OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Connections between Schedule-Free optimizers and Accelerated SGD

variants
Depen Morwani DMORWANI @ G.HARVARD.EDU
Nikhil Vyas NIKHIL @ G.HARVARD.EDU
Hanlin Zhang HANLINZHANG @ G.HARVARD.EDU
Sham Kakade SHAM @SEAS.HARVARD.EDU
Harvard University

Abstract

Recent advancements in deep learning optimization have introduced new algorithms, such as Schedule-
Free optimizers, AEMAMix and Lion which modify traditional momentum mechanisms. In a sep-
arate line of work, theoretical acceleration of stochastic gradient descent (SGD) in noise-dominated
regime has been achieved by decoupling the momentum coefficient from the current gradient’s
weight. In this paper, we establish direct connections between these two lines of work. Specifically,
we demonstrate that Schedule-Free SGD is equivalent to performing accelerated SGD followed by
weight averaging. Moreover, optimizers like Lion, Schedule-Free AdamW, and AAEMAMix can
be interpreted as combining preconditioning with accelerated SGD methods. While some of these
connections have been partially recognized in prior literature, the full extent of the relationship
between these new optimizers and accelerated SGD variants has not been previously explored.

We substantiate our theoretical findings with preliminary experiments on a 150-million-parameter
decoder-only transformer model trained on 15 billion tokens using a small batch size of 32k tokens,
ensuring a noise-dominated regime. Our results indicate that (1) methods based on accelerated SGD
exhibit slightly improved performance in such settings and (2) Schedule-Free AdamW performs
comparably to an accelerated SGD-based AdamW optimizer.

1. Introduction

Recently, many new optimizers have been proposed for deep learning such as Lion [1], Schedule-
FreeSGD/AdamW [3], and AJEMAMix [10]. While these optimizers are proposed with different
motivations, all of them can be understood as changing the form of momentum used in the opti-
mization.

A different line of theoretical work has been focused on accelerating gradient descent in the
presence of noise. Although the standard or Nesterov momentum is sufficient to accelerate deter-
ministic gradient descent, it is not sufficient to accelerate SGD [5, 7]. This has led to proposals about
modifying the momentum schemes to achieve acceleration in the presence of noise [4, 5, 7, 12]. All
of these accelerated SGD methods proposed in the literature are equivalent to decoupling the mo-
mentum coefficient from the weight on the current gradient in the optimizer update.

Our main contribution is to establish direct connection between the ideas developed by these
two lines of work. In fact, we show that ScheduleFree SGD is exactly equivalent to doing acce-
larated SGD followed by weight averaging. Approaches such as Lion, ScheduleFree AdamW and
AdEMAMIix are equivalent to combining preconditioning with the accelerated SGD approaches.
We note that some of these connections have been noticed in the literature [2], but to the best of
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our knowledge, the connection of these new optimizers to accelerated SGD has not been observed
before.

We follow up with experiments on a 150m decoder-only transformer model trained on 15B
tokens and a small batch size of 32k tokens to ensure that we are in a noise-dominated regime. As
expected from our theoretical results, the performance of schedule-free AdamW is very close to that
of accelerated SGD based AdamW (Algorithm 2). We also show that accelerated methods enjoy
slightly improved performance at such small batch sizes.

Our main contributions are stated below:

1. We show precise connections between recently proposed optimizers such as Schedule-Free
SGD, AdEMAMix and accelerated SGD.

2. We provide experimental results on a 150m decoder only transformer with small batch size,
comparing AdamW, Schedule-Free AdamW and accelerated AdamW.

2. Related Work

We will cover the literature on accelerated SGD variants and optimizers which are directly relevant
for our work.

Jain et al. [5] introduced an accelerated SGD variant, that provided improved convergence for
least-squares problem. Kidambi et al. [6] simplified the update of this variant and also provably
showed that momentum does not provide acceleration in this case. Gupta et al. [4], Liu and Belkin
[7], Vaswani et al. [12] extend these results to the general cases of convex and strongly convex
functions under different assumptions.

Various optimizers have been proposed over years which resemble the accelerated SGD variants
described above. Lucas et al. [8] use a weighted sum of multiple momentum terms with different
coefficients for the final update. Ma and Yarats [9] propose an optimizer directly inspired by the
theoretical work of Jain et al. [S]. Chen et al. [1] is a recent optimizer discovered using genetic
search algorithm, which, akin to the previous accelerated SGD variants, place different mass on the
gradient in the update as compared to the momentum coefficient. Pagliardini et al. [10] also mixes
two different momentum scales in the final update.

