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Abstract
In learning from aggregate labels, the training data consists of sets or “bags” of feature-vectors
(instances) along with an aggregate label for each bag derived from the (usually {0, 1}-valued) labels
of its constituent instances. In the learning from label proportions (LLP) setting, the aggregate label
of a bag is the average of the instance labels, whereas in multiple instance learning (MIL) it is the
OR. The goal is to train an instance-level predictor, which is typically achieved by fitting a model on
the training data, in particular one that maximizes the accuracy which is the fraction of satisfied bags
i.e., those on which the model’s induced labels are consistent with the target aggregate label. A weak
learner in this context is one which has at a constant accuracy< 1 on the training bags, while a strong
learner’s accuracy can be arbitrarily close to 1. We study the problem of using a weak learner on
such training bags with aggregate labels to obtain a strong learner, analogous to supervised learning
for which boosting algorithms are known. Our first result shows the impossibility of boosting in
the LLP setting using weak classifiers of any accuracy < 1 by constructing a collection of bags for
which such weak learners (for any weight assignment) exist, while not admitting any strong learner.
A variant of this construction also rules out boosting in MIL for a non-trivial range of weak learner
accuracy.
In the LLP setting however, we show that a weak learner (with small accuracy) on large enough bags
can in fact be used to obtain a strong learner for small bags, in polynomial time. We also provide
more efficient, sampling based variant of our procedure with probabilistic guarantees which are
empirically validated on three real and two synthetic datasets. Our work is the first to theoretically
study weak to strong learning from aggregate labels, with an algorithm to achieve the same for LLP,
while proving the impossibility of boosting for both LLP and MIL.

1. Introduction

In traditional, fully supervised learning, the training data consists of a collection of labeled feature-
vectors (i.e., training examples) {(xi ∈ X , yi = y(xi))}ni=1, for some domain X where the mapping
y provides the feature-vector labels. In this paper we will consider the binary setting i.e., the labels
are {0, 1}-valued. The usual training goal is to find a good classifier f : X → {0, 1} which
maximizes the training accuracy |{i : f(xi) = yi}| /n. In recent times however, due to privacy [40]
or feasibility [7] constraints, in many applications the training label for each training example is
not available. Instead, the training data consists of sets or bags of feature-vectors along with only
the average or equivalently sum of the labels for each bag since bag size is known. This is called
learning from label proportions (LLP) in which the training set consists of labeled bags {(Bj , yj}mj=1

where Bj ⊆ X and yj =
∑

x∈Bj
y(x). The training goal is to fit a good classifier f : X → {0, 1}

on this bag-level training data. A related problem is multiple instance learning (MIL) in which the

†. currently at Google DeepMind

© Y. Makhija† & R. Saket†.



WEAK TO STRONG LEARNING FROM AGGREGATE LABELS

label for each bag is the OR of the boolean labels of its constituent feature vectors, while the goal
of fitting a good feature-vector classifier remains the same. A natural metric for the goodness of fit
in the LLP setting is to maximize the bag-level accuracy i.e., the fraction of satisfied training bags,
where a bag (B, y) is satisfied if y =

(∑
x∈B f(x)

)
. An analogous notion of accuracy for MIL is if

y =
(∨

x∈B f(x)
)
. Recent works [42, 43] have studied the computational learning aspect of LLP

and MIL, and in particular showed that the problem of finding classifiers (even in the realizable case)
of high bag-level accuracy can be NP-hard.

In supervised classification, boosting (see [19, 46]) is a well known meta-technique which,
given a training dataset uses an ensemble (typically a majority) of weak classifiers (on reweighed
data) to output a hypothesis which has accuracy arbitrarily close to 1 i.e., a strong classifier. In the
{0, 1}-labels case a weak classifier has accuracy at least (1/2 + ε) for some ε > 0, while that for a
strong classifier is (1− ν) where ν can be made arbitrarily small. Note that the threshold of 1/2 for
weak classification is the expected accuracy of random prediction on the training set.

To address the algorithmic learning problems in LLP and MIL, one could hope to apply boosting
techniques to LLP and MIL settings as well. Here, we can define a weak classifier having some
constant accuracy on the bags, while the notion of a strong classifier remains the same: that with
an arbitrarily high accuracy. A natural question to ask is: is there a way to do boosting using
weak-classifiers to obtain a strong classifier in learning from aggregate labels?

In this work we show that the above is impossible even on 2-sized bags for (i) LLP using weak
classifiers of any accuracy < 1, and (ii) for MIL using weak classifiers of any accuracy < 2/3.
Specifically, we construct a collection of bags such that any reweighing of the bags admits a weak
classifier of the desired accuracy while the original collection does not admit any strong classifier
i.e., any labeling to the underlying feature vectors satisfies at most some constant < 1 fraction of
the bags. We note that on bags of size 2, for both LLP and MIL the worst-case accuracy obtained
by using the random or any constant-valued classifier (all 0s or all 1s), is 1/2. So, even for MIL we
rule out boosting using weak classifiers with non-trivial accuracy in [1/2, 2/3). Our impossibility
of boosting stands in contrast to previous work (e.g. [2, 35]) which empirically evaluate boosting
heuristics for LLP and MIL – our results are the first to show that such algorithms cannot provably
yield a strong classifier. While these impossibility results are applicable to the boosting framework,
one can ask: is there some other way to derive a strong classifier from weak classifiers?

Our next result answers this question in the affirmative for LLP: a weak classifier (of any constant
accuracy γ > 0) on large bags can be used to derive a strong classifier on a training set of (smaller)
bags. These large bags are each a union of t training bags, where t depends only on γ and the
desired accuracy of the strong classifier. While on m training bags, the number of (≈ mt) unions are
polynomial-time for constant t, we also provide a significantly more efficient sampling version of
this approach which provides the same guarantees with high probability. These are to the best of our
knowledge the first methods obtaining strong classifiers from weak classifiers for LLP. For MIL on
the other hand the question of such weak to strong learning remains open.

As detailed discussion on previous related work is included in Appendix D.

