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Abstract
We provide the first proof of convergence for normalized error feedback algorithms across a wide
range of machine learning problems. Despite their popularity and efficiency in training deep neu-
ral networks, traditional analyses of error feedback algorithms rely on the smoothness assumption
that does not capture the properties of objective functions in these problems. Rather, these prob-
lems have recently been shown to satisfy generalized smoothness assumptions, and the theoretical
understanding of error feedback algorithms under these assumptions remains largely unexplored.
Moreover, to the best of our knowledge, all existing analyses under generalized smoothness either
i) focus on centralized settings or ii) make unrealistically strong assumptions for distributed set-
tings, such as requiring data heterogeneity, and almost surely bounded stochastic gradient noise
variance. In this paper, we propose distributed error feedback algorithms that utilize normalization
to achieve the O(1/

√
K) convergence rate for nonconvex problems under generalized smoothness.

Our analyses apply for distributed settings without data heterogeneity conditions, and enable step-
size tuning that is independent of problem parameters. Finally, we show that normalized EF21, due
to its larger allowable stepsizes, outperforms EF21 on various tasks, including the minimization of
polynomial functions, logistic regression, and ResNet-20 training.

1. Introduction

Modern machine learning models achieve impressive prediction and classification power by em-
ploying sophisticated architectures, comprising vast numbers of parameters, and requiring training
on massive datasets. Distributed training has emerged as an important approach, where multiple
machines collaborate to train a model efficiently within a reasonable time. Many centralized algo-
rithms can be easily adapted for distributed training applications. For example, classical gradient
descent can be modified into distributed gradient descent within a data parallelism framework, and
into federated averaging algorithms [29] in a federated learning framework. However, the commu-
nication overhead of running these distributed algorithms poses a significant barrier to scaling up
to large models. For example, training the VGG-16 model [37] using distributed stochastic gra-
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dient descent involves communicating 138.34 million parameters, thus consuming over 500MB of
storage, and posing an unmanageable burden on the communication network between machines.

One approach to mitigate the communication bottleneck is to apply compression. In this ap-
proach, the gradients are compressed using sparsifiers or quantizers to be transmitted with much
smaller sizes between machines. However, while this reduces communication overhead, too coarse
compression often brings substantial challenges in maintaining high training performance due to
information loss, and in extreme cases, it may potentially lead to divergence. Therefore, error feed-
back mechanisms have been developed to improve the convergence performance of compression
algorithms while ensuring high communication efficiency. Examples of error feedback mechanisms
include EF14 [1, 14, 36, 38, 44], EF21 [11, 33], EF21-SGDM [12], EF21-P [16], and EControl [13].
To the best of our knowledge, these prior works developing and analyzing error feedback algorithms
often assume that the objective function is smooth, i.e. its gradient is Lipschitz continuous.

However, training deep neural network often involves non-smooth problems. For instance, the
gradients of the loss computed for deep neural networks, such as LSTM [46], ResNet20 [46], and
transformer models [8], do not exhibit Lipschitz continuity. These empirical observations highlight
the need for a new smoothness assumption. One such assumption is (L0, L1)-smoothness, initially
introduced by Zhang et al. [46], for twice differentiable functions, and subsequently extended to
differentiable functions by Chen et al. [7].

To solve (L0, L1)-smooth problems, clipping and normalization have been widely utilized in
first-order algorithms. Gradient descent with gradient clipping was initially shown by Zhang et al.
[46] to achieve lower iteration complexity (i.e., fewer iterations needed to reach a target solution
accuracy) than classical gradient descent. Subsequent works have further refined the convergence
theory of clipped gradient descent [21], and improved its convergence performance by employing
momentum updates [45], variance reduction techniques [32], and adaptive step sizes [25, 39, 43].
Similar convergence results have been obtained for gradient descent using normalization [47] and
its momentum variants [18], including generalized SignSGD [8]. However, these first-order algo-
rithms have mostly been explored in centralized training. To the best of our knowledge, distributed
algorithms under (L0, L1)-smoothness have been investigated in only a few studies, e.g., by Craw-
shaw et al. [9], Liu et al. [27], which impose restrictive assumptions, such as data heterogeneity,
almost sure variance bounds, and symmetric noise distributions around their means. Moreover,
these stated first-order algorithms under (L0, L1)-smoothness do not account for communication
compression to enhance communication efficiency. Therefore, we are motivated to build distributed
communication-efficient algorithms for solving nonconvex generalized smooth problems.

Contributions. In this paper, we develop distributed communication-efficient algorithms for non-
convex problems under generalized smoothness. We address the challenge of the generalized
smoothness parameter scaling with the gradient norm by introducing gradient normalization to
EF21 [33]. Our theoretical analysis of normalized EF21 is based on standard assumptions regarding
functions and compressors, and is applicable in distributed settings with any degree of data hetero-
geneity. Under these conditions, normalized EF21 achieves an O(1/

√
K) convergence rate in the

expected gradient norm, matching the performance of EF21 under traditional smoothness. Numer-
ical experiments on the minimization of polynomial functions, logistic regression, and ResNet20
training demonstrate the superior performance of normalized EF21 compared to the original EF21.
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2. Preliminaries

In this paper, we focus on the following distributed optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where n refers to the number of clients, and fi(x) is the loss of a model parameterized by vector
x ∈ Rd over its local data owned by client i ∈ [n].

Next, we impose standard assumptions on objective functions and compression operators.

Assumption 1 (Lower Bound of f ) A function f : Rd → R is bounded from below, i.e., f inf =
infx∈Rd f(x) > −∞.

Assumption 2 (Lower Bound of fi) A function fi : Rd → R is bounded from below, i.e., f inf
i =

infx∈Rd fi(x) > −∞.

