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Abstract
Personalized Federated Learning (pFL) has gained attention for building a suite of models tailored to
different clients. In pFL, the challenge lies in balancing the reliance on local datasets, which may lack
representativeness, against the diversity of other clients’ models, whose quality and relevance are
uncertain. Focusing on the clustered FL scenario, where devices are grouped based on similarities in
their data distributions without prior knowledge of cluster memberships, we develop a mathematical
model for pFL using low-rank matrix optimization. Building on this formulation, we propose a
pFL approach leveraging the Burer-Monteiro factorization technique. We examine the convergence
guarantees of the proposed method, and present numerical experiments on training deep neural
networks, demonstrating the empirical performance of the proposed method in scenarios where
personalization is crucial.

1. Introduction

Federated Learning (FL) holds a great promise for training machine learning models over a large
network with restricted data sharing. It is most suitable when clients require collaboration—often
due to the absence of a large, representative dataset available locally—but in an environment
where sharing datasets with collaborators is prohibited—often driven by concerns and regulations
surrounding data sharing and storage. Consequently, FL research has been focused on designing
algorithms that can solve optimization and learning problems on a network without sharing essential
data. However, limitations on data sharing hinder effective control over the quality and relevance of
the client data—a major concern that led to the rise of personalized federated learning models (pFL).

The goal in pFL is to find a right balance between the reliability of local datasets which may
lack representativeness, and the diversity of collaborators’ models whose quality and relevance are
uncertain. Thus, pFL lacks a clear definition and direction without specified data distributions, and
appears to lack a universally accepted metric for evaluating personalization success. Adding to this
concern, many existing pFL methods are tested in settings that are inherently unsuited for pFL, where
either Federated Averaging (FedAvg) or local training produces the best accuracies.

Motivated by these observations, our first step is to formulate a mathematical problem that
highlights the role and necessity of a pFL approach. Suppose there are n clients collaborating on a
FL system, indexed by i = 1, . . . , n, and assume that the data for each client comes from a specific
data distribution, denoted by Di. We define the true objective function for each client as follows:

f ♮i (x) := Eξ∼Di
ℓ(x, ξ), (1)
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where ℓ : Rd × Rp → R is a loss function. When data distributions are known, a solution can be
found by minimizing f ♮i (xi) locally: minxi f

♮
i (xi). However, the true distribution Di is unknown in

practice. Instead, clients have access to an empirical sample Si with the corresponding objective:

fi(x) :=
1

|Si|
∑
ξ∈Si

ℓ(x, ξ). (2)

We operate under the assumption that the dataset Si is not large enough for clients to accurately
approximate a solution to their local problem on their own. Otherwise, FL would not be required.

An effective solution to this problem is possible only if the distributions Di exhibit some
correlation. At one extreme, when all distributions are the same, the standard template can be used:

min
x1,...,xn

1

n

n∑
i=1

fi(xi) s.t. x1 = · · · = xn, or equivalently as min
x

1

n

n∑
i=1

fi(x). (3)

A significant portion of existing pFL methods are designed by relaxing the equality constraint;
examples include Moreau envelope smoothing and quadratic penalty regularization [22, 37]. However,
these approaches that penalize model dissimilarity using a specific norm have limitations, as they
rely on the assumption that similarity in distributions Di translates to the proximity of client models
in a given norm. The following simple examples demonstrate these limitations:
Example 1 (Label noise in classification) Consider a linear binary classification problem with two
groups of clients that differ in their sign conventions. These groups label the positive and negative
classes in opposite ways due to a misalignment. The data distributions of these two groups differ
only by one bit. However, this difference results in the optimal models for the two groups having
opposite signs, leading to solutions x⋆

group1 = −x⋆
group2, which are distant in all norms.

Example 2 (Clustered FL) Suppose each client draws data from one of r distinct distributions,
forming r clusters of clients. We assume that cluster memberships are unknown, and the challenge is
to establish effective collaboration without knowing in advance which clients share similar data.
Example 3 (Collaborative filtering) Consider the classical problem of recommendation systems.
Suppose there are n clients and p items. Let xi ∈ Rp represent the relevance scores of client i for
the items. The data consists of the actual scores rated by the clients, where each client rates only a
subset of the items, denoted by Si ⊆ {1, . . . , p}. We denote these scores by x∗ij for j ∈ Si. The goal
is predicting unknown scores that are not in Si, based on hidden patterns among different clients.1

Models based on Euclidean distance regularizations fail in accurately predicting recommentation
systems; instead, low-rank matrix factorization is among the most successful methods to collaborative
filtering [20]. This is typically explained as user preferences being well-parameterized by a few
meaningful factors; a more nuanced argument generalizes this by noting that low-rank matrices
naturally arise in latent variable models (LVMs). While this is standard for LVMs with linear
parameterizations, [39] demonstrate that low-rank models are effective for a broad class of (possibly
high-dimensional) LVMs parameterized by a piecewise analytic function.

Inspired by these examples, we explore how to formulate pFL without relying on a specific dis-
tance metric. This leads us to investigate low-dimensional subspace formulations, where personalized
models are related by their membership to a low-dimensional subspace, rather than their proximity in

1. The decision variable in matrix completion reveals the data, limiting FL’s privacy benefits. Nevertheless, the problem
highlights the challenge of distributed learning with personalized models.

2



PERSONALIZED FEDERATED LEARNING VIA LOW-RANK MATRIX FACTORIZATION

x

y

x⋆1 = a1 x⋆2 = a2

x⋆3 = a3

x⋆4 = a4

(a) Local

x

y

x⋆

(b) FedAvg

x

y

x⋆1(δ)

x⋆2(δ)

x⋆3(δ)

x⋆4(δ)

(c) Distance based

x

y

xfac1

xfac2
xfac3

xfac4

Low dimensional
subspace

(d) Low-rank (ours)

Figure 1: Solutions to 1
n

∑n
i=1 ∥xi − ai∥2, where xi,ai ∈ R2. Red points denote individual

minimizers x⋆
i = ai. FEDAVG solution, x⋆ = 1

n

∑n
i=1 ai, is in yellow. The green points

satisfy ∥xi − xj∥ ≤ δ, and blue points (r = 1) lie in a low-dimensional subspace.

a distance metric. This approach allows us to conceptualize pFL by focusing on the inherent structure
of the model relationships rather than their spatial closeness, as illustrated in Figure 1. Drawing
parallels to collaborative filtering, we specifically focus on low-rank formulations.