Problem Definition. Let X ⊆ Rd for some d ∈ Z≥0 be the space of feature-vectors, while a bag B
is a finite subset of X . Let Y ⊆ R be the space of feature-vector labels, and Y ⊆ R be the space of
bag-level aggregate labels with some aggregation function Agg mapping finite Y-valued tuples to Y .
We say that a bag B = (x1, . . . ,xq) with aggregate label σ is satisfied by a classifier f : X → Y if
Agg(f(x1), . . . , f(xq)) = σ. For convenience we use bag to refer to a bag and its aggregate-label.
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Anm-sized training set B is a collection {(Bj , σj) ∈ 2X ×Y}mj=1 ofm bags and their aggregate-
labels along with weights wj ≥ 0 for bag Bj (j = 1, . . . ,m) such that

∑m
j=1wj = 1. The accuracy

of a classifier on B is the weighted fraction of bags satisfied by it. We define a weak classifier to be
one with constant accuracy γ > 0, and a ν-strong classifier to have an accuracy (1− ν). For ease of
exposition we call the latter a strong classifier when ν can be taken to be an arbitrarily small positive
constant.

For this study, the underlying feature-vector level task is binary classification, so Y = {0, 1}.
For multiple instance learning (MIL) the aggregation function is OR i.e., the boolean disjunction
and therefore Y = {0, 1}. On the other hand, in learning from label proportions (LLP) we take
the aggregation function to be SUM i.e., the real sum of labels, and therefore Y = Z≥0. Note that
for LLP we could have equivalently taken average as the aggregation (since the size of any bag is
known), however for convenience we use SUM.

We also define the TrvLLP(B) for a collection of LLP bags, to denote the trivial accuracy
threshold on B. Specifically, it is the minimum weighted accuracy given by the best among the
random classifier and the two constant valued classifiers (all 0s and all 1s classifiers), over all possible
weight assignments to the bags B. For a collection of MIL bags B, TrvMIL(B) is defined analogously.

We shall also use the halfspace classifier whose value at point x ∈ Rd is given by pos (〈r,x〉+ c)
for some r ∈ Rd, c ∈ R where pos(a) = 1 if a > 0 and 0 otherwise. We say that the halfspace
passes through the origin i.e., is homogeneous if c = 0.

Given a collection of bags and aggregate labels, a prototypical boosting algorithm (given in
Figure 1) in the aggregate label setting, involves repeating certain steps over some number of rounds:
in each round the training data is reweighed, for which a weak classifier is computed. The final
output is some function over the ensemble of computed weak classifiers.

Input: B = (Bi, ȳi)
m
i=1: Collection of bags and aggregate labels, D1(i) = 1/m: initial weight

distribution associated with each bag, T : Number of steps of boosting.
1. for t ∈ [T ]:

1.1 Train a weak classifier ht : X −→ {0, 1} for the bag distribution Dt.
1.2 Using {hr}tr=1, compute a new distribution Dt+1 over B.

2. For some g, output h∗ = g(h1, . . . , hT ) as a (presumably) strong classifier for B.

Figure 1: Boosting for aggregate label setting

Our Results. The following theorem, coupled with the definition of the boosting meta algorithm
(Section C.1) implies our result on the impossibility of boosting in LLP.

Theorem 1 (Impossibility of boosting in LLP) Let α ∈ [1/2, 1) be any constant. Then, for any
arbitrarily small constant ε > 0 there exists d,m ∈ Z+ and a collection of bags B = {Bj ⊆ Rd}mj=1

where |Bj | = 2 and the aggregate label (i.e. sum of labels in LLP setting) of Bj is 1 (j = 1, . . . ,m)
and the following properties are satisfied:
(Existence of weak halfspace classifiers): For any assignment of weights wj to Bj (j = 1, . . . ,m)
such that

∑m
j=1wj = 1, for the weighted collection of bags there is a halfspace classifier with

accuracy α.
(No Strong Classifier): For the unweighted set of bags {Bj ⊆ Rd}mj=1 there is no classifier f :
∪mj=1Bj → {0, 1} having accuracy greater than α+ ε.
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Theorem 1, proved in Section 2 using the Max-Cut construction of [16], is optimal from multiple
perspectives. Firstly, the bags are of size at most 2 whereas when bags are all of size 1 (i.e., supervised
learning) boosting is indeed possible, showing that as soon as we transition from the fully supervised
to the LLP setting in terms of bag size, boosting becomes impossible. Secondly, the result shows
that even if weak learners of any constant accuracy in [1/2, 1) exist, there is no classifier with even a
slightly greater accuracy, thus ruling out any non-trivial advantage of boosting, let alone obtaining a
strong classifier. In Appendix E we give a simple argument showing that TrvLLP(B) = 1/2 for the
bags B constructed in the above theorem. We state our result on the impossibility of boosting in the
MIL setting in Appendix A.

Next we state our results (proved in Section 3) in the LLP setting for obtaining a strong classifier
on a collection of bags using a weak classifier on a derived collection of larger bags. In this case
we consider unweighted collection of bags, since a weighted collection of m bags can easily be
converted into an unweighted collection of Tm bags while preserving the accuracy of any classifier
up to an additive error of O(1/T ) (see Appendix G). To state our result we assume that there is an
oracle Oq,α(B) which given weighted collection of bags B along with their aggregate labels, where
each bag has size at most q, outputs a classifier f with weighted accuracy α on B.

Theorem 2 (Weak to Strong LLP Learning) For parametersα, ε > 0 there exists t = O(1/(εα2)),
and algorithmsA1 andA2 s.t. given an unweighted collection ofm bagsB, where k = max(B,σ)∈B |B|
and n :=

∣∣∪(B,σ)∈BB∣∣, and assuming that Okt,α exists,
• A1 creates a weighted collection B1 of at most mt+1 bags each of size at most kt such that
Okt,α(B1) outputs a classifier which has accuracy (1− ε) on B.

• for any δ > 0, A2 creates a random collection B2 of s = O
(
1
α

(
n+ log

(
1
δ

)))
each of size at

most kt such that Okt,α(B2) has accuracy (1− ε) on B with probability at least (1− δ). If Okt,α
is guaranteed to output a classifier of VC dimension r then s = O

(
r
α log

(
n
r

)
+ log

(
1
δ

))
suffices.