Assumption 3 (Symmetric Generalized Smoothness of fi) A function fi : Rd → R is symmetric
generalized smooth if there exists L0, L1 > 0 such that for uθ = θx+ (1− θ)y, and for x, y ∈ Rd,

∥∇fi(x)−∇fi(y)∥ ≤

(
L0 + L1 sup

θ∈[0,1]
∥∇fi(uθ)∥

)
∥x− y∥ . (2)

Assumption 4 (Contractive Compressor) An operator Ck : Rd → Rd is an α-contractive compres-
sor if there exists α ∈ (0, 1] such that for k ≥ 0 and v ∈ Rd,

E

[∥∥∥Ck(v)− v
∥∥∥2] ≤ (1− α) ∥v∥2 . (3)

Assumptions 1 and 2 are standard for analyzing optimization algorithms that solve uncon-
strained optimization problems. Assumption 3 refers to symmetric generalized smoothness de-
fined by Chen et al. [7], which covers asymmetric generalized smoothness [7, 21], and the original
(L0, L1)-smoothness by [46]. Moreover, Assumption 3 with L1 = 0 reduces to the traditional L0-
smoothness, under which the convergence of optimization algorithms has been extensively studied
[4, 30]. Furthermore, compressors defined by Assumption 4 cover top-k sparsifiers [1, 38], low-rank
approximation [34, 42], and various other compressors described in [5, 35].

Notations. We use [n] to denote a set {1, 2, . . . , n}, and E [u] to denote the expectation of a
random variable u. Also, ∥·∥ refers to the Euclidean norm of a vector or spectral norm of a matrix,
and ⟨x, y⟩ is the inner product between x, y ∈ Rd.

3. Normalized EF21

We propose a distributed error feedback algorithm to minimize nonconvex generalized smooth func-
tions. To address the issue of the generalized smoothness parameter scaling with the gradient norm,
we introduce gradient normalization to EF21 [33], a well-known error feedback variant that achieves
an O(1/K) convergence rate in the squared gradient norm for nonconvex, L-smooth problems. In
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Algorithm 1 Normalized EF21

1: Input: Stepsize γk > 0, initial vectors x0, v−1
i ∈ Rd for i = 1, 2, . . . , n, and α-contractive

compressor Ck : Rd → Rd

2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . , n in parallel do
4: Compute local gradient ∇fi(x

k)
5: Transmit ∆k

i = Ck(∇fi(x
k)− vk−1

i )
6: Update vki = vk−1

i +∆k
i

7: end for
8: Central server computes vk = (1/n)

∑n
i=1 v

k
i via vki = vk−1

i +∆k
i .

9: Central server updates xk+1 = xk − γk
vk

∥vk∥ .

10: end for
11: Output: Final iterates xK+1

particular, normalized EF21 (Algorithm 1), unlike the standard EF21, updates the next iterate xk+1

using a normalized gradient descent iteration.
The next result shows that normalized EF21, like EF21 [33] under L-smoothness, achieves the

O(1/
√
K) convergence in the gradient norm under generalized smoothness.

Theorem 1 Consider Problem (1), where Assumption 1 (lower bound of f ), Assumption 2 (lower
bound of fi), Assumption 3 (Asymmetric generalized smoothness of fi), and Assumption 4 (Con-
tractive compressor) hold. Then, the iterates {xk} generated by normalized EF21 (Algorithm 1)
with

γk =
γ0√
K + 1

for K ≥ 0 and γ0 > 0 satisfy

min
k=0,1,...,K

E
[∥∥∥∇f(xk)

∥∥∥] ≤ 1√
K + 1

[
V 0 exp(8c1L1 exp(L1γ0)γ

2
0)

γ0
+ γ0b

]
,

where V k := f(xk)−f inf + 2γk
1−

√
1−α

1
n

∑n
i=1

∥∥∇fi(x
k)− vki

∥∥, b = 2c0+
8L1c1

n

∑n
i=1(f

inf −f inf
i ),

and ci =
(
1
2 + 2

√
1−α

1−
√
1−α

)
Li for i = 0, 1.

Theorem 1 establishes the O(1/
√
K) convergence in the expectation of gradient norms for

Normalized EF21 on nonconvex deterministic problems under generalized smoothness. This rate is
the same as Theorem 1 of Richtárik et al. [33] for EF21 under traditional smoothness, and does not
depend on data heterogeneity conditions in contrast to Crawshaw et al. [9], Liu et al. [27]. Also,
our stepsize depends on any positive constant γ0, and total iteration count K, without needing to
know smoothness constants L0, L1 in contrast to Richtárik et al. [33]. Additionally, if we choose
γ0 = 1/(8cL1), then our convergence bound from Theorem 1 becomes

min
k=0,1,...,K

E
[∥∥∥∇f(xk)

∥∥∥] ≤ 32cL1V
0 + L0/L1 + 2L1δ

inf

√
K + 1

,

where c = 1
2 + 2

√
1−α

1−
√
1−α

, and δinf = 1
n

∑n
i=1(f

inf − f inf
i ).
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Comparisons between normalized EF21 and EF21 under traditional smoothness. For non-
convex, traditional smooth problems, normalized EF21 from Theorem 1 with L1 = 0 achieves the
same O(1/

√
K) rate in the expectation of gradient norms as EF21 analyzed by Richtárik et al. [33],

but with a larger convergence factor. We prove this by assuming ∇fi(x
0) = g0i for all i. That is,

Theorem 1 with L0 = L, L1 = 0, γ0 =
√

(f(x0)− f inf)/(2b), and b = L
2 +2

√
1−αL

1−
√
1−α

implies that
normalized EF21 achieves

min
k=0,1,...,K

E
[∥∥∥∇f(xk)

∥∥∥] ≤ 1√
K + 1

[
f(x0)− f inf

γ0
+ 2bγ0

]

≤ 2

√
L
(1 + 3

√
1− α)(1 +

√
1− α)

α

√
f(x0)− f inf

K + 1

α≥0
≤ 4

√
2

√
L

α

√
f(x0)− f inf

K + 1
.