We can now summarize our main contributions: We introduce a new formulation for pFL based
on low-rank matrix optimization. Utilizing a nonconvex matrix factorization method applied to
this formulation, we propose a new method called Personalized Federated Learning via Matrix
Factorization (pFLMF). We investigate the convergence guarantees of the proposed method. For
the smooth nonconvex minimization problem, we show that the proposed method converges to a
first-order stationary point at a rate of O(1/T ); with the stochastic gradients, the rate becomes
O(1/

√
T ). Finally, we present numerical experiments on training various types of neural networks.

2. Algorithm

We propose a novel formulation for pFL based on low-rank matrix optimization:

min
X∈Rd×n

F (X) :=
1

n

n∑
i=1

fi(xi) s.t. rank(X) ≤ r. (4)

Here, X ∈ Rd×n denotes the system-level decision variable obtained by concatenating clients’
decision variables as X := [x1,x2, . . . ,xn], and r is problem specific tuning parameter. Note that
this formulation suits well for the examples we discussed in the introduction.

There exists a rich literature on rank-constrained matrix optimization problems, see [4, 5, 7,
11, 16, 21, 29, 33, 36] and the references therein. We adopt the nonconvex matrix factorization
technique, aka Burer-Monteiro (BM) factorization, which replaces the system-level decision variable
X ∈ Rd×n with a factorized form of X = UV⊤. This leads to the following problem:

min
U∈Rd×r,V∈Rn×r

ψ(U,V), where ψ(U,V) := F (UV⊤) =
1

n

n∑
i=1

fi(Uvi). (P)

We denote by V⊤ := [v1, · · · ,vn] ∈ Rr×n. In this notation, personalized model parameters can be
computed as xi = Uvi ∈ Rd.

While various optimization techniques can address problem (P), we simply use block-coordinate
gradient updates. We can compute the gradient of ψ with respect to U and vi as follows:

∇Uψ(U,V) =
1

n

n∑
i=1

∇fi(Uvi) v
⊤
i , and ∇viψ(U,V) =

1

n
U⊤∇fi(Uvi). (5)
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Algorithm 1 Personalized Federated Learning via Matrix Factorization (pFLMF)
set U0 ∈ Rm×r,v0

i ∈ Rr ∀i ∈ [n].
for round t = 0, 1, . . . , T − 1 do

— Client-level local training ————————-
for client i ∈ St do

set vt,1
i = vt

i .
for k = 0, . . . ,K − 1 do
vt,k+1
i = vt,k

i − η 1
nU

t⊤ ∇̃fi(Utvt,k
i )

end for
vt+1
i = vt,K

i

Gt
i = ∇̃fi(Utvt

i) v
t
i
⊤

Client communicates Gt
i to the server.

end for
— Server-level aggregation —————————
Ut+1 = Ut − η 1

|St|
∑

i∈St
Gt

i

Server communicates Ut+1 to the clients.

end for

It is crucial that ψ is separable with respect to vi, enabling clients to compute ∇viψ(U,V) in
parallel without requiring access to data or model parameters from other clients, given the features
U. Consequently, for a given step-size ηi > 0, local training steps can be independently formulated
and performed by each participating client as:

vt+1
i = vt

i − ηi
1

n
Ut⊤ ∇fi(Utvt

i). (6)

On the other hand, ψ is not separable with respect to the rows or columns of U, necessitating
collaboration among clients for computing ∇Uψ(U,V). Consequently, the gradient step in U
requires communication and will be performed at the server, forming our aggregation step:

Ut+1 = Ut − 1

n

n∑
i=1

ηi
(
∇fi(Utvt

i)
)
vt
i
⊤
. (7)

Algorithm 1 depicts the pseudo-code of our algorithm. Here, K is the number of local passes each
client performs, and the output of the algorithm is a set of personalized parameters xi = Uvi that
each client can compute locally using its feature extractors vi and the shared feature representation U.

Convergence Guarantees. Several works have studied the convergence for the problem (P) under
different assumptions; we refer to [8] and references therein. [4, 30] proved linear/sub-linear rates
for smooth functions and smooth and strongly convex functions, respectively. Due to the nonconvex
nature of BM factorization, even in cases where F (.) is convex in X, it is not possible to prove
a convergence theorem to the global minimum. For more specialized cases (e.g., matrix sensing
problems under some technical assumptions called restricted isometry property, convergence to a
global solution can be characterized with careful initialization procedures [17, 28, 30, 43]. Since our
focus is primarily on neural network applications, where objectives are already nonconvex in X, we
derive convergence guarantees to a stationary point, both with full and stochastic gradient settings.
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Assumption 1 (Directional smoothness) We assume that F (UV⊤) is smooth with respect to U
and V, i.e., there exist constants LU , LV ≥ 0 such that for all U1,U2 ∈ Rd×r and V1,V2 ∈ Rn×r:

∥∇UF (U1V
⊤
1 )−∇UF (U2V

⊤
2 )∥F ≤ LU

(
∥U1 −U2∥F + ∥V1 −V2∥F

)
∥∇VF (U1V

⊤
1 )−∇VF (U2V

⊤
2 )∥F ≤ LV

(
∥U1 −U2∥F + ∥V1 −V2∥F

)
Assumption 2 (Stochastic gradients) We assume access to an unbiased stochastic gradient esti-
mator with bounded variance, i.e.,, there exists σ < +∞ such that for all U ∈ Rd×r and V ∈ Rn×r:

E
[
∇̃F (UV⊤)

]
= ∇F (UV⊤) and

E
[∥∥∇̃UF (UV⊤)−∇UF (UV⊤)

∥∥2] ≤ σ2

E
[∥∥∇̃VF (UV⊤)−∇VF (UV⊤)

∥∥2] ≤ σ2.