Theorem 2 presents algorithms that, when applied to collections of bags in the LLP setting, yields
high-accuracy classifiers by employing weak classifiers trained on a reasonably sized collections
of large bags. This can in particular be achieved by an efficient randomized algorithm A2. We
also conduct experiments (see Section K) – on both real and synthetic datasets – to demonstrate
the effectiveness of A2. We use it to construct a limited collection of large bags from a given
collection of small bags and experimentally show that a weak classifier on the large bags yields one
with significantly higher accuracy on the constituent small bags. For all our results, we provide an
informal overview of our techniques in Appendix B to aid the readers’ understanding.

2. Impossibility of Boosting in LLP

The Max-Cut problem is: given an undirected graph G(V,E) find a cut given by the assign-
ment g : V → {0, 1} which separates the maximum number of edges in E i.e., maximizes
|{e = {u, v} ∈ E|g(u) 6= g(v)}|. We shall use the following construction of graph GFS(VFS, EFS)
given in Sec. 3.1 of [16]: Let απ = θ ∈ [π/2, π) and ε > 0 be an arbitrarily small parameter such
that θ + επ < π. Let d = O(1/ε log(1/ε) and γ = ε2/(2d). Divide the (d− 1)-dimensional unit

sphere Sd−1 into
(
O(1)
γ

)d
equal sized cells of diameter at most γ each (this is shown to be possible

in Lemma 21 of [16]). From each cell pick an arbitrary point v and add it to VFS. Add an edge
{u,v} to EFS for each pair of points u,v ∈ VFS whose angle is between θ and θ + ε. Section 3.1 of
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[16] shows† for any g : VFS → {0, 1} that

Pr
{u,v}∈EFS

[g(u) 6= g(v)] ≤ θ/π +O(ε2) = α+O(ε2). (1)

Proof of Theorem 1: Let GFS(VFS, EFS) be the graph constructed above using θ = απ ∈ [π/2, π)
and let ε taken to be the same as that in the statement of Theorem 1. Taking VFS to be the underlying
set feature-vectors, let the set of bags B be EFS i.e., each edge {y,v} is a bag. All aggregate labels
are 1, so that any bag is satisfied by g : VFS → {0, 1} iff the corresponding edge is separated by g.
Now, for any bag {u,v} in B, from the construction of GFS(VFS, EFS), the angle between u and v is
at least θ. Thus, a random homogeneous halfspace (given by pos

(
rTx

)
for r chosen uniformly at

random from Sd−1) satisfies the bag with probability at least θ/π = α.
Thus for any assignment of weights wB for bags B ∈ B, the expected weight of bags satisfied by

a random homogeneous halfspace is
∑

B wB Prr←Sd−1

[
B is satisfied by pos

(
rTx

)]
= α

∑
B wB

by linearity of expectation. Therefore, there is one classifier with weighted accuracy α. The upper
bound on the accuracy of any classifier on B follows directly from (1) and small enough ε > 0.

3. Weak to Strong Classification in LLP

Given α, ε > 0 we set t to be 32
ε

(
C0
α

)2
where C0 > 0 is an absolute constant to be decided. We

begin by defining in Fig. 2 a distribution D over bags (B, σ) where B is the union of at most t bags
from B and σ is the sum of their aggregate labels.

Input: : Bags B, t. Steps:

1. Independently for i = 1, . . . , t, let Pi = (Bi, σi) where (Bi, σi) is sampled u.a.r. from B.

2. Independently for i = 1, . . . , t: set Qi = Pi w.p. 1/2 and set Qi = ? w.p. 1/2.

3. Output (B, σ) where B =
⋃

{i | Qi=(Bi,σi)6=?}

Bi, and σ =
∑

{i |,Qi=(Bi,σi)6=?}

σi

Figure 2: Distribution D.

To aid our subsequent analysis we shall use the following two lemmas proved in Appendix I.

Lemma 3 If S ⊆ B and κ ∈ [0, 1] s.t. |S| ≥ κ|B|, in Fig. 2, Pr [|{i | (Bi, σi) ∈ S}| < κt/2] ≤
exp(−κt/8).

Lemma 4 Let h : X → {0, 1} be a classifier such that h has accuracy < (1 − ζ) on B. Then,

Pr
(B,σ)←D

∑
xinB

h(x) = σ

 ≤ C0/
√
ζt+ exp(−ζt/8), for some absolute constant C0 > 0.

Figure 3 describes the deterministic algorithm A1 using† the distribution D defined in Figure 2.
Suppose for a contradiction that the output h∗ of A1 has accuracy < (1 − ε) on B. Then, from

†. While [16] state the proof of (1) for a specific value of θ, the proof applies to all values of θ ∈ [π/2, π).
†. We include in Appendix H an explanation on computing the probabilities under D.
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Input: : Bags B, k = max(B,σ)∈B |B|, α > 0, t, oracle Okt,α. Steps:

1. Let supp(D) be the support of D (Fig. 2), and for each (B, σ) ∈ supp(D) let its weight w(B,σ)

be its probability under D. Let B be supp(D) with weights w(B,σ).

2. Output the classifier h∗ given by Okt,α(B).

Figure 3: Algorithm A1.

Lemma 4 we obtain that the probability that (B, σ) sampled from D is satisfied by h∗ is at most
C0/
√
εt+ exp(−εt/8) which – upon plugging in the value of t – is at most α/2 which contradicts

the accuracy of h∗ on B. We defer the description and analysis of the algorithm A2 to Appendix J.

4. Overview of Experiments

In our experiments, we generate collections of small q-sized bags as training data using fully
supervised real and synthetic datasets. We use a fixed value of q ∈ {5, 15}. For real datasets, we
use the tabular UCI binary classification datasets: Australian [37], Adult [3] and Heart [23]. We
randomly partition the datasets into bags of size q. We also generate two types of synthetic datasets:
1. Random: In this case each q-sized bag is created by randomly sampling points uniformly from

the unit sphere as its constituent feature vectors.
2. Hard Bags: For these bags we first randomly construct pairs of points on the unit-sphere which

are either (i) very close but have different labels under f∗, or (ii) nearly antipodal but have the
same label. Each bag consists of several such randomly constructed pairs and one random point
(since q is odd).