On the other hand, EF21 attains from Theorem 1 of [33] with Li = L̃ = L (i.e., fi(x) has the same
smoothness constant as f(x)), and x̂K being chosen from the iterates x0, x1, . . . , xK uniformly at
random

min
k=0,1,...,K

E
[∥∥∥∇f(xk)

∥∥∥] ≤ E
[∥∥∇f(x̂K)

∥∥]
≤

√
E
[
∥∇f(x̂K)∥2

]
≤

√
2L(1 +

√
β/θ)

f(x0)− f inf

K + 1
√

β/θ≤2/α−1

≤ 2

√
L

α

√
f(x0)− f inf

K + 1
.

In conclusion, the convergence bound of normalized EF21 is slower by a factor of 2
√
2 than the

original EF21 for nonconvex, L-smooth problems.

4. Experimental Results

Finally, we demonstrate the stronger convergence performance of normalized EF21 (EF21-norm)
than EF21 [33] for solving nonconvex problems under asymmetric generalized smoothness. We
present the results for solving logistic regression with a nonconvex regularizer over synthetic and
benchmark data from LIBSVM [6]. Additional results for minimizing polynomial functions, and
for training ResNet-20 over CIFAR10 can be found in Appendix F.

4.1. Logistic Regression with a Nonconvex Regularizer

We consider a logistic regression problem with a nonconvex regularizer, i.e. Problem (1) with

fi(x) = log(1 + exp(−bia
T
i x)) +

λ

n

d∑
j=1

x2j
1 + x2j

,
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where ai ∈ Rd is the ith feature vector of data matrix A ∈ Rn×d with its class label bi ∈ {−1, 1},
and λ > 0 is a regularization parameter. Here, f(x) is nonconvex, and L-smooth with L =
∥A∥2 /(4n) + 2λ. Also, each fi(x) is Li-smooth with Li = ∥ai∥2 /4 + 2λ, and asymmetric gen-
eralized smooth with L0 = 2λ + λ

√
dmaxi ∥ai∥ and L1 = maxi ∥ai∥. Detailed derivations of

smoothness parameters can be found in Appendix E.
In these experiments, we initialized x0 ∈ Rd, where each coordinate was drawn from a standard

normal distribution N (0, 1), set λ = 0.1, and used a top-k compressor (with α = k/d). Here,
λ > λmin

(
A⊤A

)
/(2n) to ensure that f(x) is nonconvex. We ran normalized EF21 and EF21

over the following datasets: (1) two from LIBSVM [6]: Breast Cancer (n = 683, d = 10,
and scaled to [−1, 1]), and a1a (n = 1605, d = 123); and (2) a synthetically generated dataset
(n = 20, d = 10), where the data matrix A ∈ Rn×d had entries sampled from N (0, 1), and the
class label bi was set to either −1 or 1 with equal probability. For normalized EF21, we chose
γk = γ0/

√
K + 1 with γ0 > 0 from Theorem 1, by setting γ0 = 1, K = 100 for the generated

data and Breast Cancer, and K = 400 for a1a. For EF21, we selected γk = 1/

(
L+ L̃

√
β
θ

)
with L̃ =

(∑n
i=1 L̃

2
i /n
)1/2

, θ = 1 −
√
1− α, and β = (1− α)/(1−

√
1− α), as given by [33,

Theorem 1].
Figure 1 shows that normalized EF21 outperforms the traditional EF21 on all evaluated datasets,

achieving faster convergence and higher solution accuracy. This improvement results from the fact
that the theoretical stepsize for normalized EF21, as derived in Theorem 1, is larger than the stepsize
for the traditional EF21 outlined by [33, Theorem 1].
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Figure 1: Logistic regression with a nonconvex regularizer using normalized EF21 (EF21-norm)
and EF21. We reported

∥∥∇f(xk)
∥∥2 with respect to iteration count k. We used the constant stepsize

γ = 1

L+L̃
√

β
θ

for EF21, and γ = γ0√
K+1

, γ0 = 1 for normalized EF21. Here, K = 100 for our

generated data (left), and Breast Cancer (middle), while K = 400 for a1a (right).
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Appendix A. Related Works

In this section, we review prior literature on error feedback, non-smoothness conditions, and clip-
ping and normalization operators.

Error feedback. Error feedback mechanisms have been integrated into various optimization al-
gorithms using compression, leading to significant improvements in solution accuracy. The first of
these mechanisms, EF14, was introduced by Seide et al. [36], and later analyzed for first-order al-
gorithms in both centralized [20, 38] and distributed settings [1, 2, 14, 26, 31, 40, 41, 44]. Richtárik
et al. [33] proposed EF21, which offers strong convergence guarantees for distributed gradient al-
gorithms with any contractive compressors, without requiring bounded gradient norm or bounded
data heterogeneity assumptions. EF21 can also be adapted for distributed stochastic optimization
through sufficiently large mini-batches [11] or momentum updates [12]. More recently, Gao et al.
[13] have developed EControl that achieves superior complexity results for distributed stochastic
optimization compared to prior approaches [12]. To the best of our knowledge, existing research
on error feedback has focused solely on optimization problems assuming traditional L-smoothness.
In this paper, we introduce a normalized variant of the EF21 methods [33] for solving nonconvex,
asymmetric generalized smooth optimization problems. We demonstrate that the normalized EF21
method permits larger step sizes, thus leading to faster convergence rates than the original EF21.
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Non-smoothness assumptions. Empirical findings suggest that the traditional smooth assump-
tion used for analyzing optimization algorithms does not capture the properties of objective func-
tions in many machine learning problems, such as distributionally robust optimization and deep
neural network training. This motivates researchers to consider different assumptions to reaplce this
traditional smoothness condition. First introduced by Zhang et al. [46], the (L0, L1)-smoothness
condition on a twice differentiable function f(x) is defined by

