ϕ
(1)
σ′
1
◦ . . . ◦ ϕ(i−1)

σ′
i−1
◦ ϕ(i)

σ′
i
◦ ϕ(i+1)

σ′
i+1
◦ . . . ϕ(k)

σ′
k
(u). (C.5)

where the first step is by taking the largest value over all feasible u; the second step is because
ϕ
(i+1)
σi+1 . . . ◦ ϕ(k)

σk (u) ⊆ (0, 1) implies we are simply maximimizing over a larger set of arguments of
ϕ
(i)
0 ; the third step uses that by Claim C.2, we have ϕ

(i)
0 (0) = 1

2 − 2δ(i) ∈ (0, 12) and further that

ϕ
(1)
σ1 ◦ . . . ◦ ϕ

(i−1)
σi−1 is non-decreasing; the fourth step again uses monotonicity of ϕ(1)

σ1 ◦ . . . ◦ ϕ
(i−1)
σi−1

and the fact that 1
2 < ϕ

(i)
1 (0) = 1

2 + δ(i); the sixth step uses the fact that we are minimizing over a

smaller set as well as replaces, in the first i−1 terms of the composition, ϕ(j)
σj by ϕ

(j)
σ′
j

. In conclusion,

from Inequality (C.5), we have that x /∈ infu∈(0,1) ϕ
(1)
σ1 ◦ . . . ◦ϕ

(k)
σ′
k
(u) and hence x /∈ Iσ′

1...σ
′
k
, which

finishes the proof of Iσ1...σk
∩ Iσ′

1...σ
′
k
= ∅.

Proof of Lemma C.4(iv). Recall from Lemma C.4(i) that Iσ1...σN ⊆ Iσ1...σk
, and note that for any

i ∈ N:

inf Iσ1...σi+1 − inf Iσ1...σi = ϕ(1)
σ1
◦ . . . ϕ(i)

σi
◦ ϕ(i)

σi+1
(0)− ϕ(1)

σ1
◦ . . . ◦ ϕ(i)

σi
(0) =

i∏
j=1

(ϕ(j)
σj

)′ · (ϕ(i+1)
σi+1

(0)− 0).

Next, recall from (C.3) that for every j ∈ N, the slope (ϕ
(j)
σj )

′ = δ(j). We get a lower bound on the
product

∏i
j=1 δ

(j) as follows.

δ(i) =
1

2
·
tan(θ

(i)
base + θ

(i)
shift)− tan(θ

(i)
base)

2 · tan(θ(i)base + θ
(i)
shift) + tan(θ

(i)
base)

≥
tan(θ

(i)
shift)

12
=

1

12
·tan

(
arctan(8)− arctan(1)

2i

)
,

(C.6)

where the first inequality is due to the identity tan(θ
(i)
base + θ

(i)
shift) =

tan(θ
(i)
base)+tan(θ

(i)
shift)

1−tan(θ
(i)
base) tan(θ

(i)
shift)

and sim-

plifying via the facts that tan(θ(i)base) ≥ 0, tan(θ(i)shift) ≥ 0, all angles θ(i)base ∈ [arctan(1), arctan(8)]

and that since the tan function is monotonically increasing in (0, π/2), we have tan(θ(i)base+θ
(i)
shift) ≥

16
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tan(θ
(i)
base). We can therefore continue the lower bound on

∏i
j=1(ϕ

(j)
σj )

′ · (ϕ(i+1)
σi+1 (0)− 0) as follows.

i∏
j=1

(ϕ(j)
σj

)′ · (ϕ(i)
σi+1

(0)− 0) ≥ 1

16
·

i∏
j=1

tan

(
arctan(8)− arctan(1)

2j

)

≥ 1

16
·

i∏
j=1

(
arctan(8)− arctan(1)

2j

)
≥ (arctan(8)− arctan(1))i · 1

22i2+4
, (C.7)

where the first step is by Inequality (C.6) and lower bounding ϕ
(i+1)
σi+1 (0) = 1

2−2δ
(i) ≥ 1

2−2·
7
32 ≥

1
16

from Definition C.3 and Claim C.2, and the second step is by lower bounding each term tan(x) of
the product via tan(x) ≥ x, which in turn follows from the power series expansion of the tangent
function. Therefore, we may use Inequality (C.7) as follows:

inf Iσ1...σN − inf Iσ1...σk
=

N−1∑
i=k

(inf Iσ1...σi+1 − inf Iσ1...σi)

≥
N∑
i=k

(arctan(8)− arctan(1))i

22i2+4

≥ (arctan(8)− arctan(1))k

22k2+4

≥ 1

22k2+k+4
> ρ,

where in the second inequality, we dropped all but the first term (valid since all the terms are non-
negative), in the penultimate inequality, we plugged in a lower bound for arctan(8) − arctan(1),

and the final inequality holds for the choice of k = 1
4

√
log
(
1
ρ

)
. We conclude inf Iσ1...σk

<

inf Iσ1...σN − ρ and analogously sup Iσ1...σk
> sup Iσ1...σN + ρ. Together, the two bounds imply

the claim.

Definition C.5 Using ϵ(i) and δ(i) from Definition C.1 and ϕ
(i)
1 and ϕ

(i)
0 from Definition C.3, we

now define, for i ∈ N, the following family of functions:

g
(i)
1 : [0, 1]\ϕ(i)

1 (0, 1)→ R, where g
(i)
1 (x) =


− 1−ϵ(i)

1
2+δ(i)

· x+ 1 if x ∈ [0, 12 + δ(i)]

1−ϵ(i)

1
2−2δ(i)

· x+
−1
2−2δ(i)+ϵ(i)

1
2−2δ(i)

if x ∈ [12 + 2δ(i), 1],

and g
(i)
0 (x) = g

(i)
1 (1− x) with the following explicit closed-form expression:

g
(i)
0 : [0, 1]\ϕ(i)

0 (0, 1)→ R, where g
(i)
0 (x) =


− 1−ϵ(i)

1
2−2δ(i)

· x+ 1 if x ∈ [0, 12 − 2δ(i)]

1−ϵ(i)

1
2+δ(i)

· x+
−1
2+δ(i)+ϵ(i)

1
2+δ(i)

if x ∈ [12 − δ(i), 1].