Theorem 1 Consider problem (P) with smooth loss functions fi(.) in the sense that Assumption 1
holds. Assume access to a stochastic gradient estimator such that Assumption 2 holds. Furthermore,
assume that every client participates in each round with probability p and performs K local steps
per iteration. Then, the sequence Ut,Vt generated by pFLMF with step-sizes ηv = pηu

K and ηu < 1
2L ,

where L := max{LU , LV }, satisfies the following bound:

1

T

T−1∑
t=0

(
E
[
∥∇UF (U

tVt⊤)∥2
]
+ E

[
1

K

K−1∑
k=0

∥∇VF (U
tVt,k⊤)∥2

])

≤
2
(
F (U0V0⊤)− F ⋆

)
ηT
(
1− 2ηL

) +
2ηLσ2

1− 2ηL
.

Corollary 2 Choosing η = 1
2L

√
T

in Theorem 1 yields a rate of O(1/
√
T ) in the stochastic setting.

If full gradients are available (σ = 0), then η = 1
4L results in a convergence rate of O(1/T ).

3. Numerical Experiments

We compare the performance of pFLMF against several baselines, including LOCAL training, FEDAVG

[25], FEDPER [3], FEDREP [9], APFL [10], and CFL [35] by implementing pFLMF in the FL-Bench
benchmark [38].

We used a three-layer neural network, consisting of three linear layers, on the MNIST and
FEMNIST datasets and a four-layer convolutional neural network, consisting of two convolutional
layers followed by two linear layers, on the CIFAR10 and CIFAR100 datasets. For FEDPER and
FEDREP, we treated the last layer as the classifier, while in pFLMF, we factorized the entire model.

We conducted experiments in four different setups (see Appendix C for more details and data
visualization): Setup (1) For the MNIST, CIFAR10, and CIFAR100 datasets, we split the data
according to the Dirichlet distribution Dir(0.5) and Dir(1) across 100 clients. Setup (2) For the
CIFAR-100 dataset, we partitioned the 100 classes into 20 groups, each containing 5 distinct labels.
Data was then distributed among 500 clients, with each client exclusively assigned data from a
single group, resulting in highly heterogeneous data. Setup (3) For the MNIST, we follow the
experimental setup in [34] and consider 1000 clients divided into 10 groups, and labels in each group
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MNIST CIFAR10 CIFAR100

Dir(0.5) Dir(1) Dir(0.5) Dir(1) Dir(0.5) Dir(1)

LOCAL 92.12% (±0.59) 89.15% (±1.12) 59.14% (±3.74) 48.53% (±2.53) 16.09% (±1.52) 10.66% (±0.98)

FEDAVG 96.92% (±0.65) 97.01% (±0.54) 65.21% (±2.11) 65.44% (±1.68) 28.30% (±1.82) 28.36% (±1.32)

FEDPER 96.30% (±0.26) 95.16% (±0.58) 66.86% (±3.19) 58.25% (±2.22) 19.98% (±1.6) 14.22% (±1.01)

FEDREP 95.04% (±0.40) 93.33% (±0.94) 65.16% (±3.44) 55.4% (±2.06) 17.49% (±1.12) 12.14% (±1.05)

APFL 97.93% (±0.51) 97.64% (±0.39) 65.99% (±2.06) 65.14% (±1.54) 27.07% (±1.57) 27.07% (±1.36)

CFL 96.92% (±0.72) 97.04% (±0.5) 64.97% (±2.68) 65.98% (±1.70) 27.02% (±1.48) 24.84% (±0.91)

pFLMF

r = 1 96.75% (±0.61) 96.53% (±0.59) 43.89% (±3.49) 64.03% (±1.66) 34.32% (±1.96) 35.24% (±1.77)

r = 5 96.78% (±0.51) 96.55% (±0.60) 60.73% (±2.86) 65.89% (±1.88) 35.64% (±2.09) 35.75% (±1.24)

r = 10 96.98% (±0.70) 96.84% (±0.56) 65.10% (±2.30) 67.68% (±1.56) 35.28% (±1.73) 36.84% (±1.50)

r = 15 98.24% (±0.26) 97.93% (±0.22) 68.13% (±2.43) 65.88% (±1.62) 35.70% (±1.77) 36.12% (±1.46)

Table 1: Performance of the algorithms for Setup (1). The best accuracy is shown in boldface, and
the second best is underlined.

MNIST (permuted labels) CIFAR100 (super groups) FEMNIST

1000 clients 500 clients 1091 clients

1 local epoch 1 local epoch 1 local epoch 5 local epochs
LOCAL 25.36% (±0.013) 10.49% (±0.95) 50.77% (±0.053) 65.69%(0.012)

FEDAVG 12.02% (±0.022) 36.40% (±1.31) 65.40% (±0.017) 77.19%(0.013)

FEDPER 19.86% (±0.141) 14.80% (±0.81) 66.05% (±0.010) 67.72%(0.009)

FEDREP 21.30% (±0.148) 12.18% (±0.80) 66.10% (±0.013) 66.29%(±0.010)

pFLMF

r = 1 14.70% (±0.083) 42.94% (±1.22) 67.82% (±0.134) 71.42%(0.044)

r = 5 23.75% (±0.027) 44.70% (±1.91) 69.99% (±0.123) 72.09%(±0.208)

r = 10 34.23% (±0.090) 45.57% (±1.97) 72.56% (±0.023) 72.47%(±0.010)

r = 15 39.31% (±0.042) 45.43% (±1.23) 73.59% (0.092) 76.41%(±0.006)

Table 2: Performance of the algorithms for Setup (2), Setup (3), and Setup (4). The best accuracy
is shown in boldface, and the second best is underlined.

are re-mapped (permuted) according to a random permutation map. In other words, clients in group
one would have the same numbers {0, · · · , 9} but labeled differently. Setup (4) We sampled 30%
of the total clients from FEMNIST dataset without changing the underlying data distribution, then
we removed clients with less than 10 data points. The remaining set has 1091 clients. We ran the
experiments for 1 and 5 numbers of local epochs.