For each collection of training bags, and an appropriate choice of t and s (Figure 5) we form a
collection of s large bags by sampling each iid from the distribution D given in Figure 2. Further
details about the datasets and bag creation are in Appendix K. We validate our proposed algorithm
using a simple model training setup, by training a linear model g(x) until convergence on the large
bags, with sigmoid activation using MSE loss between the bag label and aggregate prediction.
Results. In all experiments (Tables 1 and 2 in Appendix K), even with low accuracy on large bags
we obtain classifiers with high accuracy on the constituent small bags and even higher accuracy on
the instance-level test set. For example, on synthetic random bags with q = 5, t = 50 and s = 5000,
an accuracy of just 21.3% on large bags yields an accuracy of 85.5% on small bags and 96.4% on the
test set. On the Adult dataset, with q = 15, t = 50 and s = 80000, with accuracy of just 0.044% on
large bags, we obtain a classifier with accuracy of 21.5% on small bags and 82.2% on the test set.

5. Conclusion

In conclusion, our study is the first to demonstrate the impossibility of boosting weak classifiers to
a strong classifier in the LLP and MIL settings. For LLP our work rules out boosting using weak
classifiers of any accuracy < 1, while for MIL the possibility of boosting weak classifiers with
accuracy < 2/3 is eliminated. Complementing these findings in the LLP context, we propose an
algorithm that converts a weak classifier for large bags into a strong classifier for an input collection
of small bags.
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Appendix A. Impossibility of Boosting in MIL

Theorem 5 (Impossibility of boosting in MIL) For any arbitrarily small constant ε > 0 there
exist m ∈ Z+ and a collection of bags B = {Bj ⊆ Rd}mj=1 along with the aggregate labels σj for
Bj where |Bj | = 2 (j = 1, . . . ,m) and the following properties are satisfied:
(Existence of weak halfspace classifiers): For any assignment of weights wj to Bj (j = 1, . . . ,m)
such that

∑m
j=1wj = 1, for the weighted collection of bags there is a halfspace classifier with

accuracy 2/3− ε.
(No Strong Classifier): For the unweighted set of bags {Bj ⊆ Rd}mj=1 there is no classifier f :
∪mj=1Bj → {0, 1} having accuracy greater than 3/4.

The above theorem shows that in the MIL setting, weak classifiers with any accuracy < 2/3 cannot
be boosted to a strong classifier with accuracy > 3/4. As shown in Appendix E, TrvMIL(B) = 1/2
for the bags B of the above theorem, and therefore our result applies to any non-trivial weak classifier
accuracy in (1/2, 2/3). The proof of Theorem 5 is deferred to Appendix F.

Appendix B. Overview of Techniques

Impossibility of Boosting in LLP (Theorem 1). Our construction follows from the well-known
semi-definite programming (SDP) integrality gap of Feige and Schechtman [16] for the Max-Cut
problem. In this, for some arbitrarily small ε > 0, with d depending on ε, the vertices of the graph
are given by points on the (d − 1)-dimensional unit sphere Sd−1. For any constant α ∈ [1/2, 1),
each edge is between points that are at an angle of at least απ. Using techniques related to spherical
isoperimetry and concentration of measure in high dimensions, the authors prove that there is no
cut in the graph separating more than (α + ε)-fraction of the edges. By creating a 2-sized bag
corresponding to each edge with latter’s two end-points being the bag’s two feature-vectors, we
create a collection of bags, and for each one we assign an aggregate label 1 i.e., any bag is satisfied if
exactly one of its feature-vectors is labeled 1 or equivalently the corresponding edge is separated.
The cut upper bound of (α+ ε) thus directly gives us the upper bound on the best possible accuracy
of any classifier. On the other hand, since the angle between the feature-vectors of any edge is at
least απ, a random halfspace passing through the origin – given by pos

(
rTx

)
for a random unit

vector r – has expected accuracy α for any weight assignment to the bags, and therefore there is
some halfspace achieving accuracy α.
Impossibility of Boosting in MIL (Theorem 5). Since the aggregation function is OR the Max-Cut
construction of [16] is not applicable. Instead we hand-craft the set of bags as follows. The set of
feature-vectors is all points on the unit circle S1 and for some α ∈ (1/2, 1), we create a bag with
two points if the angle between them is exactly απ and give an aggregate label 1 to all such two
sized bags (let us call them 1-bags). We also construct 2-sized bags with aggregate label 0 when
the angle between two points is exactly (1− α)π (called as 0-bags). If we consider any reweighted
collection of these bags then a simple threshold based case-analysis yields weak classifier of accuracy
2/3− (1− α)/2. To rule out any strong classifier, we consider a labeling where z-fraction of the
points in S1 are labeled as 1. We show that the maximum accuracy possible is 3/4 which is achieved
at z = 1/2. We choose α = 1 − ε while losing an additional error of ε/2 in the weak-classifier
accuracy due to discretization to obtain the desired bounds.
Weak to Strong LLP Learning (Theorem 2). The main idea is, given a target collection of bags
B, to construct all possible bags which are unions of up to t bags from B. Note that the aggregate
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label for the union is simply the sum of the aggregate labels of the constituent bags, and the error
of a classifier w.r.t. the aggregate label on the union of bags is the sum of errors on the constituent
bags. Let f be a classifier with accuracy γ > 0 on these larger bags, and assume for a contradiction
that f has accuracy less than (1 − ε) on B, for some ε > 0. Call those bags in B on which f has
a non-zero error ∈ Z \ {0} w.r.t. the aggregate label, as the error bags. Now, if t is large enough
then a random set of t bags from B has, with high probability ≈ εt error bags. Using a sampling
argument we show that the error on the union of t random bags from B is distributed like a random
Bernoulli combination of the errors on ≈ 2εt bags. We then apply the Littlewood-Offord-Erdős
anti-concentration lemma to obtain that with probability at least (1−O(1/(

√
εt)), the the union of

the bags has non-zero error induced by f . By choosing t large enough we obtain a contradiction with
the accuracy of α on the large bags. Standard sampling techniques can be applied to obtain a more
efficient procedure with high probability guarantees.

Appendix C. Preliminaries

Lemma 6 (Chernoff Bounds) Let X =
∑n

i=1Xi, where Xi = 1 with probability pi and Xi = 0
with probability 1 − pi, and all Xi are independent. Let µ = E(X) =

∑n
i=1 pi. Then (i) Lower

Tail: Pr[X ≤ (1 − η)µ] ≤ e−η
2µ/2 ∀ 0 < η < 1, and (ii) Upper Tail: Pr[X ≤ (1 + η)µ] ≤

e−η
2µ/(2+η) ∀ 0 ≤ η.