3. Background
3.1. Momentum

Momentum is a well-known technique for accelerating convergence of gradient descent in deter-
ministic settings. Momentum update with a momentum coefficient 3 for weights w; is given by

my = Bmy—1 4+ Vf(we);we = we—q — nmy

3.2. Weight Averaging

Weight averaging is a known-technique generally used in the stochastic optimization literature, for
reducing the noise present in the iterates. Instead of returning the final iterate wr, a weighted
average wr of the iterates is returned with weights denoted by ;.
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wr = (1 — yp)wr—1 + yrwr

All weight averaging used in this paper will use coefficients 7, of the form v, ~ 1 — 1/(dt) for
some constant 0 < § < 1.

3.3. Accelerated SGD

In this section we provide a generic structure into which many accelerated SGD methods fall into:
my = Bagmi—1 + Gt Wil = Wi — Na Mt — Qa1 Gt )]

where [3; ¢, 0va ¢, Ma,¢ are (possibly time dependent) scalars and g, is the stochastic gradient eval-
uated on w;. We will use the subscript ‘a’ to denote the coefficients that fit this exact accelerated
SGD form. We begin by noting that it we set o,y = 0 we recover standard SGD with momentum.
Further, it is easy to see and has also been noticed in previous work that for many of the algorithms
proposed in the accelerated SGD literature such as those in the works of Gupta et al. [4], Jain et al.
[5], Liu and Belkin [7], Vaswani et al. [12] fall directly into this format.

3.4. Schedule-free SGD

Schedule-free SGD [3] is a recently proposed constant learning rate optimizer aimed at removing
the need for scheduling. Following the notations as used in Defazio et al. [3], the updates are given
by

yr = (1 = B)zt + By
zev1 = 2zt — Y9 (Yt)
Tre1 = (L = C1) @t + Ceq12041
Here, y; denotes the current weights of the model (note that the gradient is evaluated on 1),

while x; are the weights that will be used for evaluation.
We will begin with writing the update in terms of y; and m;, which we define as

M1 = Lt — 241 )
v
We can further simplify m¢ as following
my = L 3)
Y
_ TG — 2 @)
v
Ty — 2 +
_ Tt t T Yt (5)
v
_ (1 —ce)(wi—1 — 2) + Y0t ©)
v
=(1—c)mi—1+ gt @)
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Hence m; follows the momentum update in Equation (1) with 8, ; = 1 — ¢;. Now given m; let
us consider the update of ;.

Yer1 = (1 = B)zt1 + Bt 8)
= (1= 08) (2t —vgt) + B((1 — ctq1)mt + cry12641) )

(1 B)zt + Bre — (1 — B)vgt + Berr (2041 — 74) (10)

=y — y[Berrimy + (1 — 3)gi] (11)

Hence y; follows weight update in Equation (1) with 7, ; = yfct41 and a,y = (1 — 3) and
wy = y¢. Hence at this point ScheduleFree SGD exactly follows accelerated SGD. A complication
arises when we consider the fact that for evaluation ScheduleFree SGD uses x;. Let us now try to
understand the dynamics of x;:

Tip1 = (1 —ct + )ZEt + Ct+12t+1

1 —cip1)ze +c2 (yt+11__65$t+1>
L —ci1)(1 = B)ze + crr1yes
1 —ciq1)(1 = B)xs + coq1yesa

(1 —ct41)(1 = B) + ct41

Ti41 =

(
(
T (1= B+ c1B) = (
(

Ti41 =

hence z; is just a weight averaged version of y;.

After the last equation above we can keep recursively expanding x; to get that x; is an exponen-
tial average of y; for a constant ¢;. So overall ScheduleFree SGD can be understood as a accelarated
SGD followed by weight averaging.

This shows that the benefits of ScheduleFree SGD are directly attributable to its two compo-
nents:

1. Better performance than standard SGD with momentum can be attributed to accelerated SGD.

2. Using a constant learning rate without any scheduling can be attributed to weight averaging
(to be precise, tailed weight averaging, look Section 3.4.2)

We note that there are two benefits that are unique to the ScheduleFree SGD/Adam: 1. It does
not require extra space to do weight averaging and 2. We do not have an extra hyperparameter:
weight averaging coefficient. Both of these benefit occur since it ties the coefficients for momentum
and weight averaging.