∥∥∇2f(x)
∥∥ ≤ L0 + L1 ∥∇f(x)∥

for x ∈ Rd. This (L0, L1)-smoothness has been extended to differentiable functions. For instance,
asymmetric generalized smoothness [19], the smoothness with a differentiable function ℓ(x) [24],
and symmetric generalized smoothness [7] covers the (L0, L1)-smoothness when the Hessian exists,
and includes many important machine learning problems, such as phase retrieval problems [7], and
distributionally robust optimization [23]. Other classes of non-smoothness assumptions, which are
not related to the (L0, L1)-smoothness but capture other optimization problems, include Hölder’s
Lipschitz continuity of the gradient [10], the relative smoothness [3], and the polynomial growth
of the gradient norm [28]. In this paper, we assume the asymmetric generalized smoothness to
establish the convergence of normalized EF21.

Gradient clipping and normalization. Clipping and normalization are commonly employed in
gradient-based methods for solving generalized smooth problems. Clipped (stochastic) gradient de-
scent has been studied in both nonconvex and convex settings under (L0, L1)-smoothness conditions
by Koloskova et al. [21], Zhang et al. [46]. Extensions to clipped gradient algorithms have been pro-
posed, including momentum updates [45], variance reduction methods [32], and adaptive step sizes
[25, 39, 43]. Comparable complexities have been achieved for normalized gradient descent [47]
and its momentum-based variants [18], such as generalized SignSGD [8]. Convergence properties
of gradient-based algorithms have also been explored under more generalized forms of non-uniform
smoothness, extending beyond (L0, L1)-smoothness to cover a wider range of optimization prob-
lems. For example, variants of (stochastic) gradient descent have been analyzed under α-symmetric
generalized smoothness by Chen et al. [7] and under ℓ-smoothness involving certain differentiable
functions ℓ(·) by Li et al. [24, 25]. However, the majority of these analyses focus on centralized
settings. To the best of our knowledge, only a limited number of works, such as those by Crawshaw
et al. [9], Liu et al. [27], have examined federated averaging algorithms for nonconvex problems un-
der (L0, L1)-smoothness. These studies, however, often rely on restrictive assumptions, including
data heterogeneity, almost sure variance bounds, and symmetric noise distributions centered around
their means. In this paper, we develop distributed error feedback algorithms, which eliminate the
need for the restrictive assumptions mentioned above, and rely on standard assumptions on objective
functions and compressors.

Appendix B. Novel Proof Techniques for Normalized EF21

Our analysis demonstrates that normalized EF21 achieves a convergence rate under generalized
smoothness equivalent to EF21 under traditional smoothness. However, our proof techniques differ
from the previous work.

Lyapunov Function Innovation. We rely on a different Lyapunov function. For EF21, we use
the Lyapunov function V k := f(xk)− f inf + A

n

∑n
i=1 ∥∇fi(x

k)− vki ∥, unlike Richtárik et al. [33],
which uses V k := f(xk)− f inf + B

n

∑n
i=1 ∥∇fi(x

k)− vki ∥2.

12



COMMUNICATION-EFFICIENT ALGORITHMS UNDER GENERALIZED SMOOTHNESS ASSUMPTIONS

Convergence Rate Derivation. This novel Lyapunov function necessitates the development of
new techniques to derive the convergence rate that matches those presented in the prior work. We
employ Lemma 2 to handle generalized smoothness. To obtain the convergence rate for EF21, we
use Lemma 4, which aligns with the rate achieved by Richtárik et al. [33].

Appendix C. Lemmas

In this section, we introduce useful lemmas for our analysis. Lemmas 2 and 3 introduce inequalities
by generalized smoothness, while Lemmas 4 and 5 present the descent inequality and convergence
rate, respectively, when the normalized gradient descent update is applied.

Lemma 2 Let each fi(x) be generalized smooth with parameters L0, L1 > 0, and lower bounded
by f inf

i , and let f(x) = 1
n

∑n
i=1 fi(x). Then, for any x, y ∈ Rd

∥∇fi(x)−∇fi(y)∥ ≤ (L0 + L1 ∥∇fi(y)∥) exp (L1 ∥x− y∥) ∥x− y∥ , (4)

fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩+ L0 + L1 ∥∇fi(x)∥
2

exp (L1 ∥x− y∥) ∥y − x∥2 , (5)

∥∇fi(x)∥2

4(L0 + L1 ∥∇fi(x)∥)
≤ fi(x)− f inf

i , and (6)

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
L0 +

L1
n

∑n
i=1 ∥∇fi(x)∥
2

exp (L1 ∥x− y∥) ∥y − x∥2 .(7)

Proof The first and second statements are derived in Chen et al. [7, Proposition 3.2]. Next, the third
inequality follows from Gorbunov et al. [15, Lemma 2.2]. Finally, averaging (5) for i = 1, . . . , n
and taking into account that f(x) = 1

n

∑n
i=1 fi(x), we get (7).

Lemma 3 Let fi(x) be generalized smooth with parameters L0, L1 > 0, and lower bounded by
f inf
i , and let f(x) be lower bounded by f inf . Then, for any x ∈ Rd

1

n

n∑
i=1

∥∇fi(x)∥ ≤ 8L1(f(x)− f inf) +
8L1

n

n∑
i=1

(f inf − f inf
i ) + L0/L1. (8)

Proof By the (L0, L1)-smoothness of fi(x),

4(fi(x)− f inf
i )

(6)
≥ ∥∇fi(x)∥2

L0 + L1 ∥∇fi(x)∥
≥

{
∥∇fi(x)∥2

2L0
if ∥∇fi(x)∥ ≤ L0

L1
∥∇fi(x)∥

2L1
otherwise.