Lemma 7 (Littlewood-Offord-Erdős Lemma [15]) Let X1, X2, . . . , Xn be i.i.d {0, 1}-Bernoulli
random variables with Pr[1] = 1/2, and let a1, a2, ..., an ∈ R s.t. |ai| ≥ 1, ∀i ∈ [n]. Then, there
exists an absolute constant C > 0 such that

Pr
X1,...,Xn

∣∣∣∣∣∣
∑
i∈[n]

aiXi + θ

∣∣∣∣∣∣ ≤ 1

 ≤ C√
n

for any constant θ.

Theorem 8 ( Theorem 3.7 from [1]) For a {0, 1}-valued classH of functions with VC-dimension
VC-dim(H) = v, let ΠH(n) denote the maximum number of possible {0, 1}-labelings to any set of
n points from the domain ofH. If n ≤ v, ΠH(n) ≤ 2n and for n > v, ( env )v. Refer to Section 3.3 of
[1] for more details on VC Dimension.

C.1. Boosting meta algorithm for aggregate label setting

Given a collection of bags and aggregate labels, a prototypical boosting algorithm (given in Figure 1)
in the aggregate label setting, involves repeating certain steps over some number of rounds: in each
round the training data is reweighed, for which a weak classifier is computed. The final output is
some function over the ensemble of computed weak classifiers.

Appendix D. Previous Related Work

Multiple Instance Learning (MIL). The study by Dietterich et al. [13] introduced MIL for drug
activity detection, where the bag label is modeled as an OR of its (unknown) instance labels, all
labels are {0, 1}-valued. The goal, given such a dataset of bags, is to train a classifier for instance
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labels. Theoretically, Blum and Kalai [4] proved that noise tolerant PAC learnability implies MIL
PAC learnability for iid bags, and generalization bounds for the classification error on bags were
provided by Sabato and Tishby [41]. Methods including logistic regression, maximum likelihood
and boosting with differentiable approximations to the OR function [38, 39, 54] have been proposed.
Diverse-density (DD) method [29] and its EM-based variant, EM-DD [56] are specialised MIL
techniques. Over the years this approach has found many applications in numerous areas, including
drug discovery [29], analysis of videos [47], medical images [51], time series [28] and information
retrieval [27].
Learning from Label Proportions (LLP). A variety of specialized LLP methods have been intro-
duced till date: de Freitas and Kück [11] and Hernández-González et al. [21] developed MCMC
techniques, Musicant et al. [31] adapted traditional supervised learning techniques like k-NN and
SVM, while clustering based methods were proposed by Chen et al. [9] and Stolpe and Morik [48].
Further, Quadrianto et al. [36] and Patrini et al. [34] devised specialized learning algorithms using
bag-label mean estimates, and [52] developed an SVM approach with bag-level constraints. Newer
methods involve deep learning [14, 24, 26, 32] and others leverage characteristics of the distribution
of bags [6, 8, 44, 55]. The theoretical foundations of LLP were investigated by [53], who defined
the problem within the PAC framework and established bounds on the generalization error for the
label proportion regression task. Recent work by Saket [42], Saket [43] and Brahmbhatt et al. [5]
addressed bag-classification using linear classifiers, providing algorithmic and hardness bounds.
Applications of LLP include privacy in online advertising [33], high energy physics [12] and IVF
predictions [22].
Boosting. The first boosting algorithm was given by Schapire [45] which was followed by a more
efficient algorithm by Freund [17] and subsequently the famous AdaBoost algorithm [19]. Further
work [10, 18, 50] resulted in the development of several boosting techniques, while Mason et al. [30]
showed that several boosting algorithms (including AdaBoost [19] and LogitBoost [20]) implicitly
perform gradient descent in the functional space and fall into the AnyBoost framework.

If we consider bags themselves as examples, one can directly apply existing boosting frameworks
to obtain strong bag-level classifiers (see for e.g. [25]). However, our goal is to obtain feature-vector
level strong classifiers with high accuracy on bags. Previous works have adapted a subset of the
above mentioned boosting approaches to LLP [2, 35, 49] – however they are empirically evaluated
heuristics and not guaranteed to output strong classifiers.

Appendix E. Trivial Accuracy in the LLP and MIL

First consider the LLP bags B from Theorem 1, each bag is of size 2 with aggregate label 1 i.e., it is
satisfied if exactly one of its feature-vectors is labeled 1. Now consider just one bag from B. This
bag is not satisfied by the constant 0 or constant 1 classifier. On the other hand the expected accuracy
of random labeling is 1/2, and therefore TrvLLP(B) = 1/2.

Next, let B be the MIL bags from Theorem 5. These are bags of size 2 each and some of them
have aggregate label 0 and some have aggregate label 1. Consider just two bags one with aggregate
label 0 and the other with aggregate label 1. Now, the constant a labeling satisfies the bag with
aggregate label a and does not satisfy the bag with aggregate label (1 − a), for a ∈ {0, 1}. On
the other hand the random labeling satisfies the 0 aggregate label bag with probability 1/4 and the
bag with aggregate label 1 with probability 3/4. Thus, the expected number of bags satisfied is the
random labeling is 1. Therefore, TrvMIL(B) = 1/2.
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Appendix F. Proof of Theorem 5

Along similar lines as the proof of Theorem 1, we provide a geometric construction of MIL on
2-sized bags. We begin with a continuous set of points which we analyze and subsequently discretize
while preserving its key properties. We fix a parameter α ∈ (1/2, 1).
Construction. Let X c be set of all points on the unit circle S1. For any two points that subtend an
angle of exactly απ we create a 2-sized bag with aggregate label 1 (we call it a 1-bag) containing
those points. Similarly, bags with aggregate label 0 (which we call 0-bags) are formed by pairs of
points at an angle of (1− α)π. By mapping a 1-bag to the mid-point of the smaller arc subtended
by the two points in the bag (end-points), and noting that all the 1-bags have unique mid-points, we
obtain that the measure of the set of 1-bags is same as that of S1. Similarly, this holds true for the set
of 0-bags. In particular, the set of 0-bags and the set of 1-bags are of equal measure. Let Bc be this
infinite (continuous) collection of 1-bags and 0-bags.
Existence of Weak Classifier. Observe that the constant 0 classifier given by pos(−1) will satisfy
all 0-bags and none of the 1-bags.