17



HARDNESS OF LOCAL GUARANTEES IN NONSMOOTH NONCONVEX OPTIMIZATION

Lemma C.6 The functions g(i)σi from Definition C.5 satisfy the following properties.

(i) For both possible choices of σi, the end points of the functions g(i)σi satisfy

g(i)σi
(1) = g(i)σi

(0) = 1.

(ii) For both possible choices of σi, the functions g(i)σi and ϕ
(i)
σi (from Definition C.3) satisfy

g(i)σi
◦ ϕ(i)

σi
(0) = ϵ(i).

(iii) Recall θ(i)base and θ
(i+1)
base as defined in Definition C.1. The derivatives of g(i)0 and g

(i)
1 are given

by

(g
(i)
0 )′(x) =

{
− cot(θ

(i)
base) if x ∈ (0, 12 − 2δ(i))

cot(θ
(i+1)
base ) if x ∈ (12 − δ(i), 1)

and

(g
(i)
1 )′(x) =

{
− cot(θ

(i+1)
base ) if x ∈ (0, 12 + δ(i))

cot(θ
(i)
base) if x ∈ (12 + 2δ(i), 1).

(iv) The derivative, in absolute value, of g(i)σi for all i ∈ N is at least 1
8 and at most 1 (in the

interior of its domain). In other words, we have:

1
8 ≤ |(g

(i)
0 )′(x)| ≤ 1 for x ∈ (0, 12 − 2δ(i)) ∪ (12 − δ(i), 1)

and
1
8 ≤ |(g

(i)
1 )′(x)| ≤ 1 for x ∈ (0, 12 + δ(i)) ∪ (12 + 2δ(i), 1).

Proof To check Lemma C.6(i) and Lemma C.6(ii), one may evaluate the functions in question from
Definition C.5. To prove Lemma C.6(iii), we observe from Definition C.5 that for x ∈ (0, 12−2δ

(i)),

the derivative of g(i)0 is given by the expression:

(g
(i)
0 )′(x) = − 1− ϵ(i)

1
2 − 2δ(i)

= −

3
2 ·
(

1

2 tan(θ
(i)
base+θ

(i)
shift)+tan(θ

(i)
base)

)
1
2 − 2 · 12 ·

(
tan(θ

(i)
base+θ

(i)
shift)−tan(θ

(i)
base)

2·tan(θ(i)base+θ
(i)
shift)+tan(θ

(i)
base)

) =
−3

3 tan(θ
(i)
base)

= − cot(θ
(i)
base),

and for x ∈ (12 − δ(i), 1), the derivative of g(i)0 is:

(g
(i)
0 )′(x) =

1− ϵ(i)

1
2 + δ(i)

=

3
2 ·
(

1

2 tan(θ
(i)
base+θ

(i)
shift)+tan(θ

(i)
base)

)
1
2 + 1

2 ·
(

tan(θ
(i)
base+θ

(i)
shift)−tan(θ

(i)
base)

2·tan(θ(i)base+θ
(i)
shift)+tan(θ

(i)
base)

) =
3

3 tan(θ
(i)
base + θ

(i)
shift)

= cot(θ
(i+1)
base ).

The derivatives of g(i)1 are computed in a similar fashion. To prove Lemma C.6(iv), we note that the
largest angle θ

(i)
base obtained in the sequence described by (C.1) is

θ
(∞)
base = θ

(1)
base +

∞∑
i=1

arctan(8)− θ
(1)
base

2i
≤ θ

(1)
base + (arctan(8)− θ

(1)
base) = arctan(8). (C.8)
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Since the cotangent function is decreasing on the positive interval upto π/2, plugging into Lemma C.6(iii)
the upper bound (C.8) implies that the lower bound on the (absolute) value of the derivative of g(i)σi

in the interior of its domain is

|(g(i)σi
)′(x)| ≥ cot(arctan(8)) = 1

8 .

For the upper bound, we observe that the largest (in absolute value) derivative is attained at the
smallest angle:

|(g(i)σi
)′(x)| ≤ cot(tan(θ

(1)
base)) = cot(tan(1)) = 1.

Definition C.7 Using the above functions, we define

Φ(i)(x) = δ(i) · x+ g(i)σi
◦ ϕ(i)

σi
(0)− δ(i).

This definition yields the following important consequence:

Φ(i)(1) = g
(i)
0 ◦ ϕ

(i)
0 (0) = g

(i)
1 ◦ ϕ

(i)
1 (0), (C.9)

where the second equality is justified in Lemma C.6(ii).

Finally we are ready to provide the following function definition.

Definition C.8 Given N ∈ N and σ ∈ {0, 1}N , define the function

r(N)
σ (x) =



g
(1)
σ1 (x) x ∈ [0, Iσ1 [ℓ]]

Φ(1) ◦ g(2)σ2 ◦
(
ϕ
(1)
σ1

)−1
(x) x ∈ [Iσ1 [ℓ], Iσ1σ2 [ℓ]]

Φ(1) ◦ Φ(2) ◦ g(3)σ3 ◦
(
ϕ
(1)
σ1 ◦ ϕ

(2)
σ2

)−1
(x) x ∈ [Iσ1σ2 [ℓ], Iσ1σ2σ3 [ℓ]] ,

...
...

Φ(1) ◦ . . . ◦ Φ(i) ◦ g(i+1)
σi+1 ◦

(
ϕ
(1)
σ1 ◦ . . . ◦ ϕ

(i)
σi

)−1
(x) x ∈

[
Iσ1...σi [ℓ], Iσ1...σi+1 [ℓ]

]
...