This condition implies

∥∇fi(x)∥ ≤ max(8L1(fi(x)− f inf
i ), L0/L1)

≤ 8L1(fi(x)− f inf
i ) + L0/L1

≤ 8L1(fi(x)− f inf) + 8L1(f
inf − f inf

i ) + L0/L1.

Finally, by the fact that f(x) = 1
n

∑n
i=1 fi(x),

1

n

n∑
i=1

∥∇fi(x)∥ ≤ 8L1(f(x)− f inf) +
8L1

n

n∑
i=1

(f inf − f inf
i ) + L0/L1.
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Lemma 4 Let f(x) = 1
n

∑n
i=1 fi(x), where each fi(x) is generalized smooth with parameters

L0, L1 > 0. Let xk+1 = xk − γk
∥vk∥v

k for γk > 0. Then,

f(xk+1) ≤ f(xk)− γk

∥∥∥∇f(xk)
∥∥∥+ 2γk

∥∥∥∇f(xk)− vk
∥∥∥

+
γ2k
2

exp (γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∥∇fi(x
k)
∥∥∥) .

Proof Let each fi(x) be generalized smooth with L0, L1 > 0, and f(x) = 1
n

∑n
i=1 fi(x). By (7)

of Lemma 2, and by the fact that xk+1 = xk − γk
∥vk∥v

k for γk > 0,

f(xk+1) ≤ f(xk)− γk
∥vk∥

⟨∇f(xk), vk⟩+
γ2k
2

exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∥∇fi(x
k)
∥∥∥)

= f(xk)− γk
∥vk∥

⟨∇f(xk)− vk, vk⟩ − γk

∥∥∥vk∥∥∥
+
γ2k
2

exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∥∇fi(x
k)
∥∥∥)

≤ f(xk) + γk

∥∥∥∇f(xk)− vk
∥∥∥− γk

∥∥∥vk∥∥∥
+
γ2k
2

exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∥∇fi(x
k)
∥∥∥) ,

where we reach the last inequality by Cauchy-Schwarz inequality. Next, since

−
∥∥∥vk∥∥∥ triangle ineq.

≤ −
∥∥∥∇f(xk)

∥∥∥+ ∥∥∥∇f(xk)− vk
∥∥∥ ,

we get

f(xk+1) ≤ f(xk)− γk

∥∥∥∇f(xk)
∥∥∥+ 2γk

∥∥∥∇f(xk)− vk
∥∥∥

+
γ2k
2

exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∥∇fi(x
k)
∥∥∥) .

Lemma 5 Let {V k}k≥0, {W k}k≥0 be non-negative sequences satisfying

V k+1 ≤ (1 + b1 exp(L1γ)γ
2)V k − b2γW

k + b3 exp(L1γ)γ
2,

for γ, b1, b2, b3 > 0. Then,

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.
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Proof Define βk =
βk−1

1+b1 exp(L1γ)γ2 for k = 0, 1, . . . and β−1 = 1. Then, we can show that

βk = 1
(1+b1 exp(L1γ)γ2)k+1 for k = 0, 1, . . ., and that

βkV
k+1 ≤ (1 + b1 exp(L1γ)γ

2)βkV
k − b2γβkW

k + b3 exp(L1γ)γ
2βk

= βk−1V
k − b2γβkW

k + b3 exp(L1γ)γ
2βk.

Therefore,

min
k=0,1,...,K

W k ≤ 1∑K
k=0 βk

K∑
k=0

βkW
k

≤
∑K

k=0(βk−1V
k − βkV

k+1)

b2γ
∑K

k=0 βk
+

b3
b2

exp(L1γ)γ

=
β−1V

0 − βKV k+1

b2γ
∑K

k=0 βk
+

b3
b2

exp(L1γ)γ.

By the fact that β−1 = 1, βK > 0, and V k+1 ≥ 0,

min
k=0,1,...,K

W k ≤ V 0

b2γ
∑K

k=0 βk
+

b3
b2

exp(L1γ)γ.

Next, since

K∑
k=0

βk ≥ (K + 1) min
k=0,1,...,K

βk =
K + 1

(1 + b1 exp(L1γ)γ2)K+1
,

we have

min
k=0,1,...,K

W k ≤ V 0(1 + b1 exp(L1γ)γ
2)K+1

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ

1+x≤exp(x)

≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.

Appendix D. Convergence Proof for Normalized EF21 (Theorem 1)

In this section, we derive the convergence rate results of normalized EF21. We start with the fol-
lowing lemma technical lemma.

Lemma 6 Let Assumptions 3 and 4 hold. Then, the iterates {xk} generated by normalized EF21
(Algorithm 1) satisfy

E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥] ≤
√
1− αE

[∥∥∥∇fi(x
k)− gki

∥∥∥]
+
√
1− α exp(L1γk)γk(L0 + L1E

[∥∥∥∇fi(x
k)
∥∥∥]). (9)
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Proof From the definition of the Euclidean norm, and by taking the expectation conditioned on
xk+1, gki , and by the update of gki from Algorithm 1

E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥∣∣∣xk+1, gki

]
= E

[∥∥∥∇fi(x
k+1)− gki − Ck(∇fi(x

k+1)− gki )
∥∥∥∣∣∣xk+1, gki

]
≤
√

E
[∥∥∇fi(xk+1)− gki − C(∇fi(xk+1)− gki )

∥∥2∣∣∣xk+1, gki

]
,

where we use the concavity of the square root function, and Jensen’s inequality for the concave
function, i.e., E [f(x)] ≤ f(E [x]) if f(x) is concave. By the α-contractive property of compressors
in (3), by the fact that

∥∥∇fi(x
k+1)− gki

∥∥ is a constant conditioned on xk+1, gki , and then by the
triangle inequality, we have

E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥∣∣∣xk+1, gki

]
≤

√
(1− α)E

[∥∥∇fi(xk+1)− gki
∥∥2∣∣∣xk+1, gki

]
=

√
1− α

∥∥∥∇fi(x
k+1)− gki

∥∥∥
≤

√
1− α

∥∥∥∇fi(x
k)− gki

∥∥∥+√
1− α

∥∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥∥ .

By the generalized smoothness of fi(x) in (2), and by the fact that xk+1 = xk − γk
gk

∥gk∥ ,

E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥∣∣∣xk+1, gki

]
≤

√
1− α

∥∥∥∇fi(x
k)− gki

∥∥∥
+
√
1− α(L0 + L1

∥∥∥∇fi(x
k)
∥∥∥) exp(L1γk)γk.

Let γk > 0 be constants conditioned on xk+1, gki . Then, by the tower property, i.e.,

E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥] = E
[
E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥∣∣∣xk+1, gki

]]
,

we have

E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥] ≤
√
1− αE

[∥∥∥∇fi(x
k)− gki

∥∥∥]
+
√
1− α exp(L1γk)γk(L0 + L1E

[∥∥∥∇fi(x
k)
∥∥∥]).

This concludes the proof.

Next, we present the following descent lemma for normalized EF21.

Lemma 7 Let Assumptions 1-4 hold. Then, the iterates {xk} generated by normalized EF21 (Al-
gorithm 1) satisfy

E
[
V k+1

]
≤ E

[
V k
]
+ c1γ

2
k

1

n

n∑
i=1

E
[∥∥∥∇fi(x

k)
∥∥∥]− γkE

[∥∥∥∇f(xk)
∥∥∥]+ c0γ

2
k ,

where V k := f(xk)−f inf+ 2γk
1−

√
1−α

1
n

∑n
i=1

∥∥∇fi(x
k)− gki

∥∥, and ci =
Li
2 +2

√
1−αLi

1−
√
1−α

for i = 0, 1.
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Proof
For brevity, let Ak = 2γk

1−
√
1−α

. Then, we have V k := f(xk)−f inf+Ak
1
n

∑n
i=1

∥∥∇fi(x
k)− vki

∥∥,
and from Lemma 4, we derive

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∥∇f(xk)
∥∥∥]

+exp(L1γk)γ
2
k

L1

2n

n∑
i=1

E
[∥∥∥∇fi(x

k)
∥∥∥]+ exp(L1γk)γ

2
k

L0

2

+2γkE
[∥∥∥∇f(xk)− gk

∥∥∥]+Ak+1
1

n

n∑
i=1

E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥] .
Identities ∇f(xk) = 1

n

∑n
i=1∇fi(x

k) and gk = 1
n

∑n
i=1 g

k
i and the triangle inequality imply

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∥∇f(xk)
∥∥∥]

+exp(L1γk)γ
2
k

L1

2n

n∑
i=1

E
[∥∥∥∇fi(x

k)
∥∥∥]+ exp(L1γk)γ

2
k

L0

2

+2γk
1

n

n∑
i=1

E
[∥∥∥∇fi(x

k)− gki

∥∥∥]+Ak+1
1

n

n∑
i=1

E
[∥∥∥∇fi(x

k+1)− gk+1
i

∥∥∥] .
Next, we apply (9):

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∥∇f(xk)
∥∥∥]+ (γ2k

2
+Ak+1

√
1− αγk

)
exp(L1γk)L0

+

(
γ2k
2

+Ak+1

√
1− αγk

)
exp(L1γk)L1

1

n

n∑
i=1

E
[∥∥∥∇fi(x

k)
∥∥∥]

+
(
2γk +Ak+1

√
1− α

) 1
n

n∑
i=1

E
[∥∥∥∇fi(x

k)− gki

∥∥∥] .
If Ak = 2γk

1−
√
1−α

, and γk satisfies γk+1 ≤ γk, then

2γk +Ak+1

√
1− α ≤ 2γk +Ak

√
1− α = Ak.

Therefore,

E
[
V k+1

]
≤ E

[
V k
]
+ c1 exp(L1γk)γ

2
k

1

n

n∑
i=1

E
[∥∥∥∇fi(x

k)
∥∥∥]

−γkE
[∥∥∥∇f(xk)

∥∥∥]+ c0 exp(L1γk)γ
2
k ,

where ci =
Li
2 + 2

√
1−αLi

1−
√
1−α

for i = 0, 1.
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D.1. Proof of Theorem 1

Now, we are ready to prove Theorem 1. From Lemma 7 and 3, and by the fact that c1L0/L1 = c0,
we have

E
[
V k+1

]
≤ E

[
V k
]
+ 8c1L1 exp(L1γk)γ

2
kE
[
f(xk)− f inf

]
−γkE

[∥∥∥∇f(xk)
∥∥∥]+B exp(L1γk)γ

2
k ,

where B = 2c0 +
8c1L1

n

∑n
i=1(f

inf − f inf
i ). Using the fact that f(xk)− f inf ≤ V k, we derive

E
[
V k+1

]
≤ (1 + 8c1L1 exp(L1γk)γ

2
k)E

[
V k
]
− γkE

[∥∥∥∇f(xk)
∥∥∥]+B exp(L1γk)γ

2
k .

Applying Lemma 5 with V k = E
[
V k
]
, W k = E

[∥∥∇f(xk)
∥∥], b1 = 8c1L1, b2 = 1, and b3 = B,

we get

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.

Finally, if γ = γ0√
K+1

with γ0 > 0, then exp(L1γk) ≤ exp(L1γ0), and thus

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ0)γ
2
0)

b2γ0
√
K + 1

+
b3
b2

γ0 exp(L1γ0)√
K + 1

.

