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Abstract
We introduce a novel optimal transport framework for probabilistic circuits (PCs). While it has been
shown recently that divergences between distributions represented as certain classes of PCs can be
computed tractably, to the best of our knowledge, there is no existing approach to compute the
Wasserstein distance between probability distributions given by PCs. We consider a Wasserstein-
type distance that restricts the coupling measure of the associated optimal transport problem to
be a probabilistic circuit. We then develop an algorithm for computing this distance by solving
a series of small linear programs and derive the circuit conditions under which this is tractable.
Furthermore, we show that we can also retrieve the optimal transport plan between the PCs from
the solutions to these linear programming problems. We then consider the empirical Wasserstein
distance between a PC and a dataset, and show that we can estimate the PC parameters to minimize
this distance through an efficient iterative algorithm.

Code: https://github.com/aciotinga/pc-optimal-transport

1. Introduction

Modeling probability distributions in a way that enables tractable computation of certain probabilis-
tic queries is of great interest to the machine learning community. Probabilistic circuits (PCs) [3]
provide a unifying framework for representing many classes of tractable probabilistic models as
computational graphs. They have received attention lately for the ability to guarantee tractable in-
ference of certain query classes through imposing structural properties on the computational graph
of the circuit. This includes tractable marginal and conditional inference, as well as pairwise queries
that compare two circuits such as Kullback-Leibler Divergence and cross-entropy [9, 16].

However, to the best of our knowledge, there is no existing algorithm to compute the Wasserstein
distance between two probabilistic circuits.
Definition 1 (Wasserstein distance) Let P and Q be two probability measures on Rn. For p ≥ 1,
the p-Wasserstein distance between P and Q is Wp

p(P,Q) ≜ infγ∈Γ(P,Q) Eγ(x,y)[∥x− y∥pp] where
Γ(P,Q) denotes the set of all couplings which are joint distributions whose marginal distributions
coincide exactly with P and Q. That is, for all γ ∈ Γ(P,Q), P (x) =

∫
Rn γ(x,y)dy and Q(y) =∫

Rn γ(x,y)dx.

Here, the Wasserstein objective of some (not necessarily optimal) coupling refers to the expectation
inside the infimum taken over that coupling, and the Wasserstein distance between two distributions
refers to the value taken by the Wasserstein objective for the optimal coupling.

This paper focuses on computing (or bounding) the Wasserstein distance and optimal transport
plan between (i) two probabilistic circuits and (ii) a probabilistic circuit and an empirical distribu-
tion. For (i) we propose a Wasserstein-type distance that upper-bounds the true Wasserstein distance
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and provide an efficient and exact algorithm for computing it between two circuits. For (ii) we pro-
pose a parameter estimation algorithm for PCs that seeks to minimize the Wasserstein distance
between a circuit and an empirical distribution and provide experimental results comparing it to
existing approaches.

2. Optimal Transport between Circuits

We now consider the problem of computing Wasserstein distances and optimal transport plans be-
tween distributions represented by probabilistic circuits P and Q with scopes X and Y.

Definition 2 (Probabilistic circuit) A probabilistic circuit (PC) C over a set of discrete or contin-
uous random variables X is a parameterized, rooted directed acyclic graph (DAG) with three types
of nodes: sum, product and input nodes. Each sum node n has normalized parameters θn,c for each
child node c, and each input node n is associated with function fn that encodes a univariate proba-
bility distribution over one of the random variables Xi ∈ X, also called its scope sc(n). The set of
child nodes for an internal node (sum or product) n is denoted ch(n), and the sub-circuit rooted at
any node n parameterizes a probability distribution pn(x) over its scope sc(n) =

⋃
c∈ch(n) sc(c)

defined as follows:1

pn(x) =


fn(x) if n is an input node,∏

c∈ch(n) pc(x) if n is a product node,∑
c∈ch(n) θn,cpc(x) if n is a sum node.