...

cot(θ
(N+1)
base ) ·

(
ϕ
(1)
σ1 ◦ . . . ◦ ϕ

(N)
σN (0)− x

)
+Φ(1) ◦ . . . ◦ Φ(N)(1) x ∈ [Iσ1...σN [ℓ], xmid]

cot(θ
(N+1)
base ) ·

(
x− ϕ

(1)
σ1 ◦ . . . ◦ ϕ

(N)
σN (1)

)
+Φ(1) ◦ . . . ◦ Φ(N)(1) x ∈ [xmid, Iσ1...σN [r]]

...

Φ(1) ◦ . . . ◦ Φ(i) ◦ g(i+1)
σi+1 ◦

(
ϕ
(1)
σ1 ◦ . . . ◦ ϕ

(i)
σi

)−1
(x) x ∈

[
Iσ1...σi+1 [r], Iσ1...σi [r]

]
...

Φ(1) ◦ Φ(2) ◦ g(3)σ3 ◦
(
ϕ
(1)
σ1 ◦ ϕ

(2)
σ2

)−1
(x) x ∈ [Iσ1σ2σ3 [r], Iσ1σ2 [r]] ,

Φ(1) ◦ g(2)σ2 ◦
(
ϕ
(1)
σ1

)−1
(x) x ∈ [Iσ1σ2 [r], Iσ1 [r]]

g
(1)
σ1 (x) x ∈ [Iσ1 [r], 1]

1− x x < 0

x x > 1,
(C.10)
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where xmid = 1
2 ·
(
ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(N)
σN (0) + ϕ

(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(N)
σN (1)

)
.

The following lemma follows immediately by combining Lemma C.4(iii) with the construction of
r
(N)
σ , and noting that there

Lemma C.9 For any k < N ∈ N, σ ∈ {0, 1}N , any local oracle O and any x /∈ Iσ1...σk
, it holds

that O
r
(N)
σ

(x) does not depend on σk+1, . . . , σN . Therefore, for any t ∈ N, 1 ≤ k < l < N :

Pr
σ∼Unif{0,1}N

[xt+1 ∈ Iσ1...σk...σl
| x1, . . . , xt /∈ Iσ1...σk

] ≤ 1

2l−k−1
.

We now prove some properties of r
(N)
σ and construct the function h̄ referred to in Proposi-

tion B.1; our construction of h̄ ensures that it inherits all its necessary properties from r
(N)
σ .

C.3. Putting it all together: proof of Proposition B.1

Proof [Proof of Proposition B.1] We first show the properties of continuity, 1-Lipschitzness, and
convexity in r

(N)
σ , and its upper bound at zero (i.e., Proposition B.1(i)).

Proof of continuity. We start by proving the continuity of r
(N)
σ . Since g

(i)
σi , ϕ(i)

σi ,and Φ(i) are
all (piecewise) affine over their domains of definition, their composition and hence, from Defini-
tion C.8, r(N)

σ is also piecewise affine. To show continuity, we therefore need to show this only at
the endpoints of each of the segments in Definition C.8. For some 1 < i < N, consider the left
endpoint of the segment [

Iσ1σ2...σi [ℓ], Iσ1σ2...σi+1 [ℓ]
]
.

For continuity at this interval’s left endpoint Iσ1σ2...σi [ℓ] = ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(i)
σi (0) ((C.4)), we

need to show that at x = ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(i)
σi (0), the functions Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(i−1) ◦ g(i)σi ◦(

ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(i−1)
σi−1

)−1
(x) and Φ(1)◦Φ(2)◦. . .◦Φ(i)◦g(i+1)

σi+1 ◦
(
ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(i)
σi

)−1
(x)

have the same value. To prove this, we simply evaluate the two functions one by one. First, observe
that

Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(i) ◦ g(i+1)
σi+1

◦
(
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(i)

σi

)−1 (
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(i)

σi
(0)
)

= Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(i) ◦ g(i+1)
σi+1

(0) = Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(i)(1), (C.11)

where we use Lemma C.6(i) in the final step. Next, observe that

Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(i−1) ◦ g(i)σi
◦
(
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(i−1)

σi−1

)−1 (
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(i)

σi
(0)
)

= Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(i−1) ◦ g(i)σi
◦ ϕ(i)

σi
(0). (C.12)

From (C.9), the final terms in (C.11) and (C.12) may be concluded to be equal. Next, consider
i = 1. We need to consider the left endpoint of the interval

[Iσ1 [ℓ], Iσ1σ2 [ℓ]] .
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To check continuity at the left endpoint of this interval, we evaluate two functions g
(1)
σ1 (x) and

Φ(1) ◦ g(2)σ2 ◦
(
ϕ
(1)
σ1

)−1
(x) at Iσ1 [ℓ] = ϕ

(1)
σ1 (0). We have:

g(1)σ1
(x) = g(1)σ1

◦ ϕ(1)
σ1

(0). (C.13)

Next, we have

Φ(1) ◦ g(2)σ2
◦
(
ϕ(1)
σ1

)−1
(x) = Φ(1) ◦ g(2)σ2

◦
(
ϕ(1)
σ1

)−1
(ϕ(1)

σ1
(0)) = Φ(1) ◦ g(2)σ2

(0) = Φ(1)(1). (C.14)

Comparing (C.13) and (C.14) using (C.9) completes the proof for i = 1. Next, we consider the left
endpoint of the “left middle” segment

[Iσ1σ2...σN [ℓ], xmid] .