Appendix E. Omitted Proof for Generalized Smoothness of Logistic Regression

In this section, we prove the generalized smoothness parameters L0, L1 for logistic regression prob-
lems with a nonconvex regularizer, which are the following problems

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x) :=
1

n

n∑
i=1

log(1 + exp(−bia
T
i x))︸ ︷︷ ︸

=:f̃i(x)

+λ
d∑

j=1

x2j
1 + x2j︸ ︷︷ ︸

=:h(x)

}
,

where ai ∈ Rd is the ith feature vector of matrix A with its class label bi ∈ {−1, 1}, λ > 0.
First, we can prove that f(x) is L-smooth with L = 1

4n∥A∥2 + 2λ, and that each fi(x) is
L̃i-smooth with L̃i =

1
4∥ai∥

2 + 2λ.
Next, we show that each fi(x) is asymmetric generalized smooth with L0 = 2λ+λ

√
dmaxi ∥ai∥

and L1 = maxi ∥ai∥, when the Hessian exists. By the fact that

∇f̃i(x) = − exp(−bia
T
i x)

1 + exp(−biaTi x)
biai, and ∇2f̃i(x) =

exp(−bia
T
i x)

(1 + exp(−biaTi x))
2
b2i aia

T
i ,
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we have ∥∥∥∇2f̃i(x)
∥∥∥ bi∈{−1,1}

=
exp(−bia

T
i x)

(1 + exp(−biaTi x))
2
λmax(aia

T
i )

=
exp(−bia

T
i x)

(1 + exp(−biaTi x))
2
∥ai∥2

=
∥ai∥

1 + exp(−biaTi x)

∥∥∥∇f̃i(x)
∥∥∥

≤ ∥ai∥
∥∥∥∇f̃i(x)

∥∥∥ . (10)

After adding the nonconvex regularizer h(x), we can show the following inequalities:∥∥∇2fi(x)
∥∥ ≤

∥∥∥∇2f̃i(x)
∥∥∥+ ∥∥∇2h(x)

∥∥
≤

∥∥∥∇2f̃i(x)
∥∥∥+ 2λ, (11)

and

∥∇fi(x)∥ ≥
∥∥∥∇f̃i(x)

∥∥∥− ∥∇h(x)∥ =
∥∥∥∇f̃i(x)

∥∥∥−
√(

2λx1
(1 + x21)

2

)2

+ . . .+

(
2λxd

(1 + x2d)
2

)2

≥
∥∥∥∇f̃i(x)

∥∥∥−√λ2 + . . .+ λ2

=
∥∥∥∇f̃i(x)

∥∥∥− λ
√
d. (12)

By combining inequalities (10), (11), and (12), we obtain∥∥∇2fi(x)
∥∥ ≤ 2λ+ λ

√
d ∥ai∥︸ ︷︷ ︸

=L0

+ ∥ai∥︸︷︷︸
=L1

∥∇fi(x)∥ = L0 + L1 ∥∇fi(x)∥ .

Appendix F. Additional Experiments

In this section, we present additional experimental results for minimizing nonconvex polynomial
functions, and training ResNet20 models on the CIFAR-10 dataset.

F.1. Minimization of Nonconvex Polynomial Functions

We ran normalized EF21 (EF21-norm), and traditional EF21 in a centralized setting (n = 1) for
solving the following problem:

min
x∈Rd

{
f(x) :=

d∑
i=1

aix
4
i︸ ︷︷ ︸

=:g(x)

+λ
d∑

i=1

x2i
1 + x2i︸ ︷︷ ︸

=:h(x)

}
,

where ai > 0, i = 1, . . . , d, λ > 0.
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Let us show that f(x) is non-convex (for the specific choice of ai) and (L0, L1)-smooth. First,
we prove that f(x) is non-convex. Indeed,

∇2f(x) = ∇2g(x) +∇2h(x)

= 12 diag
{
a1x

2
1, . . . , adx

2
d

}
+ 2λ diag

{
1− 3x21(
1 + x21

)3 , . . . , 1− 3x2d(
1 + x2d

)3},
is not positive definite matrix if we choose ai =

λ
24 , xi = ±1 for i = 1, . . . , d.

Second, we find L0, L1 > 0 such that
∥∥∇2f(x)

∥∥ ≤ L0 + L1 ∥∇f(x)∥ , ∀x ∈ Rd. Let us fix
some L1 > 0 and choose L0 =

9λd2

2L2
1
+ 2λ. Since ∇2h(x) ≼ 2λI ,∥∥∇2f(x)

∥∥ =
∥∥∇2g(x) +∇2h(x)

∥∥ ≤
∥∥∇2g(x)

∥∥+ ∥∥∇2h(x)
∥∥

≤ 12
√
a21x

4
1 + . . .+ a2dx

4
d + 2λ

≤ 12
(
a1x

2
1 + . . .+ adx

2
d

)
+ 2λ.

Also, notice that

∥∇f(x)∥ = ∥∇g(x) +∇h(x)∥ =

√(
4a1x21 +

2λ

(1 + x21)
2

)2

x21 + . . .+

(
4adx

2
d +

2λ

(1 + x2d)
2

)2

x2d

≥ 4
√
a21x

6
1 + . . .+ a2dx

6
d

≥ 4√
d

(
a1 |x1|3 + . . .+ ad |xd|3

)
.

Our goal is to show that

12
(
a1x

2
1 + . . .+ adx

2
d

)
≤ L̃0 +

4L1√
d

(
a1 |x1|3 + . . .+ ad |xd|3

)
, L̃0 = L0 − 2λ.

To show this, we consider two cases: if |xi| ≤ 3
√
d

L1
, and otherwise.

1. If |xi| ≤ 3
√
d

L1
for all i = 1, . . . , d, then 12aix

2
i ≤ 108aid

L2
1

. Thus, 12
(
a1x

2
1 + . . .+ adx

2
d

)
≤

108λd2

24L2
1

= L̃0.