Now, consider a random homogeneous halfspace given by pos(rTx) for r uniformly sampled
from S1. The two points of a 0-bag will not be separated w.p. α and with a further 1/2 both will
be assigned 0, implying that any 0-bag will be satisfied with probability α/2. On the other hand,
both the points of a 1-bag will be assigned 0 w.p. (1− α)/2 implying that it will be satisfied w.p.
(1 + α)/2.

Let there be any probability measure on Bc s.t. the measure of the 0-bags is p and that of the
1-bags is (1−p). If p ≥ 2/3 then the constant 0 classifier satisfies all the 0-bags yielding an accuracy
of p ≥ 2/3. If not, then the random homogeneous halfspace satisfies in expectation

pα/2 + (1− p)(1 + α)/2 = (1 + α)/2− p/2
≥ 1/2 + α/2− 1/3

= 2/3− (1− α)/2 (2)

Therefore, there is always a weak classifier, for any reweighing of the bags, of accuracy 2/3− (1−
α)/2.
No Strong Classifier. Consider any {0, 1}-labeling of S1. Let z ∈ [0, 1] represent the fraction of
points on Gc labeled as 1, with the remaining fraction 1− z labeled as 0. Sampling a 0-bag u.a.r. and
randomly choosing one of its points yields the uniform distribution over S1. Thus, the probability
that a random 0-bag is satisfied is ≤ 1− z. The two points of all the 1-bags cover S1 twice, so the
probability that in a random 1-bag at least one of its points is labeled 1 is at most min{2z, 1}.

Therefore, the probability that a random bag from Bc is satisfied by the labeling is at most

1− z + min{2z, 1}
2

=

{
1− z/2 if z ≥ 1/2

1/2 + z/2 otherwise
(3)

which attains a maximum of 3/4 at z = 1/2. Thus, no classifier can have accuracy > 3/4 on Bc
Discretization. Let T be a large positive integer, and divide S1 into 2T continuous, non-overlapping
arcs {Ai}2Ti=1 of length δπ each, where δ = 1/T . We choose T large enough so that 2δ < min{(2α−
1), (1− α)}, ensuring that:
(i) there is no segment that contains both endpoints of any bag in Bc, and
(ii) for any pair of segments Ai and Aj , if there is a 0-bag in Bc with one point in Ai and another
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in Aj , then there is no such 1-bag, and similarly if there is a 1-bag in Bc with one point in Ai and
another in Aj , then there is no such 0-bag.

Using property (ii) above, let us construct a discrete set of bags Bd as follows. If a pair of
segments Ai and Aj are such that there is a 0-bag in Bc with one point in Ai and another in Aj ,
then add {Ai, Aj} as 0-bag with weight as the measure of all the bags in Bc (which are necessarily
0-bags) with one point in Ai and another in Aj . Analogously, add pairs of segments as 1-bags. Note
that from property (i), all bags in Bd have size 2.

Let us first consider any {0, 1}-labeling to {Ai}2Ti=1. This directly corresponds to a {0, 1}-labeling
to S1 by assigning a point the label of the segment containing it. Further, from its construction, the
weight of the bags Bc satisfied by the labeling to the segments equals the measure of the bags in Bc
satisfied by the corresponding labeling to S1 which, as shown above, is at most 3/4.

In particular, the above argument also shows that the measure of bags in Bd satisfied by the
constant 0 labeling to {Ai}2Ti=1 is the same as that in Bc satisfied by the constant 0 labeling to S1.

Lastly, we translate the labeling by a homogeneous halfspace on S1 to a labeling for {Ai}2Ti=1

by assigning each Ai the label of its mid-point. Consider the error set of points in S1 whose label
given by the homogeneous halfspace differs from the label of the segment containing it. For any
homogeneous halfspace, the error set is entirely contained within the two diametrically opposite
segments intersected by the halfspace. Similarly, the error bags in Bc are those whose aggregate
label given by the homogeneous halfspace differs from the aggregate label of the corresponding bag
in Bd.

The error bags in Bc are a subset of those which have at least one end-point in the the error set of
points. Given any bag in Bc the probability over a random homogeneous halfspace that it is an error
bag is at most the probability that one of its endpoints is in a segment intersected by the halfspace.
By symmetry, a segment is intersected with probability 1/T . So the probability that any bag in Bc is
an error bag is at most 2/T = 2δ.

Thus, from (2) we obtain that for any weighing of the bags in Bd, there is a classifier of accuracy
2/3− (1− α)/2− 2δ.

F.0.1. COMPLETING THE PROOF OF THEOREM 5.

For this, we can take ε to be small enough, say ε ∈ (0, 0.1) and set α = 1− ε along with T = d4/εe
so that δ ≤ ε/4 and 2δ < min{(2α− 1), (1− α)} and 2/3− (1− α)/2− 2δ ≥ 2/3− ε.

Appendix G. Weighted bags to unweighted bags

The algorithm to convert a weighted collection of bags to an unweighted collection is given in Fig.
4. First, observe that |B| =

∑m
i=1dwi(T − 1)e ≤

∑m
i=1(wi(T − 1) + 1) ≤ (T − 1)m+m = Tm,

where we use
∑m

i=1wi = m. On the other hand, |B| =
∑m

i=1dwi(T − 1)e ≥ (T − 1)m.
Now, to see that the error in accuracy is at most O(1/T ), observe that for any subset I ⊆ [m],∑
i∈I wi(T − 1) ≤

∑
i∈Idwi(T − 1)e ≤

∑
i∈I wi(T − 1) + |I|. Therefore, the normalized error in

the weight corresponding to I is at most |I|/((T − 1)m) ≤ m/((T − 1)m) ≤ 1/(T − 1) = O(1/T )
for T > 1.
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Input: : Bags Bw = (Bi, wi)
m
i=1, T .

Steps:
1. Normalize the weight with a factor Z such that

∑m
i=1 wi = m.

2. Define B to be the unweighted collection of bags and initialize it to ∅.
3. for i ∈ [m]:

3.1 Define ni = dwi(T − 1)e.
3.2 Add ni copies of Bi to B.

Output: Output B.