Observations. In the heterogeneous experiments (Setup (1)), pFLMF outperforms the other pFL
methods in most of the cases, although algorithms perform very closely on the MNIST dataset.
pFLMF improves the average test accuracy significantly when different groups of clients have similar
data distributions but their data distributions are different from other groups’ distributions, see Table 2.
It is worth mentioning that the low test accuracy in Setup (2) is due to the simplicity of the neural
network model rather than the algorithms used. Another important observation is the convergence
behavior of pFLMF when clients perform multiple local updates. Although our analysis assumes a
single local update per communication round, our experiments indicate that pFLMF can also achieve
convergence with multiple local updates—a direction we plan to investigate further.
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4. Conclusions

We introduced a new pFL formulation based on low-rank matrix optimization and developed a novel
pFL algorithm utilizing Burer-Monteiro factorization. We further established convergence guarantees
for the proposed method: for minimizing a smooth non-convex objective, the algorithm converges to
a stationary point at a rate of O(1/T ) with full gradients; and O(1/

√
T ) for the stochastic setting.

Evaluations across four experimental setups highlight the practical significance of the proposed
method, especially in scenarios where personalization is essential, and standard approaches are
unable to adequately capture the complexity of the underlying data distributions.

We conclude by listing some limitations and future directions. Our numerical experiments
demonstrate improved performance of pFLMF with multiple local steps; however, this enhancement
is not reflected in our theoretical convergence guarantees. Establishing stronger guarantees that
reflect this behavior is a valuable direction for future research. Another notable limitation is that our
formulation currently factorizes the entire model (decision variable), which can be computationally
intensive in some cases, particularly in large-scale neural network applications. A more efficient
approach might be to apply the BM factorization selectively, targeting only a subset of the parameters,
which could reduce overhead while maintaining its benefits. Exploring such partial factorizations is
a promising direction for future research
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Appendix A. Proof of Theorem 1

A.1. Compact Notation

We assume that each client participates in the learning process independently with probability p.
To model this, we define a partial participation matrix Dt for each time step t as a diagonal matrix,
where each diagonal entry [Dt]i,i represents the participation status of client i at time t. Specifically,

[Dt]i,i :=

{
1, with probability p,
0, with probability 1− p,

where each [Dt]i,i is an independent Bernoulli random variable with parameter p. This implies that
for each client i, [Dt]i,i = 1 if the client participates in the training process at time t, and [Dt]i,i = 0
otherwise. We can write our algorithm in the compact form as follows:

Vt,0 = Vt

for k = 0, . . . ,K − 1, do

Vt,k+1 = Vt,k − ηvDt∇̃VF (U
tVt,k⊤)

end for

Ut+1 = Ut − ηu∇̃UF (U
tVt⊤)

Vt+1 = Vt,K .

We define expectations with respect to gradient noise as EV
noise[·] and EU

noise[·], and expectation
with respect to participation randomness as ESt [·]. For participation randomness, we assume that
ESt [Dt] = pI, where I is the identity matrix and p is the probability of client participation under
independent sampling. We define the conditional expectation given all randomness before iteration t
and local step k as

Et,k[·] := EV
noise

[
· | randomness before (t, k),Dt

]
,

where the randomness includes all prior gradient noise and participation randomness up to local
step k of iteration t. Additionally, we define the conditional expectation given all randomness in the
algorithm before iteration t and the final local step K as

Et[·] := EU
noise

[
· | randomness before (t,K),Dt

]
.

Finally, we use E[·] to denote the total expectation over all sources of randomness in the algorithm,
including gradient noise and client participation.

A.2. Convergence Analysis

We start with proving some useful bounds. For any t,

Et

[
∥∇̃UF (U

tVt⊤)∥2F
]
= Et

[
∥∇UF (U

tVt⊤)∥2F + ∥∇̃UF (U
tVt⊤)−∇UF (U

tVt⊤)∥2F

+ 2⟨∇UF (U
tVt⊤), ∇̃UF (U

tVt⊤)−∇UF (U
tVt⊤)⟩

]
≤ ∥∇UF (U

tVt⊤)∥2F + σ2. (8)
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Similar to above, we can write, for any t and k,

Et,k

[
∥Dt∇̃VF (U

tVt,k⊤)∥2F
]
= Et,k

[
∥Dt∇VF (U

tVt,k⊤)∥2F + ∥Dt∇̃VF (U
tVt,k⊤)−Dt∇VF (U

tVt,k⊤)∥2F

+ 2⟨Dt∇VF (U
tVt,k⊤),Dt∇̃VF (U

tVt,k⊤)−Dt∇VF (U
tVt,k⊤)︸ ︷︷ ︸

Et,k[ . |Dt]=0

⟩
]

= ∥Dt∇VF (U
tVt,k⊤)∥2F + ∥Dt∥22 · Et,k

[
∥∇̃VF (U

tVt,k⊤)−∇VF (U
tVt,k⊤)∥2F

]
= ∥Dt∇VF (U

tVt,k⊤)∥2F + ∥Dt∥22 · σ2

where in the third line, we used the submultiplicative property of the Frobenius norm. Now we take
the expectation with respect to the participation probability

ESt

[
Et,k

[
∥Dt∇̃VF (U

tVt,k⊤)∥2F
] ]

= ESt

[
∥Dt∇VF (U

tVt,k⊤)∥2F + ∥Dt∥22 · σ2
]

=≤ p∥∇VF (U
tVt⊤)∥2F + σ2 , (9)

where we used Theorem 5, and Theorem 7.
(A) First, we use the smoothness of F (UVt⊤) with respect to V and write

F (UtVt,k+1⊤) ≤ F (UtVt,k⊤) + ⟨∇VF (U
tVt,k⊤),Vt,k+1 −Vt,k⟩+ LV

2
∥Vt,k+1 −Vt,k∥2F

= F (UtVt,k⊤)− ηv⟨∇VF (U
tVt,k⊤),Dt∇̃VF (U

tVt,k⊤)⟩+ η2v
LV

2
∥Dt∇̃VF (U

tVt,k⊤)∥2F .