3.4.1. B=0.0

As noted in [3], at 8 = 1, schedule free SGD reduces to normal momentum but with momentum
Bat scaling up as 1 — 1/t. Since ¢; = 1/t it does weight averaging from the start.
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342. =09
The default value for 3 is ScheduleFree SGD is .9. For 8 = 0.9:

* As ¢ scales down as 1/t, therefore momentum keeps scaling up as 1 — 1/t.

* The ratio of the weight on the current gradient to momentum is fixed to (1 — 8)/(Bci41) =~
0.11 (since c¢4+1 ~ 1 is just a bias correction for momentum).

» Weight averaging is done approximately over the last 100/10 = 10% of the iterates as the
weight on y;1 in weight averaging is v 441/(1 — 8 + v2,415) ~ 10/t.

3.5. Lion

We note that Lion is exactly equivalent to accelerated SGD followed by the sign operation.

3.6. AAEMAMix

A recent optimizer AAEMAMix [10] also seems to have an updated step similar to that of acceler-
ated SGD based AdamW with one difference instead of using a linear combination of the current
gradient and the momentum as accelerated SGD does it instead maintains two momentums with
different coefficients and takes there linear combination. The algorithm for the optimizer is stated
in Section 3.6. In Pagliardini et al. [10], the authors observed comparable performance of 3; = 0.0
and 81 = 0.9 at small batch sizes. At 51 = 0.0, AAEMAMix precisely falls within the accelerated
SGD framework, combined with preconditioning.

Algorithm 1 Single step of AAEMAMix optimizer. Differences with AdamW are in blue.

1: Input: Data distribution D. Initial model parameters 0. Number of iterations 7. Learning
rate 7. € a small constant. AdamW parameters: 51, 52. AAEMAMix parameters 33, o. Warmup
parameter 17, g,, note that we usually set it to T". Sy i usually set to 5.

Optional: use schedulers n(*), B:gt) — fa(t, B3, Bstarts T3, ) and a®) falt,a, Ty g,)
Sample batch: z ~ D

Compute gradient: ¢(*) + Vg Lp.—1)(z)

Update the fast EMA my: m(lt) — ﬁlmgt_l) +(1- ﬁl)g(t)

Update the slow EMA my: mg) — 5§”m§t‘” +(1— 5§t))g(t)

Update the second moment estimate: () « By (=1 4 (1 — ) (g(lt))2

ﬁzgt> +a(t>mét>
Vi) e

A A

8: Update parameters: 0() «— 9(t—1) — »(®) (

4. Experiments

In this section, we provide experiments on a 150m decoder-only transformer model for language
modeling task on C4 dataset. We train it with a sequence length of 1024 and batch size of 32, for
15B tokens (= 5x Chinchilla) to ensure we are in a noise dominated regime. We compare the
following algorithms:
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Figure 1: Comparison of the best runs of AdamW with cosine decay, AdamW with weight averag-

ing, Schedule free AdamW and accelerated AdamW with weight averaging for language
modeling task on a decode-only 150m transformer model.

Algorithm 2 Single step of accelerated SGD based Adam with weight averaging. For simplicity
we ignore the initialization, other boundary effects such as bias correction, and weight decay. Hy-
perparameters: Learning rate 7, betas = (1, 2, 33), weight averaging coefficient , and epsilon

€.

S A AR >

Sample batch B;.
g < _vw¢Bt (wt)

U%ﬁév +((1B—)B2)(9®9)
sm+(1—83)g

Ne =

w4+ w—nN

m < Bim+ (1 — p1)g
c=max(l —1/t,1 —1/(6t))
Wayg ¢ CWavg + (1 — c)w

1. Standard AdamW with cosine decay
2. Standard AdamW with weight averaging
3. Schedule-free AdamW

4. Accelerated AdamW with weight averaging (Algorithm 2)

Hyperparameter sweeps for the algorithms are provided in Appendix A.

As shown in Figure 1, schedule-free AdamW and accelerated AdamW with tailed weight av-

eraging perform comparably supporting our claims. We can also see that they outperform both
AdamW with cosine decay and AdamW with tailed weight averaging.
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5. Conclusion

In this work, we showed the equivalence between the recently proposed schedule-free SGD opti-
mizer and accelerated SGD with weight averaging. We also empirically demonstrated that acceler-
ated SGD demonstrates improved performance as compared to SGD with momentum for training a
150m decoder-only transformer model on language modeling task.
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Appendix A. Hyperparameters

1.