To evaluate continuity at the left endpoint of this segment, we need to evaluate at Iσ1σ2...σN [ℓ] =

ϕ
(1)
σ1 ◦ϕ

(2)
σ2 ◦. . .◦ϕ

(N)
σN (0) the functions Φ(1)◦Φ(2)◦. . .◦Φ(N−1)◦g(N)

σN ◦
(
ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(N−1)
σN−1

)−1
(x)

and cot(θ
(N+1)
base ) ·

(
ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(N)
σN (0)− x

)
+Φ(1) ◦Φ(2) ◦ . . . ◦Φ(N)(1). To this end, first

observe that

Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(N−1) ◦ g(N)
σN
◦
(
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N−1)

σN−1

)−1
(ϕ(1)

σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(0))

= Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(N−1) ◦ g(N)
σN
◦ ϕ(N)

σN
(0). (C.15)

Next, observe that evaluating the other function at x = ϕ
(1)
σ1 ◦ ϕ

(2)
σ2 ◦ . . . ◦ ϕ

(N)
σN (0) gives:

cot(θ
(N+1)
base ) ·

(
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(0)− ϕ(1)

σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(0)
)
+Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(N)(1)

= Φ(1) ◦ Φ(2) ◦ . . .Φ(N)(1)

= Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(N−1) ◦ Φ(N)(1). (C.16)

We may again use (C.9) to equate (C.15) and (C.16). Finally, we show continuity at the “midpoint”

xmid = 1
2 ·
(
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(0) + ϕ(1)

σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(1)
)
.

From Definition C.8, we note that the left of the two middle segments (i.e., x ∈ [Iσ1σ2...σN [ℓ], xmid])
is

r(N)
σ (x) := cot(θ

(N+1)
base ) ·

(
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(0)− x

)
+Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(N)(1).

Similarly, we have that the segment to the right of xmid (i.e., x ∈ [xmid, Iσ1σ2...σN [r]]) is described
by

r(N)
σ (x) := cot(θ

(N+1)
base ) ·

(
x− ϕ(1)

σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(1)
)
+Φ(1) ◦ Φ(2) ◦ . . . ◦ Φ(N)(1).

From these two definitions, we can check that the values of r(N)
σ (xmid) from both the definitions

coincide. The continuity at the endpoints of segments to the right of xmid may be similarly estab-
lished.
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Proof of 1-Lipschitzness. Since r
(N)
σ is piecewise linear and continuous, the proof of its Lips-

chitzness requires only proving Lipschitzness of each of the segments it is composed of. We use the
following two observations to establish this fact. First,

(Φ(i))′ = (ϕ(i))′,

because Φ(i) and ϕ(i) differ by only a constant additive factor. Second, by application of the chain
rule, one may note that the derivative of a composition of affine functions equals the product of the
derivatives of the individual composing functions. Using these two facts, we observe that

|
(
Φ(1) ◦ . . .Φ(i−1) ◦ g(i)σi

◦ (ϕ(1)
σ1
◦ . . . ϕ(i)

σi−1
)−1
)′

(x)| = |(g(i)σi
)′(x)| ≤ 1,

where we used the upper bound from Lemma C.6(iv) in the final step. For the two middle segments,
the absolute value of the slope is cot(θ

(N+1)
base ). From the proof of Lemma C.6(iv) and the fact

that the cotangent function is non-increasing in (0, π/2), we have cot(θ
(N+1)
base ) ≤ cot(θ

(1)
base) =

cot(arctan(1)) = 1. This concludes the proof of r(N)
σ being a 1-Lipschitz function.

Proof of convexity. To prove convexity of r(N)
σ , we show that the derivatives of consecutive seg-

ments composing r
(N)
σ are non-decreasing. Consider the segment

[
Iσ1σ2...σi−1 [ℓ], Iσ1σ2...σi [ℓ]

]
.

We have that for some x ∈
[
Iσ1σ2...σi−1 [ℓ], Iσ1σ2...σi [ℓ]

]
, the derivative of r(N)

σ at this point x is:(
Φ(1) ◦ . . .Φ(i−1) ◦ g(i)σi

◦ (ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ϕ(i−1)

σi−1
)−1
)′

(x) =
(
g(i)σi

)′
(y) ≤ − cot(θ

(i+1)
base ),

where y ∈ [0, ϕ
(i)
σi (0)] and for the final bound, we used from Lemma C.6(iii) the largest possible

value for the slope of the left segment of g(i)σi (for g(i)σi , the segment [0, ϕ(i)
σi ] corresponds to the left

segments of g(i)σi ). In a similar fashion, the smallest derivative of r(N)
σ on some x in the segment[

Iσ1σ2...σi , Iσ1σ2...σi+1

]
may be derived to be at least(

Φ(1) ◦ . . .Φ(i) ◦ g(i+1)
σi+1

◦ (ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ϕ(i)

σi
)−1
)′

(x) ≥ − cot(θ
(i+1)
base ).

Therefore, the derivatives of consecutive segments composing r
(N)
σ to the left of the middle seg-

ments are non-decreasing, going from left to right. The proof analogously extends to the right of the
middle segments. For the two middle segments, note that the left segment has slope − cot(θ

(N+1)
base )

and the right segment has slope cot(θ
(N+1)
base ); since θ

(N+1)
base ∈ (arctan(1), arctan(8)) ⊆ (0, π/2),

this means the slope is increasing when crossing xmid from left to right. Finally, going from the left
of the middle left segment to the middle left segment, the slope can only increase because of our
choice of slope of the middle left segment; the analogous argument applies to the right side. Thus,
overall, we have shown that the slope increases going from left to right, thus proving the convexity
of r(N)

σ .

Proof of r(N)
σ (0) ≤ 2. From Definition C.8, one may check that r(N)

σ (0) = g
(1)
σ1 (0), which from

Lemma C.6(i) satisfies g(1)σ1 (0) = 1, thus proving our claim.

We now prove Proposition B.1(ii), i.e., that r(N)
σ has a unique minimizer, that the absolute value

of its slope is lower bounded by a constant, and obtain the expression for its minimum value.
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Proof of lower bound on absolute slope. For any i ∈ [2, N ], consider a point x that lies in the
segment

(
Iσ1σ2...σi−1 [ℓ], Iσ1σ2...σi [ℓ]

)
. We have that the derivative of r(N)

σ at this point is given
by:

|
(
Φ(1) ◦ . . .Φ(i−1) ◦ g(i)σi

◦ (ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ϕ(i−1)

σi−1
)−1
)′

(x)| = |
(
g(i)σi

)′
(y)| ≥ 1

8 ,

where y ∈ (0, ϕ
(i)
σi (0)) and the final lower bound follows by applying Lemma C.6(iv). The same

lower bound may be similarly obtained for segments to the right of the middle segment. For the two
middle segments, the absolute value of the slope is cot(θ(N+1)

base ). From the non-increasing property
of the cotangent function and our initial choice of θ(1)base, we have cot(θ

(N+1)
base ) ≥ cot(arctan(8)) =

1/8, thus concluding the proof, overall, of the lower bound on the absolute value of the slope.