Taking conditional expectation, we get

ESt

[
Et,k

[
F (UtVt,k+1⊤)

]]
≤ F (UtVt,k⊤)− ηvp∥∇VF (U

tVt,k⊤)∥2F + η2v
pLV

2
∥∇VF (U

tVt,k⊤)∥2F + η2v
LV

2
σ2

= F (UtVt,k⊤)− ηvp

(
1− ηv

LV

2

)
∥∇VF (U

tVt,k⊤)∥2F + η2v
LV σ

2

2

where we used (9) in the second line. We rearrange the inequality above and average over k to obtain

ηvp

(
1− ηv

LV

2

)
1

K

K−1∑
k=0

∥∇VF (U
tVt,k⊤)∥2F

≤ 1

K

(
F (UtVt,0⊤)− ESt

[
Et,K

[
F (UtVt,K⊤

)
]])

+ η2v
LV σ

2

2

=
1

K

(
F (UtVt⊤)− ESt

[
Et,K

[
F (UtVt+1⊤)

]])
+ η2v

LV σ
2

2
(10)

where, in the second line, we used Vt,0 = Vt and Vt,K = Vt+1.
(B) Now, we will use the smoothness again, but this time with respect to U:

F (Ut+1Vt,k⊤) ≤ F (UtVt,k⊤) + ⟨∇UF (U
tVt,k⊤),Ut+1 −Ut⟩+ LU

2
∥Ut+1 −Ut∥2F

≤ F (UtVt,k⊤)− ηu⟨∇UF (U
tVt,k⊤), ∇̃UF (U

tVt⊤)⟩+ η2u
LU

2
∥∇̃UF (U

tVt⊤)∥2F
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Similar to the previous case, if we take expectation with respect to the randomness in U update at
iteration t, we obtain the following bound by using (8):

Et

[
F (Ut+1Vt,k⊤)

]
≤ F (UtVt,k⊤)− ηu⟨∇UF (U

tVt,k⊤),∇UF (U
tVt⊤)⟩+ η2u

LU

2
∥∇UF (U

tVt⊤)∥2F + η2u
LUσ

2

2
.

If we split the inner product term as

⟨∇UF (U
tVt,k⊤),∇UF (U

tVt⊤)⟩ = ⟨∇UF (U
tVt,k⊤),∇UF (U

tVt⊤)−∇UF (U
tVt,k⊤) +∇UF (U

tVt,k⊤)⟩

= ⟨∇UF (U
tVt,k⊤),∇UF (U

tVt⊤)−∇UF (U
tVt,k⊤)⟩+ ∥∇UF (U

tVt,k⊤)∥2F

≥ −ηuLU

2
∥∇UF (U

tVt,k⊤)∥2F − 1

2ηuLU
∥∇UF (U

tVt⊤)−∇UF (U
tVt,k⊤)∥2F

+ ∥∇UF (U
tVt,k⊤)∥2F ,

where the last line follows from Young’s inequality (17) with α = ηuLU . Moreover, by the
smoothness assumption, we have

1

2LUηu
∥∇UF (U

tVt⊤)−∇UF (U
tVt,k⊤)∥2 ≤ LU

2ηu
∥Vt −Vt,k∥2 ≤ η2v

ηu

LU

2
∥
k−1∑
i=0

∇VF (U
tVt

i
⊤
)∥2F .

Combining all these bounds, we get

Et

[
F (Ut+1Vt,k⊤)

]
≤ F (UtVt,k⊤)−ηu

(
1− ηu

LU

2

)
∥∇UF (U

tVt,k⊤)∥2F+η2u
LU

2
∥∇UF (U

tVt⊤)∥2F

+ η2v
LU

2
∥
k−1∑
i=0

∇VF (U
tVt

i
⊤
)∥2F + η2u

LUσ
2

2
. (11)

Now we consider two cases k = 0 and k = K in (11).

1. For k = 0, we have

Et

[
F (Ut+1Vt⊤)

]
≤ F (UtVt⊤)− ηu (1− ηuLU ) ∥∇UF (U

tVt⊤)∥2F + η2u
LUσ

2

2
. (12)

where we used Vt,0 = Vt.

2. For k = K, we have

Et

[
F (Ut+1Vt+1)

]
≤ F (UtVt+1⊤)− ηu

(
1− ηu

LU

2

)
∥∇UF (U

tVt+1⊤)∥2F + η2u
LU

2
∥∇UF (U

tVt⊤)∥2F

+ η2v
LU

2
∥
K−1∑
k=0

∇VF (U
tVt,k⊤)∥2F + η2u

LUσ
2

2

≤ F (UtVt+1⊤) + η2u
LU

2
∥∇UF (U

tVt⊤)∥2F + η2v
LU

2
∥
K−1∑
k=0

∇VF (U
tVt,k⊤)∥2F

+ η2u
LUσ

2

2
.

13



PERSONALIZED FEDERATED LEARNING VIA LOW-RANK MATRIX FACTORIZATION

Rearranging the terms we can write

−LU

2

(
η2u∥∇UF (U

tVt⊤)∥2F + η2v∥
K−1∑
k=0

∇VF (U
tVt,k⊤)∥2F

)
(13)

≤ F (UtVt+1⊤)− Et

[
F (Ut+1Vt+1⊤)

]
+ η2u

LUσ
2

2
. (14)

(C) We once again use smoothness with respect to V:

F (Ut+1Vt,k+1⊤) ≤ F (Ut+1Vt,k⊤) + ⟨∇VF (U
t+1Vt,k⊤),Vt,k+1 −Vt,k⟩+ LV

2
∥Vt,k+1 −Vt,k∥2F

= F (Ut+1Vt,k⊤)− ηv⟨∇VF (U
t+1Vt,k⊤),Dt∇̃VF (U

tVt,k⊤)⟩+ η2v
LV

2
∥Dt∇̃VF (U

tVt,k⊤)∥2F .