AdamW with cosine decay - 51.2k warmup - learning rate in [3.16e-4, 1e-3, 3.16e-3], ;1 in
[0.9, 0.95], B2 in [0.99, 0.999, 0.99968, 0.9999]. The optimal values of 3; and 32 were .9
and .999 respectively matching the default values. We note that for larger batch sizes it is
common to use F = .95, the benfit of higher 3, at smaller batch sizes has also been observed
by Porian et al. [11].

. AdamW with cosine decay - 10k warmup - learning rate in [3.16e-4, le-3, 3.16e-3], f1 =

0.9, B2 = 0.999 i.e. we fix B1, B2 to be the optimal values from the previous sweep. This
performed worse that warmup of 51.2k steps.

. AdamW constant fraction weight averaging: - learning rate in [3.16e-4, le-3, 3.16e-3], 51 =

0.9, B2 in [0.99, 0.997, 0.999, 0.9997], ¢ in [0.05, 0.1, 0.2].

. AdamW with cosine decay and weight averaging - learning rate in [3.16e-4, le-3, 3.16e-3],

B1 = 0.9, B2 = 0.999, § in [0.025, 0.05, 0.1].

. Accelerated SGD based AdamW with cosine decay - learning rate in [3.16e-4, 1e-3, 3.16e-3],

B1 1n [0.999, 0.99968, 0.9999], 32 in [0.99, 0.9968, 0.999], 53 = 0.9

Accelerated SGD based AdamW with constant learning rate and weight averaging - learning
rate in [3.16e-4, 1le-3, 3.16e-3], 31 in [0.99684, 0.999], (2 in [0.999], B3 = 0.9, ¢ in [0.05,
0.1]

. Accelerated SGD based AdamW with cosine decay and weight average - learning rate in

[3.16e-4, 1e-3, 3.16e-3], 31 in [0.99684, 0.999], B> = 0.999, ¢ in [0.05, 0.1], 53 = 0.9

. Schedulefree AdamW with constant learning rate - learning rate in [3.16e-4, 1le-3, 3.16e-3,

le-2], 51 in [0.8, 0.9, 0.95], B2 = 0.999

Schedulefree AdamW with cosine decay - [3.16e-4, le-3, 3.16e-3, le-2], 51 in [0.8, 0.9,
0.95], B2 = 0.999

Appendix B. Equivalence of previous acceleration methods

The general accelerated SGD form is provided in Equation (1). In this section, we will show that all
the methods in the works Gupta et al. [4], Jain et al. [5], Liu and Belkin [7], Vaswani et al. [12] fall
within this form.

B.1. AGNES

The update for Gupta et al. [4] is given below:

/ ’ / /
Ty, = Tp + vy I+l = Ty — NGy Vnt1 = pn(Vn — gy)

where ¢/, is stochastic gradient evaluated on 2, and the final function is evaluated on z,,. The above
equations can be rewritten as
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Un+1 v
Tpi1 = T — NGy + QUny1 — " =y <— = > + 9n
Pn—1
Thus =}, , follows update equation of the form of Equation (1).

B.2. ASGD
The update for Jain et al. [5] is given by:

Yji-1 = axja+(l-a)vjo1  z;=yi1—0gi-1  zj—1=BYyj1+(1-Blyi v =zj—1—7g5-1

where g;_1 represents the stochastic gradient evaluated on y;_1 and the function is evaluated on the
tail averaged x.
The update equations above can be rewritten as:

Yj-1 -9 (1— B)aYi=2 = Vi1

Yj = yj—1—adgj—1— (1 —a)lyj—1 — vy m = m +9j-1

The update equations above follow the form of Equation (1).

B.3. MaSS
The update for Liu and Belkin [7] is given by:

Wipr = — MGt U1 = (L+7)wip1 — ywi + 1020

where g; is the stochastic gradient evaluated on u; and the function is evaluated on w;. These
equations can be rewritten as:

Wt — Ut _ ’thfl — Ut—1
my —"mn2 mry —1n

w1 = ur — y(we — wg) — [m(1+ ) — n2]ge + gt
The update equations above follow the form of Equation (1).

B.4. SGD with Nesterov Acceleration
The update for Vaswani et al. [12] is given by:

Wrt1 = Ck — Nk G = agvp + (1 — ag)wy Vkt1 = Brvr + (1 = Br)Cr — Yeng

These equations can be rewritten as:

Cot1 = Ce — MGk + kg1 [Vkp1 — Wit 1] V1 — Wet1 = Br(1 — o) o — wi] = (v — 1) g

10
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