Structural properties of a PC’s computational graph enable tractable computation of certain queries.
In particular, as is common in the PC literature, we assume that the circuit structure satisfies two
properties, namely smoothness and decomposability. A PC C is smooth if the children of every
sum node n ∈ C have the same scope: ∀ni ∈ ch(n), sc(ni) = sc(n). C is decomposable if the
children of every product node n ∈ C have disjoint scopes: ∀ni, nj ∈ ch(n), sc(ni)

⋂
sc(nj) = ∅.

Such circuits admit linear-time computation of marginal and conditional probabilities for arbitrary
subsets of variables [3].

Furthermore, we assume that we can compute the Wasserstein distance between circuit input
distributions in constant time—which is the case for the 2-Wasserstein distance between Gaussian
distributions and categorical distributions associated with a metric space—and that there is a bijec-
tive mapping↔ between random variables in X and random variables in Y. Unfortunately, even
with the above assumptions, computing the Wasserstein distance between probabilistic circuits is
computationally hard, including for circuits satisfying restrictive structural properties that enable
tractable computation of hard queries such maximum-a-posteriori (MAP) [3]. Complete proofs of
all theorems and propositions can be found in the Appendix.

Theorem 1 Suppose P and Q are probabilistic circuits over n Boolean variables. Then computing
the∞-Wasserstein distance between P and Q is coNP-hard.

Theorem 1 shows that computing the∞-Wasserstein distance between two PCs is computation-
ally hard. Whether computing Wp for some other fixed p (such as p = 1 or 2) is NP-hard is still

1. Below, we implicitly project x onto sc(n) by only considering the dimensions that correspond to random variables
in the node’s scope.

2



OPTIMAL TRANSPORT FOR PROBABILISTIC CIRCUITS

an open question—although there only exist efficient algorithms that bound this quantity between
GMMs, rather than compute it exactly [2, 5]. In this work, however, we are interested in efficiently
computing or upper-bounding Wp between PCs for arbitrary p, including W∞. Thus, to address
this computational challenge, we consider a Wasserstein-type distance between PCs by restricting
the set of coupling measures to be PCs of a particular structure. Furthermore, we derive the struc-
tural conditions on the input PCs required to construct such structure and find the parameters that
minimize the Wasserstein objective in time quadratic in the size of the input circuits.

2.1. CWp: A Distance based on Coupling Circuits

We propose the notion of a coupling circuit between two compatible (see Definition 3 below) PCs,
and introduce a Wasserstein-type distance CWp which restricts the coupling set in Definition 1 to
be circuits of this form. We then exploit the structural properties guaranteed by coupling circuits,
namely smoothness and decomposability, to derive efficient algorithms for computing CWp.

Definition 3 (Circuit compatibility [16]) Two smooth and decomposable PCs P and Q over RVs
X and Y, respectively, are compatible if the following two conditions hold: (i) there is a bijective
mapping↔ between RVs Xi and Yi, and (ii) any pair of product nodes n ∈ P and m ∈ Q with the
same scope up to the bijective mapping are mutually compatible and decompose the scope the same
way—that is, if n and m have scopes X and Y and X↔ Y, then n and m have the same number
of children, and for each child of n with scope Xi there is a corresponding child of m with scope
Yi such that Xi ↔ Yi. Such pair of nodes are called corresponding nodes.

Definition 4 (Coupling circuit) A coupling circuit C between two compatible PCs P and Q with
scopes X and Y, respectively, is a PC with the following properties. (i) Each node r ∈ C is
recursively a coupling of a pair of nodes n ∈ P and m ∈ Q.2 (ii) Each node r ∈ C that is a
coupling of sum nodes n ∈ P,m ∈ Q with edge weights {θi} and {θj} has edge weights {θi,j}
such that

∑
i θi,j = θj and

∑
j θi,j = θi for all i and j.

The second property described above ensures that such coupling circuit C matches marginal distri-
butions to P and Q as described in Def. 1 (see Appx. B.5). Thus, valid parameterizations of the
coupling circuit structure form a subset of couplings in Def. 1.