We take the conditional expectation

ESt

[
Et,k

[
F (Ut+1Vt,k+1⊤)

]]
≤ F (Ut+1Vt,k⊤)− ηvESt

[
Et,k

[
⟨∇VF (U

t+1Vt,k⊤),Dt∇̃VF (U
tVt,k⊤)⟩

]]
+ η2v

pLV

2
∥∇VF (U

tVt,k⊤)∥2F + η2v
LV σ

2

2
,

where we used (9). Focusing again on the inner product term, we obtain

ESt

[
Et,k

[
⟨∇VF (U

t+1Vt,k⊤),Dt∇̃VF (U
tVt,k⊤)⟩

]]
= ESt

[
Et,k

[
⟨∇VF (U

t+1Vt,k⊤)±∇VF (U
tVt,k⊤),Dt∇̃VF (U

tVt,k⊤)⟩
]]

= ESt

[
⟨∇VF (U

t+1Vt,k⊤)−∇VF (U
tVt,k⊤),Dt∇VF (U

tVt,k⊤)⟩+ ⟨∇VF (U
tVt,k⊤),Dt∇VF (U

tVt,k⊤)⟩
]

= p⟨∇VF (U
t+1Vt,k⊤)−∇VF (U

tVt,k⊤),∇VF (U
tVt,k⊤)⟩+ p∥∇VF (U

tVt,k⊤)∥2F

≥ − p

2ηvKLV
∥∇VF (U

t+1Vt,k⊤)−∇VF (U
tVt,k⊤)∥2F − ηvpKLV

2
∥∇VF (U

tVt,k⊤)∥2F + p∥∇VF (U
tVt,k⊤)∥2F

≥ − pLV

2ηvK
∥Ut+1 −Ut∥2F − ηvpKLV

2
∥∇VF (U

tVt,k⊤)∥2F + p∥∇VF (U
tVt,k⊤)∥2F

= − pLV

2ηvK
η2u∥∇UF (U

tVt⊤)∥2F − ηvpKLV

2
∥∇VF (U

tVt,k⊤)∥2F + p∥∇VF (U
tVt,k⊤)∥2F ,

where we used Young’s inequality (17) in the fourth line with α = ηvKLV . Substituting back, we
get

ESt

[
Et,k

[
F (Ut+1Vt,k+1⊤)

]]
≤ F (Ut+1Vt,k⊤)− ηvp

(
1− ηv

(K + 1)LV

2

)
∥∇VF (U

tVt,k⊤)∥2F

+ η2u
pLV

2K
∥∇UF (U

tVt⊤)∥2F + η2v
LV σ

2

2

By summing over k and appropriately rearranging the terms in the inequality, we obtain the following:

ηvp

(
1− ηv

(K + 1)LV

2

)K−1∑
k=0

∥∇VF (U
tVt,k⊤)∥2F − η2u

pLV

2
∥∇UF (U

tVt⊤)∥2

≤ F (Ut+1Vt⊤)− ESt

[
Et,K

[
F (Ut+1Vt+1⊤)

]]
+ η2v

KLV σ
2

2
.
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where we used Vt,K = Vt+1 and Vt,0 = Vt. We define

∆U := Et

[
∥∇UF (U

tVt⊤)∥2F
]

∆V := ESt

[
1

K

K−1∑
k=0

Et,k

[
∥∇VF (U

tVt,k⊤)∥2F
]]

. (15)

We summarize the resulting inequalities in part (A) to (C) as

ηvp

(
1− ηv

LV

2

)
∆V ≤ 1

K

(
F (UtVt⊤)− ESt

[
Et,K

[
F (UtVt+1⊤)

]])
+ η2v

LV σ
2

2

ηu
(
1− ηuLU

)
∆U ≤ F (UtVt⊤)− Et

[
F (Ut+1Vt⊤)

]
+ η2u

LUσ
2

2

− LU

2

(
η2u∆U + η2v

∥∥∥K−1∑
k=0

∇VF (U
tVt,k⊤)

∥∥∥2) ≤ F (UtVt+1⊤)− Et

[
F (Ut+1Vt+1⊤)

]
+ η2u

LUσ
2

2

ηvp

(
1− ηv

(K + 1)LV

2

)
K∆V − η2u

pLV

2
∆U ≤ F (Ut+1Vt⊤)− ESt

[
Et,K

[
F (Ut+1Vt+1⊤)

]]
+ η2v

KLV σ
2

2
.

where we used the definitions (15). We rewrite four inequalities above using ηv = pηu
K := pη

K and
defining L := max{LU , LV } as

ηp2
(
1− η

pL

2K

)
∆V ≤ F (UtVt⊤)− ESt

[
Et,K

[
F (UtVt+1⊤)

]]
+ η2

Lσ2

2K

η
(
1− ηL

)
∆U ≤ F (UtVt⊤)− Et

[
F (Ut+1Vt⊤)

]
+ η2

Lσ2

2

− L

2

(
η2Et[∆U ] +

η2p2

K2

∥∥∥K−1∑
k=0

∇VF (U
tVt,k⊤)

∥∥∥2) ≤ F (UtVt+1⊤)− Et

[
F (Ut+1Vt+1⊤)

]
+ η2

Lσ2

2

ηp2

K

(
1− ηp

(K + 1)L

2K

)
K∆V − η2

pL

2
∆U ≤ F (Ut+1Vt⊤)− ESt

[
Et,K

[
F (Ut+1Vt+1⊤)

]]
+ η2

Lσ2

2K
.