Figure 4: Weighted to unweighted collection of bags

Appendix H. Probabilities for the support of D

In Step 2 of Figure 2, the for a fixed configuration {Qi}ti=1 with r : |{i ∈ [t] | Qi = ?}|, its
probability under D is mr

mt
1
2r , since the number of choices for the ?-coordinates is mr, while the

total number of choices is mt. Further, with (1/2)t probability we have the specific choices of the r
coordinates with ? in Step 2. Iterating over all possible configurations {Qi}ti=1 and assigning theur
probabilities to the resultant (B, σ) in Step 3, yields the support of D along with their probabilities.

Appendix I. Proofs from Section 3

Proof (of Lemma 3). Since each (Bi, σi) independently belongs to S w.p. κ, Pr[(Bi, σi) ∈ S] ≥ κ
and therefore µ := E [|{i | (Bi, σi) ∈ S)}|] ≥ κt. Thus,
Pr [|{i | (Bi, σi) ∈ S)}| < κt/2] ≤ Pr [|{i | (Bi, σi) ∈ S)}| < µ/2] ≤ exp(−µ/8) ≤ exp(−κt/8),
where we use the Chernoff Tail Bound (Lemma 6) using η = 1/2 and the lower bound of κt for µ.

Proof (of Lemma 4). Let Berr be the error bags (B, σ) ∈ B on which
∑

x∈B h(x) 6= σ, so
that |Berr| ≥ ζ|B|. For convenience, we shall abuse the notation h(B) to denote

∑
x∈B h(x), and

therefore, for an error bag B, |h(B)− σ| ≥ 1. Depending on the choices in Step 1. of Fig. 2, define
the set I := {i | (Bi, σi) ∈ Berr)} and let E0 be the event that the following occurs: {|I| ≥ ζt/2}.
Further, let E1 be the event that the following occurs:

h(B) = σ̄ ⇔
∑

{i |,Qi=(Bi,σi)6=?}

(h(Bi)− σi) = 0 (4)

where (B, σ) is the output in Step 3. Now,

Pr[E1] = Pr[E1|E0] Pr[E0] + Pr[E1|¬E0] Pr[¬E0]

≤ Pr[E1|E0] + Pr[¬E0]

Since |Berr| ≥ ζ|B|, Lemma 3 yields that Pr[¬E0] ≤ exp(−ζt/8). On the other hand, fix the
set I and bags {(Bi, σi)}i∈I and let ai := h(Bi) − σi (i = 1, . . . t). Defining {Xi | i ∈ I} to
be i.i.d {0, 1}-valued Bernoulli random variables which are 1 w.p. 1/2, we obtain that Pr[E1] =
Pr[
∑

i∈I aiXi = 0] ≤ C/
√
|I| by applying Lemma 7. Therefore, Pr[E1|E0] ≤ C/

√
(ζ/2)t and

using the above bounds, Pr[E1] ≤ C/
√

(ζ/2)t+ exp(−ζt/8).
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Appendix J. Randomized algorithm A2

Input: : Bags B, k = max(B,σ)∈B |B|, α > 0, t, oracle Okt,α, s ∈ Z≥0.
Steps:

1. Let B̂ = {(B̂j , σ̂j)}sj=1 be s i.i.d. samples from D (Fig. 2).

2. Output the classifier h̃ given by Okt,α(B̂).

Figure 5: Algorithm A2.

Figure 5 provides the algorithm A2. Fix any h that has accuracy < (1 − ε) on B. Then, by
Lemma 4, and our setting of t we obtain that Pr(B̂,σ̂)←D[(B̂, σ̂) satisfied by h] ≤ α/2. Therefore,
in Step 1 of A2 it is easy to see by monotonicity that

Pr
[∣∣∣{j ∈ [s] | (B̂j , σ̂j) satisfied by h}

∣∣∣ ≥ αs]
≤ P [

∑s
`=1X` ≥ αs] (5)

where each X` (` = 1, . . . , s) is an independent {0, 1}-valued Bernoulli random variable taking
value 1 with probability α/2. Therefore, using Chernoff Upper Tail bound from Lemma 6 we can
upper bound the LHS of (5) by exp(−αs/6) which is the upper bound on the probability that h has
accuracy ≥ α on B̂.

Let C be the classifier class to which the output of Okt,α is guaranteed to belong. With n being
the total number of distinct feature-vectors in the bags B, ΠC(n) (as given in Theorem 8) is the
number of possible {0, 1}-assignments to n points induced by classifiers in C. Taking a union-bound
over all of them, we obtain that with probability at most ΠC(n)exp(−αs/6) the output of A2 has
accuracy at least (1− ε) on B.

When C is unrestricted then ΠC(n) ≤ 2n and therefore ΠC(n)exp(−αs/6) ≤ δ is ensured by
taking s = O ((n+ log(1/δ))/α). On the other hand if the VC dimension of C is at most r, then
ΠC(n) ≤ (en/r)r (from Theorem 8) , and therefore taking s = O

(
r
α log

(
n
r

)
+ log

(
1
δ

))
suffices.

Appendix K. Experiments

In our experiments, we generate a collection of small q-sized bags as training data using fully
supervised datasets. We use a fixed value of q ∈ {5, 15}.
Synthetic Datasets. In this case we experiment in the realizable setting for which we select a random
linear classifier f∗ passing though the origin to provide {0, 1}-labels to the feature-vectors. For a
given bag-size q ∈ {5, 15}, we generate two types of bag collections as follows:
1. Random: In this case each q-sized bag is created by randomly sampling points uniformly from

the unit sphere as its constituent feature vectors.
2. Hard Bags: For these bags we first randomly construct pairs of points on the unit-sphere which

are either (i) very close but have different labels under f∗, or (ii) nearly antipodal but have the
same label. Each bag consists of several such randomly constructed pairs and one random point
(since q is odd).
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In both the above cases, the aggregate label of a bag is the sum of the labels of its feature-vectors
given by f∗.We also have a test-set of labeled feature-vectors whose distribution is given by sampling
each u.a.r. from a random training bag.
Real Datasets. We use the following supervised UCI datasets: Heart (303 instances, Janosi and
Detrano [23]), Australian (690 instances, Quinlan [37]) and Adult (48842 instances, Becker and
Kohavi [3]) which have previously been used in [34] to evaluate LLP methods. The feature-vector
labels are available and the bags are created by partitioning the training-set into -sized bags. The
test-set is given by a random subset of 15% of the dataset.
Applying Algorithm A2. For each collection of training bags, and an appropriate choice of t and s
(see Figure 5) we create a collection of s large bags by sampling each iid from the distribution D
given in Figure 2.
Model Training. We train a linear model g(x) with a sigmoid activation function on the large
bags using bag-level mse loss between the aggregate label of a bag and its aggregate prediction. In
particular, for a large bag B and aggregate label σ the contribution to the loss is