Definition 5 (Circuit Wasserstein distance CWp) The p-th Circuit Wasserstein distance CWp be-
tween PCs P and Q is the value of the p-th Wasserstein objective computed for an objective-
minimizing coupling measure that is restricted to be a coupling circuit of P and Q.

Proposition 2 For any set C of compatible circuits, CWp defines a metric on C.

By definition, we have that Wp(P,Q) ≤ CWp(P,Q) because both are infima of the same Wasser-
stein objective, while the feasible set of couplings for CWp(P,Q) is more restrictive. Thus, the cir-
cuit Wasserstein distance is a metric that upper-bounds the true Wasserstein distance between PCs.

2. The coupling circuit has the same structure as the product circuit [16] of P and Q. Informally, this is done by
constructing a cross product of children at every pair of sum nodes, and the product of corresponding children at
every pair of product nodes. Algorithm A.1 shows this construction.
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2.2. Exact and Efficient Computation of CWp

In this section, we first identify the recursive properties of the Wasserstein objective for a given
parameterization of the coupling circuit that enable its linear-time computation in the size of the
coupling circuit. Then, we propose a simple algorithm to compute the exact parameters for the
coupling circuit that minimize the Wasserstein objective, giving us, again, a linear-time algorithm
to compute CWp as well as a transport plan between PCs.

Recursive Computation of the Wasserstein Objective Below equation shows the recursive com-
putation of the CWp-objective function g(n) at each node n in the coupling circuit C (see Appx. B.2
for correctness proof). We denote the ith child of node n to be ci.

g(n) =


∑

i θig(ci) if n is a sum∑
i g(ci) if n is a product with sum or product node children

Wp(c1, c2) if n is a product with input node children

(1)

Thus, we can push computation of the Wasserstein objective down to the leaf nodes of a coupling
circuit, and our algorithm only requires a closed-form solution for Wp between univariate input
distributions. Note that the objective function at a product node is the sum of the objective functions
at its children; this is because the Lp

p-norm decomposes into the sum of norm in each dimension.

Recursive Computation of the Optimal Coupling Circuit Parameters for CWp Leveraging the
recursive properties of the Wasserstein objective, we can compute the optimal sum edge parameters
in the coupling circuit by solving a small linear program at each sum node. This is done by using
the optimal CWp values computed at each child as the coefficients for the sum of corresponding
weight parameters in the linear objective, which comes from the decomposition of the Wasserstein
objective at sum nodes in the previous section. These linear programs are constrained to enforce the
marginal-matching constraints defined in Def. 4. Since the time to solve the linear program at each
sum node depends only on the number of children of the sum node, which is bounded, we consider
this time constant when calculating the runtime of the full algorithm. Thus, we can compute CWp

and the corresponding transport plan between two circuits in time linear in the number of nodes
in the coupling circuit, or equivalently quadratic in the number of nodes in the original circuits.
Appendix B.4 presents the recursive algorithm in detail along with correctness proof.

2.3. Experimental Results

Figure 1: Runtime of Wasserstein-type distance computation us-
ing our approach (blue dots) and the baseline (red triangles). For
circuits larger than those depicted, the baseline approach runs out
of memory. See Appendix C.1 for more detailed experiments.

To determine the feasibility of com-
puting CWp for large circuits, we
implement and evaluate our algo-
rithm on randomly-generated com-
patible circuits of varying sizes. As
a baseline, we consider the naive ap-
plication of an existing algorithm to
compute a similar Wasserstein-type
distance called “Mixture Wasser-
stein” MWp between Gaussian mix-
ture models (GMMs) [5], leveraging
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the fact that PCs with Gaussian input units can be “unrolled” into GMMs. However, we quickly ob-
serve the impracticality of this baseline approach for circuits larger than even a few hundred edges
due to the GMM representation of a PC potentially being exponentially larger than the original cir-
cuit. Figure 1 illustrates how the direct application of GMM-based algorithms is intractable, while
our approach runs in quadratic time in the size of the original circuits just as predicted by the theory.