Summing up the inequalities above, we get

η
(
1− 2ηL

)
(∆U +∆V ) ≤ η

(
1− 2ηL

)
∆U + ηp

(
1− η

pL

2K

)
∆V

≤ 2
(
F (UtVt⊤)− ESt

[
Et,K

[
F (Ut+1Vt+1⊤)

]])
+ η2

(
1 +

1

K

)
Lσ2

≤ 2
(
F (UtVt⊤)− ESt

[
Et,K

[
F (Ut+1Vt+1⊤)

]])
+ 2η2Lσ2 , (16)
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where we used the following inequality

η2
p2L

2K2

∥∥∥K−1∑
k=0

∇VF (U
tVt,k⊤)

∥∥∥2 − ηp2

K

(
1− ηp

(K + 1)L

2K

)K−1∑
k=0

∥∇VF (U
tVt,k⊤)∥2

≤ η2
p2L

2K2
K

K−1∑
k=0

∥∥∥∇VF (U
tVt,k⊤)

∥∥∥2 − ηp2

K

(
1− ηp

(K + 1)L

2K

)K−1∑
k=0

∥∇VF (U
tVt,k⊤)∥2

≤ ηp2

K

(
η
L

2
(
(1 + p)K + 1

K
)− 1

)K−1∑
k=0

∥∇VF (U
tVt,k⊤)∥2

≤ 0 (η ≤ 1

2L
) ,

where in the second line, we used Jensen’s inequality, see (18). Next, we take the expectation over
all sources of randomness in the algorithm. Then, we average both sides of (16) over the iterations t,
followed by dividing both sides by η (1− 2ηL), yielding the following expression:

1

T

T−1∑
t=0

(
E
[
∥∇UF (U

tVt⊤)∥2
]
+ E

[
1

K

K−1∑
k=0

∥∇VF (U
tVt,k⊤)∥2

])

≤
2
(
F (U0V0⊤)− F (UTVT⊤

)
)

ηT
(
1− 2ηL

) +
2ηLσ2

1− 2ηL

≤
2
(
F (U0V0⊤)− F ⋆

)
ηT
(
1− 2ηL

) +
2ηLσ2

1− 2ηL
,

provided that L = max{LU , LV }, ηv = pηu
K = pη

K , and η ≤ 1
2L . This completes the proof.

□
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A.3. Useful Inequalities

Lemma 3 (Young’s inequality) Let X,Y ∈ Rd1×d2 and α > 0. Then, the following inequality
holds: 〈

X,Y
〉
≤ α

2
∥X∥2F +

1

2α
∥Y∥2F . (17)

Lemma 4 Let Xi ∈ Rd1×d2 for i ∈ 0, . . . ,K − 1. Then, the following bound holds:

∥
K−1∑
i=0

Xi∥2F ≤ K

K−1∑
j=0

∥Xi∥2F . (18)

Proof. This inequality follows directly from Jensen’s inequality applied to the Frobenius norm. □

Lemma 5 Let D be a diagonal matrix with diagonal entries that are 1 with probability p and 0 with
probability 1− p, and let A be an arbitrary matrix. Then the expectation of the squared Frobenius
norm of the product DA is given by

ED

[
∥DA∥2F

]
= p∥A∥2F .

proof. The Frobenius norm squared of DA is defined as:

∥DA∥2F =
∑
i,j

(DA)2ij .

Since D is diagonal, the product DA will zero out all rows of A where the corresponding
diagonal entry in D is 0. Let di represent the i-th diagonal entry of D, where each di is a Bernoulli
random variable with ED[di] = p.

Thus, we can express ∥DA∥2F as:

∥DA∥2F =
n∑

i=1

d2i

m∑
j=1

A2
ij =

n∑
i=1

di∥Ai,·∥22,

where ∥Ai,·∥22 =
∑m

j=1A
2
ij is the squared norm of the i-th row of A.

Now, taking the expectation, we have:

ED

[
∥DA∥2F

]
=

n∑
i=1

ED[di]∥Ai,·∥22 =
n∑

i=1

p∥Ai,·∥22.

Simplifying, we get:

ED

[
∥DA∥2F

]
= p

n∑
i=1

∥Ai,·∥22 = p∥A∥2F .

Therefore, the expectation of ∥DA∥2F is:

ED

[
∥DA∥2F

]
= p∥A∥2F .

This completes the proof. □
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Lemma 6 Let D be a diagonal n × n matrix where each diagonal entry is independently 1 with
probability p and 0 with probability 1− p. Then the expected value of the spectral norm ∥D∥2 is
given by

E(∥D∥2) = 1− (1− p)n ≤ 1.

Proof. Since D is diagonal, its spectral norm ∥D∥2 is the largest absolute value among its
diagonal entries. Therefore, ∥D∥2 = 1 if at least one diagonal entry is 1, and ∥D∥2 = 0 only if all
diagonal entries are 0.

Define X as the event that all diagonal entries are 0. The probability of this event, Pr(X), is:

Pr(X) = (1− p)n,

since each diagonal entry is 0 independently with probability 1− p.
Thus, the probability that ∥D∥2 = 1 (i.e., the event X does not occur) is:

1− Pr(X) = 1− (1− p)n.

Therefore, the expected value of ∥D∥2 is:

E(∥D∥2) = 1 · (1− (1− p)n) + 0 · (1− p)n = 1− (1− p)n ≤ 1.

This completes the proof. □

Lemma 7 For any matrices A ∈ Rd1×d2 and B ∈ Rd2×d3 , the Frobenius norm of the product AB
satisfies

∥AB∥F ≤ ∥A∥2∥B∥F .

where ∥.∥2 is the spectral norm.
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Appendix B. Related Work

Many pFL algorithms impose the closeness of the learning models; the main assumption is that
personal models are close with respect to some measures [37]. Learning a mixture of the global
model and the local models is proposed in [13], where these personalized models are encouraged to
stay relatively close to their average by incorporating a quadratic penalty.

Although giving degrees of freedom to personal models may improve the generalization behavior
of the models, it contradicts the following fact. It is shown that model similarities between different
neural networks, especially classifier layers, are highly correlated with the similarity of the training
data distributions [38], meaning that assuming the closeness of models is equivalent to assuming
the similar data distributions over different clients. This leads us to ask the question: How to train
personalized models without assuming similarity between clients’ data distributions?