Proof of unique minimizer of r(N)
σ . As we just showed, r(N)

σ is convex. At the point xmid, the
slope of r(N)

σ changes from − cot(θ
(N+1)
base ) to cot(θ

(N+1)
base ), which implies that there exists a zero

subgradient of r(N)
σ at xmid. Hence, xmid is a minimizer of r(N)

σ . This minimizer is unique because
the two segments of the function intersecting at it both have non-zero slopes. This minimum value
is obtained by evaluating r

(N)
σ at xmid:

cot(θ
(N+1)
base )·12

(
ϕ(1)
σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(0)− ϕ(1)

σ1
◦ ϕ(2)

σ2
◦ . . . ◦ ϕ(N)

σN
(1)
)
+Φ(1)◦Φ(2)◦. . .◦Φ(N)(1).

Construction of hNσ . To use r
(N)
σ to construct h

N
σ as defined in Proposition B.1, we define

h
N
σ = r(N)

σ + 2− r(N)
σ (xmid).

Since we only added a constant term to r
(N)
σ , its properties of continuity, 1-Lipschitzness, convexity,

unique minimizer x∗ = xmid in (0, 1), and lower bound of 1/8 on slope remain preserved. Next,
note that since r

(N)
σ ≥ r

(N)
σ (xmid), it implies h

N
σ ≥ 2, which proves the assertion that h

N
σ : R 7→

[2,∞). Finally, at x = 0, we have h
N
σ (0) = 2 + r

(N)
σ (0) − r

(N)
σ (xmid) ≤ 3 because r

(N)
σ is a

piecewise affine function over [0, 1] with maximum slope being 1, and so its maximum range of
values can be 1. Thus, our constructed h̄ satisfies Proposition B.1(i) and Proposition B.1(ii).

Proof of Proposition B.1(iii) Let k = 1
4

√
log
(
1
ρ

)
for some ρ > 0 to be determined, and N =

k+1, σ ∼ Unif{0, 1}N . Consider the iterates ofA, x1, . . . , xT , as random variables when applied
to the (random) function h

N
σ . Since x∗ = xmid ∈ Iσ1...σN , we have

Pr[∃t ∈ [T ] : |xt − x∗| ≤ ρ] ≤ Pr[∃t ∈ [T ] : dist(xt, Iσ1...σN ) ≤ ρ] ≤ Pr[∃t ∈ [T ] : xt ∈ Iσ1...σk
],

where the second inequality follows from Lemma C.4(iv). By denoting the “progress tracking”
stochastic process

Z0 := 0, Zt := max{l ∈ N : ∃s ≤ t, xs ∈ Iσ1...σl
} ,
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we note that Zt+1 − Zt ≥ 0 with probability 1, and moreover that Pr[Zt+1 − Zt = m] ≤ 2−(m−1)

by Lemma C.9. Hence

Pr[∃t ∈ [T ] : xt ∈ Iσ1...σk
] = Pr[ZT ≥ k] ≤ 1

k
E[ZT ] =

1

k

T∑
j=1

E[Zj − Zj−1]

=
1

k

T∑
j=1

∞∑
m=0

Pr[Zj − Zj−1 = m] ≤ 1

k

T∑
j=1

∞∑
m=0

2−(m−1)

=
4T

k
=

16T√
log(1/ρ)

.

Finally, by setting ρ := exp(−256T 2/γ2) the quantity above is bounded by γ, completing the
proof.

Appendix D. Proof of Lemma B.4

The goal of this section is to prove Lemma B.4, which we first recall below.

Lemma B.4 For the setup in Definition B.3 and w such that w ⊥ ed and ∥w∥ = 1000µ, the
following hold:

(i) fw,µ is non-negative, 1-Lipschitz, and Clarke regular.
(ii) For c = 1

100 , any c-stationary point x of fw,µ satisfies fw,µ(x) = 0. In particular, any
c-stationary point of fw,µ is a global minimum.

(iii) There exist w ∈ Rd, µ > 0 such that applying A to fw,µ satisfies

Pr
A
[∃t ∈ [T ] : fw,µ(xt) < 1] < 2γ .

Proof Throughout the proof we omit the subscripts w, µ. We recall that by Definition B.3

f(x) := max {h(x)− σµ(q(x− x∗)), 0} .

Proof of Lemma B.4(i). It is clear that f is non-negative by design. The function h (in Defi-
nition B.3) is 1

2 -Lipschitz (by design in Lemma B.2); the function σµ (in Definition B.3) has the
following derivative:

σ′
µ(z) =


0, z ≤ 0
z
4µ , z ∈ (0, µ]
1
4 , z > µ

(D.1)

and is therefore 1
4 -Lipschitz. Further, z 7→ ∥z∥ , z 7→ ⟨w̄, z⟩ , z 7→ max{z, 0} and translations

are all 1-Lipschitz. Finally, the summation (respectively, positive scaling) of functions results in a
summation (respectively, scaling) of Lipschitz constants; and the composition of functions yields a
product of Lipschitz constants. These imply that q (as in (B.2)) is 3

2 -Lipschitz and f is 1-Lipschitz.
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To prove Clarke regularity of f , we start by examining the function

ϕ(x) := −σµ(q(x)), (D.2)

and note that ϕ is continuously differentiable over Rd \ {−w} with

∇ϕ(x) = −σ′
µ(⟨w̄,x+w⟩ − 1

2 ∥x+w∥) · (w̄ − 1
2(x+w)), ∀x ̸= −w.