2. If |xj | > 3
√
d

L1
for some j = 1, . . . , d, then 12ajx

2
j < 4L1√

d
aj |xj |3, and the sum of the

remaining terms (such that |xi| ≤ 3
√
d

L1
) in 12

(
a1x

2
1 + . . .+ adx

2
d

)
can be upper bounded

by L̃0.

In conclusion, f(x) is (L0, L1)-smooth, where L1 is any positive constant and L0 =
9λd2

2L2
1
+ 2λ.

Additionally, we can show that under certain additional constraints, f(x) is L-smooth with
L = λ

√
dD2

2 + 2λ. If |xi| ≤ D for all i = 1, . . . , d, then

∥∥∇2f(x)
∥∥ ≤ 12

√
a21x

4
1 + . . .+ a2dx

4
d + 2λ ≤ λ

√
dD2

2
+ 2λ = L,
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In the experiments, we estimate D based on the initial point x0 ∈ Rd.
In the following experiments, we utilized a top-k compressor with k = 1 and α = k/d, setting

d = 4, L1 = {1, 4, 8}, and L0 = 4 (adjusting λ to maintain a constant L0). The initial values x0

were drawn from a normal distribution, x0i ∼ N (20, 1) for i = 1, . . . , d, with D estimated as 20.
For EF21, we set γk = 1

L+L
√

β
θ

, using θ = 1 −
√
1− α and β = 1−α

1−
√
1−α

as outlined in Theorem

1 of [33]. For normalized EF21, we selected γk = 1
2c1

, where c1 = L1
2 + 2

√
1−αL1

1−
√
1−α

, and also used
γk = γ0√

K+1
with γ0 > 0, as specified in Theorem 1.

The impact of γ0 and K on the convergence of normalized EF21. First, we investigate the im-
pact of γ0 and K on the convergence of normalized EF21. We evaluated γ0 from the set {0.1, 1, 10},
and plotted the histogram representing the number of iterations required to achieve the target accu-
racy of ∥∇f(x)∥2 < ϵ with ϵ = 10−4, using the stepsize rule γ = γ0√

K+1
. For each γ0, we

determined K as the minimum number of iterations required to achieve the desired accuracy, found
through a grid search with step sizes of 500 for γ0 = 1, 10 and 5000 for γ0 = 0.1. From Figure 2,
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Figure 2: Number of iterations required to achieve the desired accuracy, ∥∇f(x)∥2 < ϵ, ϵ = 10−4,
using normalized EF21 (EF21-norm) with γ = γ0√

K+1
for different values of L0 and L1.

for small values of γ0, such as 0.1, significantly more iterations are required to reach convergence
compared to γ0 values of 1 and 10, which show similar performance (with the exception of the
L0 = 4, L1 = 1 case, where γ0 = 10 converges faster). Based on this observation, we use γ0 = 1
in all subsequent experiments and adjust only K to achieve convergence, identifying the minimum
number of iterations needed to reach the target accuracy through a grid search with a step size of
500.

Comparisons between EF21 and normalized EF21. Next, we evaluate the performance of EF21
and normalized EF21 for a fixed L0 = 4 and varying L1 values of {1, 4, 8}. From Figure 3,
normalized EF21, regardless of the chosen stepsize γ, achieves the desired accuracy ∥∇f(x)∥2 < ϵ
with ϵ = 10−4 faster than the original EF21. Initially, however, EF21 converges more quickly,
likely because normalized EF21 employs normalized gradients, which can be slower at the start
due to the large gradients when the initial point is far from the stationary point. Moreover, as L1

increases, both methods show slower convergence. Finally, Figure 4 illustrates that the original
EF21 algorithm may diverge if the function f(x) is (L0, L1)-smooth, while normalized EF21 still
converges successfully.
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Figure 3: The minimization of polynomial functions using EF21 with γ = 1

L+L
√

β
θ

and normalized

EF21 (EF21-norm) with γ = γ0√
K+1

, γ0 = 1 (blue line) and γ = 1
2c1

(green line). Here, we ran
the algorithms for (1) L0 = 4, L1 = 1, and K = 2000 (left), (2) L0 = 4, L1 = 4, and K = 5000
(middle), and (3) L0 = 4, L1 = 8, and K = 16000 (right).
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Figure 4: The minimization of polynomial functions using EF21 with γ = 1

L0+L0

√
β
θ

and normal-

ized EF21 (EF21-norm) with γ = γ0√
K+1

, γ0 = 1 (blue line) and γ = 1
2c1

(green line), L0 = 4,
L1 = 4, K = 5000.

F.2. Neural Network Training Over CIFAR-10

We conduct training on the ResNet20 [17] model on the CIFAR-10 [22] dataset, which was demon-
strated empirically by [46] to satisfy the (L0, L1)-smoothness condition.

To compare the performance between EF21 and normalized EF21, we trained ResNet20 using a
top-k compressor over 50, 000 training images, with evaluation on 10, 000 test images. The dataset
was evenly distributed among 5 clients, each using a mini-batch size of 128. Both algorithms were
run for 100 epochs with a constant stepsize γ = 5. Here, one epoch refers to a full pass through the
entire dataset processed by all clients.

From Figure 5, under the same constant stepsize and the top-k compressor with k = 0.01d,
normalized EF21 outperforms EF21, in both training and test accuracy relative to the number of
bits communicated from each client to the server. Specifically, normalized EF21 achieved accuracy
gains of up to 10% over EF21. Similar patterns were observed when we vary the top-k compression
parameter, such as k = 0.1d as shown in Figure 6.
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Figure 5: ResNet20 training on CIFAR-10 by using EF21 and normalized EF21 (EF21-norm)
under the same stepsize γ = 5 and k = 0.01d for a top-k compressor.
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Figure 6: ResNet20 training on CIFAR-10 by using EF21 and normalized EF21 (EF21-norm)
under the same stepsize γ = 5 and k = 0.1d for a top-k compressor.
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