Recently, model decoupling methods have been proposed [3, 26, 27] showing a better perfor-
mance than distance-based pFL methods. The main idea is to decouple each local model into two
blocks: a feature extractor block followed by a classifier block. The feature extractor block is
communicated and aggregated over clients and the classifier block is trained locally by each client.
Arivazhagan et al. [3] introduced a personalization of some specific layers of the neural network that
all user devices share a set of base layers with the same weights and have distinct personalization
layers that can potentially adapt to individual data. The base layers are shared with the server while
the personalization layers are kept private by each device. In [27], the entire network is decomposed
into the body (extractor), which is related to universality, and the head (classifier), which is related to
personalization. This reduces the update and aggregation parts from the entire model to the body of
the model during federated training.

Anelli et al. [2] investigate federated pair-wise learning for factorization models in a recommen-
dation scenario. Huang et al. [15] propose an FL framework for solving the POI (Point-of-Interest)
recommendation problem. Ammad-Ud-Din et al. [1] introduces a federated implementation of
collaborative filtering that is limited to recommendation systems. Liang et al. [23] introduce LG-
FEDAVG combines local representation learning with global model learning in an end-to-end manner.
Each local device learns to extract higher-level representations from raw data before a global model
operates on the representations (rather than raw data) from all devices. Tan et al. [38] propose a
decoupling algorithm that also personalizes feature extractors by adjusting aggregation weights
based on classifier similarity. Deng et al. [10] introduce APFL algorithm which. aims to learn
a personalized model for each user that is a convex combination of local and global models, and
coefficients of these linear combinations are adaptively learned during the training. Hao et al. [14]
assume factorized weights for neural networks and, instead of learning a unique global model, aims
at learning a dictionary of rank-1 weight factor matrices. Each client then uses this dictionary
to construct a model customized to its unique data distribution. Jeong and Hwang [18] consider
factorization of the model parameters and allows clients to perform a selective aggregation scheme
to utilize only the knowledge from the relevant participants for each client.

Perhaps the most relevant works to ours are [9, 24]. In [9], server tries to learn the common
low-dimensional features of the data, and each client learns local features suited to its requirements.
This method, Federated Representation Learning (FedRep), leverages all of the data stored across
clients to learn a global low-dimensional representation using gradient-based updates. Further, it
enables each client to compute a personalized, low-dimensional classifier that accounts for the unique
labeling of each client’s local data. The main difference between this method and pFLMF is that we
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consider that the concatenation of the parameters of the clients lie on a low dimensional space while
this paper assumes that each client has a low-rank parameter. In other words, their feature extractor
extracts the features from a single shared global model while pFLMF trains a set of models and each
client uses a combination of these models as its personalized model. In another word, it is assumed
that xi are low rank not X := [x1,x2, . . . ,xn]. Also, this work focuses on the linear representation
setting with quadratic loss. Recently, an expectation-maximization is proposed in [24], viewing pFL
as solving a mixture model.

Another line of research is partitioning the variables, Mishchenko et al. [26], Pillutla et al. [31]
partition the model parameters into two groups: the shared parameters and the personal parameters.
Clients do simultaneous or alternating updates and only share shared parameters.

It is worth mentioning that our work is fundamentally different from the following set of works.
(1) Low-rank structure for the network assumption, such as [32], proposed algorithm projects the
private dataset onto a low-dimensional space spanned by the top principal components estimated with
the public unlabeled dataset and then applies gradient-based private algorithms (e.g., Noisy-SGD) to
learn a linear classifier on top of the projected features, or [6, 42], one of the layers in the neural net is
assumed to be low rank. And (2) Low-rank structure for the gradient assumption such as [12, 19, 41].
Yao et al. [40] introduced FEDHM, that low-rank factorized neural networks with a specified size
are trained, and the server translates this to the full rank global model using model shape alignment
method.
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Appendix C. Additional Details on Numerical Experiments

Details on the four problem setups. We consider the following experimental setups, including
standard settings that mimic the heterogeneity of the system, as well as more realistic scenarios
where neither FEDAVG nor local training produces the best accuracies.

Setup (1) For the MNIST, CIFAR10, and CIFAR100 datasets, we split the data according to the
Dirichlet distribution Dir(0.5) and Dir(1) across 100 clients. The labels’ distribution is
shown in Figures 2(c) and 2(d). Performance of the algorithms for 2000 global iterations,
one local epoch for all algorithms, learning rate equal to 10−4 is shown in Table 1.

Setup (2) For the CIFAR100, we partitioned the data based on labels into 20 groups with distinct
labels, and then the data in each group was distributed according to uniform distribution
across 500 clients. We ran the experiments for 2000 global iterations with a fixed step size
equal to 10−4. Results are shown in Table 2.

Setup (3) For the MNIST, we follow the experimental setup in [34] and consider 1000 clients divided
into 10 groups, and labels in each group are re-mapped (permuted) according to a random
permutation map. In other words, clients in group one would have the same numbers
{0, · · · , 9} but labeled differently; group one may consider 0 with label 0, and group two
may consider 0 with label 8. Figures 2(a) and 2(b) show the distribution of the labels
before and after re-labeling, respectively. We ran the experiments for 4000 global iterations
with a fixed step size equal to 10−4. Results are shown in Table 2.

Setup (4) We sampled a subset of clients, 30% of the total clients, from FEMNIST dataset without
changing the underlying data distribution, then we removed clients with less than 10 data
points. The remaining set has 1091 clients. We ran the experiments for 1 and 5 numbers
of local epochs. We ran the experiments for 2000 global iterations with a fixed step size
equal to 0.01. Results are shown in Table 2.

Hyper-parameters. We consider partial participation with probability equal to 0.1. We set the
batch size equal to 256 for all algorithms. The rank in the problem (P) is set to r ∈ {1, 5, 10, 15},
meaning that we consider personalized parameters, concatenated weights of neural networks, to
belong to a subspace with rank r ∈ {1, 5, 10, 15}. All experiments have 75% train and 25% test
data splits on each client’s data. We chose the best step size for each algorithm from the set
{10−4, 10−3, 10−2, 10−1}.
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Figure 2: Distribution of the labels for MNIST dataset across 100 clients. The vertical and horizontal
axes show clients and the size of each client’s data, respectively.
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