In particular, by (D.1), we see that limx→−w∇ϕ(x) = 0. Further note that

lim supv→0

|ϕ(−w + v)− ϕ(−w)|
∥v∥

= lim supv→0

|ϕ(−w + v)|
∥v∥

= lim supv→0

|σµ(⟨w̄,v⟩ − 1
2 ∥v∥)|

∥v∥
= 0,

where the last equality follows from ⟨w̄,v⟩ − 1
2 ∥v∥

v→0−→ 0 and limz→0 σ
′
µ(z) = 0. Therefore ϕ

is differentiable at −w with ∇ϕ(−w) = 0, hence everywhere continuously differentiable, which
implies by Fact A.1(i) that for ϕ as defined in (D.2), it holds that

ϕ is regular. (D.3)

Since ϕ is regular, the shifted function ϕ(· −x∗) is regular as well. Moreover, since h is convex and
Lipschitz, it is regular as well (Fact A.1(ii)), hence by Fact A.1(iii) we have that

h(·) + ϕ(· − x∗) is regular.

Finally, since max{·, 0} is convex and Lipschitz, we conclude by Fact A.1(ii) that it is regular;
hence, by Fact A.3, the composition fw,µ(x) = max {h(x)− σµ(q(x− x∗)), 0} is regular.

Proof of Lemma B.4(ii). Our proof for this part of the lemma closely follows that by Tian and
So [47] and Kornowski and Shamir [32]. We start by proving that, for c < 1

100 , the function
φ(x) := h(x + x∗) − σµ

(
⟨w̄,x+w⟩ − 1

2 ∥x+w∥
)

has no c-stationary points, by an exhaus-
tive case analysis showing a universal positive lower bound (of 1

100 ) on the absolute value of the
minimum norm element of its Clarke subdifferential in every case.

 x = 0 : By applying Fact A.2, the fact that ∥w∥ ≫ µ, and (D.1), it holds that

∂φ(0) =
{
∂h(x∗)− ∂σµ(

1
2∥w∥)

}
=
{
∂h(x∗)− 1

8w̄
}
.

By further examining the definition of h (from Lemma B.2(iii)), we may simplify this to

∂φ(0) =
{
∂h(x∗)− 1

8w̄
}
⊆
{

1
32u+ λed − 1

8w̄ | λ ∈ ∂h̄(x∗), ∥u∥ ≤ 1,u ⊥ ed
}
,

where h̄ is as defined in Lemma B.2. Since projecting any vector from the above set ∂φ(0)
onto span(ed)

⊥ cannot increase its norm, we may conclude that∥∥ 1
32u+ λed − 1

8w̄
∥∥ ≥ ∥∥ 1

32u−
1
8w̄
∥∥ ≥ 1

8 −
1
32 = 3

32 .

 x = −w : Recall in (D.3) we proved the Clarke regularity of ϕ(x) := −σµ(⟨w̄,x+w⟩ −
1
2 ∥x+w∥). Applying this property at −w and noting, from (D.1), that ∂ϕ(−w) = 0, we get
that

∂φ(−w) = {∂h(−w + x∗)− ∂ϕ(−w)} ⊂
{

1
32w̄ + λed − 0 | λ ∈ ∂h̄(−wd + x∗)

}
,

where we used the fact that x∗ ⊥ ed (from Lemma B.2(iii)) and w ⊥ ed. By projecting any
such vector onto span(ed)

⊥, we see that it clearly has norm of at least 1
32 .
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 xd ̸= 0 : It holds that

∂φ(x) ⊆
{

1
32u+ λed − s

(
w̄ − 1

2v
)
| λ ∈ ∂h̄(xd + x∗),u ⊥ ed, s ∈ [0, 14 ], ∥v∥ ≤ 1

}
,

where we used (D.1) to evaluate ∂ϕ(x). Next, since xd ̸= 0, it implies that xd + x∗ ̸= x∗,
which implies, by Lemma B.2(ii), that ∀λ ∈ ∂h̄(xd + x∗) : |λ| ≥ 1

16 . Then, projecting any
vector from the set above onto ed, we see that∥∥ 1

32u+ λed − s
(
w̄ − 1

2v
)∥∥ ≥ ||λ| − 1

4 ·
1
2 | ≥

1
16 .

 xd = 0, x /∈ {0,−w}, ⟨w̄,x+w⟩ < 1
2 : Note that for any such x, we have that ⟨w̄,x+w⟩−

1
2 ∥x+w∥ = ∥x+w∥ · (⟨w̄,x+w⟩ − 1

2) < 0, which implies that σµ(⟨w̄,x+w⟩ −
1
2 ∥x+w∥) = 0. This in turn implies ϕ(x) = 0. Consequently, φ(x) is locally identical to
h(x+x∗) = h̄(xd+x∗)+ 1

32 ∥x1:d−1∥ = h̄(x∗)+ 1
32 ∥x1:d−1∥, where we used x∗

1:d−1 = 0d−1

(from Lemma B.2(iii)) in the first step and xd = 0 (as assumed in this case) in the final step.
Since xd = 0 yet x ̸= 0, it must be that x1:d−1 ̸= 0d−1, thus

∂φ(x) =
{
∂h̄(x∗) + 1

32∂∥x1:d−1∥
}
⊆
{

1
32x1:d−1 + λed | λ ∈ ∂h(x∗)

}
.

For any g ∈ ∂φ(x), we have that ∥g∥ ≥ ⟨g,x1:d−1⟩ ≥ 1
32 .

 xd = 0, x /∈ {0,−w}, ⟨w̄,x+w⟩ > 1
2 + µ

∥x+w∥ : In this case, we have ⟨w̄,x+w⟩ −
1
2 ∥x+w∥ =

(
⟨w̄,x+w⟩ − 1

2

)
∥x+w∥ ≥ µ. Then, noting from (B.2) the definition of

σµ for the appropriate range of the argument yields that for any such x : σµ(⟨w̄,x+w⟩ −
1
2 ∥x+w∥) = 1

4 ⟨w̄,x+w⟩ − 1
8 ∥x+w∥ − µ

8 . Combining this with xd = 0, we have that
φ(x) is locally identical to

x 7→ h̄(x∗) + 1
32 ∥x1:d−1∥ − 1

4 ⟨w̄,x+w⟩+ 1
8 ∥x+w∥+ µ

8 .