(
σ −

∑
x∈B g(x)

)2.
and the total loss is the sum over the large bags in collection. The optimization is done using a
mini-batch training with 512 bags in each mini-batch. The learning rate is 1e-2 with SGD optimizer
for all experiments, and the model is trained till it reaches convergence on the instance-level test set.
Results. Tables 1 and 2 have the experimental results for the synthetic, Heart, Australian and Adult
datasets respectively. For each setting of q, t and s, we report the mean accuracy and standard
deviation on the training set for both large bags and their constituent small bags, along with the
accuracy on test instances, averaged over 15 runs. The main takeaways from the experimental results
are:
1. In all experiments, even with low accuracy on large bags we obtain classifiers with high accuracy

on the constituent small bags and even higher accuracy on the instance-level test set. For example,
on synthetic random bags with q = 5, t = 50 and s = 5000, an accuracy of just 21.3% on large
bags yields an accuracy of 85.5% on small bags and 96.4% on the test set. On the Adult dataset,
with q = 15, t = 50 and s = 80000, with accuracy of just 0.044% on large bags, we obtain a
classifier with accuracy of 21.5% on small bags and 82.2% on the test set.

2. For a given q and t, increasing the number of large bags s improves performance across the board,
consistent with our theoretical bounds.

3. The bag-level performance scores are noticeably lower on the hard bags case as compared to the
random bags case, even though both are from the realizable setting.

4. Accuracy scores on large bags decrease with increasing q or t. This is understandable since this
results in increased size of larger bags, making them more difficult to satisfy.

The above observations, especially points 1 and 2, demonstrate that Algorithm A2 does indeed
provide a way to use weak classifiers on large bags to obtain strong classifiers on small bags, which
in turn are strong classifiers at the instance-level. The scalability of our techniques is also validated
by the experiments on the substantially sized Adult dataset.

Implementational Details. For each dataset, the small bags were fixed, and large bags were
sampled for each repeated run of the experiment. For the synthetic, Heart, and Australian datasets,
the model was trained for 160 epochs, while for the Adult dataset, it was trained for 60 epochs. Each
experiment was run on a single NVIDIA A100 40GB GPU and 2x Intel Broadwell 22 cores 44
threads CPU. Each of these experiments took less than 12 hrs, and most completed within an hour.
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Table 1: Results on the Synthetic Datasets.

q t s
Random Bags Hard Bags

Large Small Test Instance Large Small Test Instance

5
10

5000 52.891± 5.196 85.357± 3.085 96.067± 1.218 32.629± 3.439 68.374± 4.428 91.120± 1.978
15000 72.295± 5.275 93.089± 2.057 97.840± 0.829 47.276± 5.241 81.802± 3.789 95.160± 1.365

50
5000 21.330± 3.110 85.513± 3.434 96.453± 0.780 12.789± 2.192 68.463± 5.828 91.427± 1.785

15000 32.890± 5.032 93.076± 1.466 97.867± 0.626 18.311± 2.544 82.562± 3.637 95.560± 1.299

15
10

5000 21.792± 3.189 50.133± 7.520 93.037± 1.674 14.731± 2.337 31.600± 5.138 86.855± 2.638
15000 32.259± 3.444 68.733± 4.334 96.566± 0.890 17.115± 1.501 40.067± 5.189 89.939± 1.921

50
5000 8.674± 1.537 52.400± 7.079 93.778± 2.060 5.252± 1.715 34.000± 5.438 85.657± 3.132

15000 11.106± 3.042 67.467± 4.389 96.067± 1.412 6.409± 1.457 40.800± 6.753 91.677± 2.336

Table 2: Results on the Real Datasets.

q t s Large Bags Small Bags Test Instance

Heart

5
10

2500 24.207± 4.418 55.407± 8.419 79.911± 4.349
10000 31.337± 5.363 65.333± 8.516 77.956± 3.767

50
2500 5.356± 2.715 47.407± 8.172 78.400± 3.676

10000 9.128± 3.192 59.556± 8.021 77.689± 5.622

15
10

2500 12.950± 7.030 35.111± 15.006 71.378± 7.870
10000 20.539± 8.041 49.778± 16.498 69.156± 7.089

50
2500 0.803± 1.521 26.222± 16.226 73.867± 5.829

10000 1.946± 2.143 30.667± 10.328 72.178± 6.852

Australian

5
10

3500 24.956± 3.709 55.962± 5.783 84.275± 2.626
10000 29.774± 2.600 62.692± 4.319 84.039± 1.999

50
3500 5.454± 4.127 53.846± 9.449 82.039± 3.015

10000 9.303± 2.806 58.141± 6.510 82.431± 2.837

15
10

3500 10.396± 4.906 28.190± 8.072 75.313± 6.233
10000 15.746± 4.950 37.524± 10.792 78.222± 5.824

50
3500 0.257± 0.596 24.190± 7.233 74.707± 5.073

10000 1.342± 1.910 30.095± 8.215 77.657± 4.000

Adult

5
10

10000 11.169± 1.156 41.418± 2.684 80.234± 2.526
80000 17.055± 0.591 47.873± 0.716 83.802± 0.243

50
10000 0.168± 0.148 34.396± 2.668 75.651± 3.222
80000 2.161± 0.306 46.835± 1.060 83.111± 0.831

15
10

10000 1.515± 0.853 13.000± 1.970 76.005± 3.249
80000 5.801± 0.760 22.878± 1.316 83.461± 0.822

50
10000 0.001± 0.003 8.797± 5.715 75.077± 2.638
80000 0.044± 0.036 21.498± 0.667 82.185± 0.908
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