As in the previous case, since xd = 0 yet x ̸= 0, we have that x1:d−1 ̸= 0d−1, thus

∂φ(x) ⊆
{

1
32x1:d−1 + λed − 1

4w̄ + 1
8(x+w) | λ ∈ ∂h(x∗)

}
.

Hence, for g ∈ ∂φ(x), it holds that

∥g∥ ≥ ⟨g,−w̄⟩ = − 1

32
⟨x̄, w̄⟩+ 1

4
− 1

8
⟨x+w, w̄⟩ ≥ 1

4
− 5

32
=

3

32
.

 xd = 0, x /∈ {0,−w}, ∥x+w∥ ≤ 10µ, ⟨w̄,x+w⟩ ∈ [12 ,
1
2 + µ

∥x+w∥ ] : We have that

∂φ(x) =
{

1
32x1:d−1 + λed − v · (w̄ − 1

2x+w) | λ ∈ ∂h(x∗)
}
, (D.4)

where 0 ≤ v := 1
4µ(⟨w̄,x+w⟩− 1

2∥x+w∥) ≤ 1. The claimed bounds on v follow from the
assumption ⟨w̄,x+w⟩ ∈ [12 ,

1
2 + µ

∥x+w∥ ]. The final term in (D.4) comes from plugging in
the appropriate argument in (D.1) following the deduced range of v. We now proceed to show
a lower bound on −w̄⊤x̄, which we will use to show the desired lower bound on (D.4). To
this end, define x′ := −w⊤x

∥x∥2 · x (which is a valid operation because we assume x ̸= 0). We
can verify that: 〈

x′,x′ +w
〉
= ∥x′∥2 +w⊤x′ = 0, (D.5)
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where the last step follows from plugging in the definition of x′. Next, by starting with the
assumption that 10µ ≥ ∥x+w∥ and expressing x+w as x− x′ + x′ +w, we have

100µ2 ≥ ∥x+w∥2 = ∥x′ +w∥2 + ∥x− x′∥2 + 2
〈
x− x′,x′ +w

〉
. (D.6)

Now, since ⟨x′,x′ +w⟩ = 0 (by (D.5)) and x is proportional to x′ (by design of x′), we have
⟨x,x′ +w⟩ = 0 as well. Consequently, we have ⟨x− x′,x′ +w⟩ = 0, which implies, in
Inequality (D.6), that

100µ2 ≥ ∥x′ +w∥2 + ∥x− x′∥2. (D.7)

By recalling that ∥w∥ = 1000µ ≥ ∥x+w∥, we have that w⊤x ≤ 0. Combining this with the
definition of x′, we obtain w̄⊤x̄ = w̄⊤x̄′, from which we conclude that

−w̄⊤x̄ = −w̄⊤x̄′ =
∥x′∥
∥w∥

. (D.8)

Next, by again using ⟨x′,x′ +w⟩ = 0, we have ∥w∥2 = ∥x′∥2 + ∥x′ +w∥2. Then, we have
that ∥w∥2 = ∥x′∥2 + ∥x′ +w∥2 ≤ ∥x′∥2 +100µ2, where we used ∥x′ +w∥2 ≤ 100µ2 from
Inequality (D.7). Rearranging and combining with (D.8) yields

−w̄⊤x̄ =
∥x′∥
∥w∥

≥

√
1− 100µ2

∥w∥2
. (D.9)

Next, we take the inner product of some element in ∂φ(x) with −w̄ (as defined in (D.4)) and
plug in Inequality (D.9) to obtain:

− 1
32w̄

⊤x̄+ v − v
2 · w̄

⊤(x+w) ≥ 1
32

√
1− 100µ2

∥w∥2 > 1
33 ,

where the final step follows from our choice of w such that ∥w∥ = 1000µ.

 xd = 0, x /∈ {0,−w}, ∥x+w∥ ≥ 10µ, ⟨w̄,x+w⟩ ∈ [12 ,
1
2 + µ

∥x+w∥ ] : As in (D.4) in the
previous case, we have for 0 ≤ v ≤ 1 that

∂φ(x) =
{

1
32x1:d−1 + λed − v · (w̄ − 1

2x+w) | λ ∈ ∂h(x∗), v ∈ [0, 1]
}
, (D.10)

=
{
λed +

(
1

32∥x∥ + v
2∥x+w∥

)
x+

(
v

2∥x+w∥ −
v

∥w∥

)
w | λ ∈ ∂h(x∗), v ∈ [0, 1]

}
.

Denote x = x| + x⊥, where x⊥ = (I − w̄w̄⊤)x is the orthogonal projection of x onto
span(w)⊥, and x| ∈ span(w). Recall also that xd = 0 (by assumption in this case) and
wd = 0 (by our choice of w). For any g ∈ ∂φ(x), we can therefore write, for some scalar α,
that

∥g∥ ≥ ∥
(

1
32∥x∥ + v

2∥x+w∥

)
x+

(
v

2∥x+w∥ −
v

∥w∥

)
w∥

= ∥
(

1
32∥x∥ + v

2∥x+w∥

)
x⊥ + αw∥

≥ ∥
(

1
32∥x∥ + v

2∥x+w∥

)
x⊥∥

≥ ∥x⊥∥
32∥x∥ , (D.11)
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where the first step is by projecting onto span(ed)
⊥; the second step is by splitting x into

x|+x⊥ and absorbing x| into the term written as a multiple of w (valid since x| ∈ span(w));
the third step is because x⊥ ⊥ w, and so the norm of their sum is at least as large as each of
them; the fourth step is by v ≥ 0. Further, since I − w̄w̄⊤ is an orthogonal projection, we
have

∥x⊥∥2 =
〈
x, (I− w̄w̄⊤)2x

〉
=
〈
x, (I− w̄w̄⊤)x

〉
= ∥x∥2(1− ⟨w̄, x̄⟩2).

Plugging into Inequality (D.11) yields ∥g∥ ≥ 1
32

√
1− ⟨w̄, x̄⟩2, where the square root op-

eration is valid because | ⟨w̄, x̄⟩ | ≤ 1. Now, suppose that there exists a g ∈ ∂φ(x) with
∥g∥ ≤ ϵ ≤ 1

32 (note that if ∥g∥ ≥ 1
32 for all g ∈ ∂φ(x), then we are done). It then follows

that
1
32

√
1− ⟨w̄, x̄⟩2 ≤ ϵ. (D.12)

Next, the assumed range implies

1
2 ≤ ⟨w̄,x+w⟩ ≤ 3

5 . (D.13)

If ⟨w̄, x̄⟩ ≤ 0, then by Inequality (D.12), it must be that ⟨w̄, x̄⟩ ≤ −
√
1− 1024ϵ2. Consider

any u ∈ ∂φ(x); plugging Inequality (D.13) into (D.10), we have

⟨u, w̄⟩ = 1
32 ⟨w̄, x̄⟩ − v · (1− 1

2 ·
3
5) ≤ −

1
32

√
1− 1024ϵ2,

which implies that ∥u∥ ≥ 1
32

√
1− 1024ϵ2 for any u ∈ ∂φ(x). Thus, if ∥u∥ ≤ ϵ, then chain-

ing the two inequalities yields ϵ ≥ 1
32

√
1− 1024ϵ2. This implies that ϵ ≥ 1√

2048
. On the other

hand, if ⟨w̄, x̄⟩ ≥ 0, then combining with Inequality (D.12) gives ⟨w̄, x̄⟩ ≥
√
1− 1024ϵ2.

Hence,

⟨w̄,x+w⟩ = ⟨w̄,x⟩+ ∥w∥ ≥ ∥x∥
√

1− 1024ϵ2 + ∥w∥ ≥
√
1− 1024ϵ2∥x+w∥.

If ϵ < 1
50 , then 3

5 ≥ ⟨w̄,w + x⟩ >
√

1− 1024
2500 , which is a contradiction. Thus, combining

both the cases, we see that the lower bound must be at least min
(

1√
2048

, 1
50

)
.

From the above analysis, we conclude that φ(x) = h(x+x∗)−σµ
(
⟨w̄,x+w⟩ − 1

2 ∥x+w∥
)

has no c-stationary points for c ≤ 1
100 . We now show that, for c = 1

100 , any c-stationary point
of f(x) = max{φ(x − x∗), 0} (which matches the definition of f in (B.1) combined with The-
orem B.5) satisfies f(x) = 0. Indeed, if there existed x with

∥∥∂̄f(x)∥∥ ≤ c and f(x) > 0, then
we note by the latter that f(·) = φ(· − x∗) in an open neighborhood of x, thus

∥∥∂̄φ(x− x∗)
∥∥ =∥∥∂̄f(x)∥∥ ≤ c, which is a contradiction by our earlier claim on c-stationarity of φ.

Proof of Lemma B.4(iii). We denote by (xh
t )

T
t=1 the (possibly random) iterates produced by A

when applied to h. We will first show that for some fixed w ∈ Rd :

Pr
A

[
min
t∈[T ]

∥∥∥xh
t − x∗

∥∥∥ ≥ ρ and max
t∈[T ]

〈
w̄,xh

t − x∗
〉
<

1

3

]
≥ 1− 2γ . (D.14)
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To see why, recall that by Lemma B.2 we know that PrA[mint∈[T ]

∥∥xh
t − x∗∥∥ ≥ ρ] ≥ 1 − γ.

Furthermore, letting w ∈ Rd be a random vector that satisfies w1:d−1 ∼ Unif( ρ
99 · S

d−2), Pr[wd =
0] = 1, and noting that (xh

t )
T
t=1,x

∗ are independent of w and that w̄1:d−1 ∼ Unif(Sd−2), applying
a standard tail bound on the inner product of a uniformly random unit vector (cf. [2, Lemma 2.2])
we get

Pr
w

[
max
t∈[T ]

〈
w̄,xh

t − x∗
〉
≥ 1

3

]
= Pr

w

[
max
t∈[T ]

〈
w̄1:d−1, (x

h
t − x∗)1:d−1

〉
≥ 1

3

]
≤ T exp (−d/36) = γ .

By the union bound, we see that Inequality (D.14) holds with probability at least 1 − 2γ over the
joint probability of w,A, thus (via the probabilistic method argument) there exists some fixed w
for which it holds over the randomness of A. We therefore fix w so that Inequality (D.14) holds,
and assume the high probability event indeed occurs. We aim to show that under this event, for all
t ∈ [T ] : f(xt) ≥ 1, which will then conclude the proof. Indeed, under this event, we see that

max
t∈[T ]

〈
w̄,xh

t − x∗
〉
<

1

3
<

1

2
− 1

66
≤ 1

2
− ρ

66
∥∥xh

t − x∗
∥∥ .

Further note that for any x ̸= x∗, if
〈
w̄,x− x∗

〉
< 1

2 −
ρ

66∥xh
t −x∗∥ then since ∥w∥ = ρ

99 a

straightforward calculation yields ⟨w̄,x− x∗ +w⟩ − 1
2 ∥x− x∗ +w∥ < 0. As this is an open

condition with respect to x, by construction of f this implies that f(·) = h(·) in a neighborhood of
x. We therefore get that for all t ∈ [T ] : h ≡ f in a neighborhood of xh

t , so in particular we see
that xh

t = xt, namely applying A to h results in the same iterate sequence as if the algorithm were
applied to f . Thus

min
t∈[T ]

f(xt) = min
t∈[T ]

f(xh
t ) = min

t∈[T ]
h(xh

t ) ≥ 1 .
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