3. Parameter Learning of PCs using the Empirical Wasserstein Distance

Motivated by past works that minimize the Wasserstein distance between a generative model and
the empirical distribution, parameterized by a dataset, to train model parameters [1, 13–15], we
investigate the applicability of minimizing the Wasserstein distance between a PC and data as a
means of learning the parameters of a given PC structure. Formally, suppose we have a dataset
D = {y(k)}nk=1 that induces the empirical probability measure Q̂. Then for a given PC structure,
we find its parameters θ to optimize the following:

min
θ

Wp
p(Pθ, Q̂) = min

θ
inf

γ∈Γ(Pθ,Q̂)
Eγ(x,y)[∥x− y∥pp]

= min
θ

inf
γ∈Γ(Pθ,Q̂)

1

n

n∑
k=1

Eγ(x|y(k))

[∥∥∥x− y(k)
∥∥∥p
p

]
(2)

Unfortunately, the above optimization problem is NP-hard (see Appendix B.6). We tackle this
computational hardness by again imposing a circuit structure on the coupling measure, allowing us
compute the Wasserstein objective and optimize it efficiently.

Definition 6 (Empirical Circuit Wasserstein distance) Let P be a PC distribution and Q̂ an em-
pirical distribution induced by a dataset D = {y(k)}nk=1. The p-Empirical Circuit Wasserstein
distance between P and Q̂ is

ECWp
p(P, Q̂) = min

γ

1

n

n∑
k=1

Eγ(x|y(k))

[∥∥∥x− y(k)
∥∥∥p
p

]
,

where γ(x,y = y(k)) satisfies the following: (i) for each k ∈ {1, . . . , n}, γ(·,y = y(k)) is a PC
with the same structure as P (but not necessarily the same parameters) that normalizes to 1/n, and
(ii)

∑n
k=1 γ(x,y = y(k)) = P (x).

Since a coupling satisfying the above structure also satisfies the marginal constraints and is in
Γ(P, Q̂), we learn the parameters of PCs by minimizing this upper bound Wp(P, Q̂) ≤ ECWp(P, Q̂),
alternating between (i) optimizing the coupling given the current circuit parameters and (ii) updating
the circuit parameters given the current coupling.

Step (i) computes ECWp
p(Pθ, Q̂) for a given θ and in the process finds the corresponding cou-

pling γ. Rather than materializing k PCs to represent each γ(·,y = y(k)), we equivalently model a
single coupling circuit γ as having the same structure as P and a set of parameters {wr,c,k}nk=1 for
each parameter θr,c in P . Then optimizing the coupling circuit parameters amounts to minimizing
the Wasserstein objective according to the coupling distribution—similar to computing CW—and
can be done efficiently by solving a small linear program at each sum node. Here, we have the
following marginal-matching constraints:

∑n
k=1wr,c,k = θr,c for each sum node r and child c and
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∑
cwr,c,k = 1/n for each k. Step (ii) simply updates the parameters θ of PC P from a given

coupling γ as θr,c =
∑n

k=1wr,c,k since γ has the same structure as P .
Interestingly, the above linear program at each sum node is a variation of the continuous knap-

sack problem [12] and has a closed-form solution where each weight wr,c,k is either 1
n or zero

(details in Appendix B.7); intuitively, the coupling circuit parameters w describe how each data
point is routed through the circuit. Due to the closed-form solution of the LP, the time complexity
of one iteration of our algorithm is linear in both the size of the circuit and the size of the dataset, and
our algorithm is also guaranteed to converge (potentially to a local minimum) as every iteration only
decreases or preserves the empirical Wasserstein objective (Appendix B.8). Nevertheless, finding
the global optimum parameters minimizing the Wasserstein distance is still NP-hard, and our pro-
posed efficient algorithm may get stuck at a local minimum, similar to existing maximum-likelihood
parameter learning approaches.

3.1. Experimental Results

To determine the performance of our proposed Wasserstein minimization algorithm, we consider
learning the parameters of circuits of various sizes from the MNIST benchmark dataset [8]. When
compared to mini-batch Expectation Maximization (EM) for estimating maximum-likelihood pa-
rameters, our Wasserstein Minimization (WM) approach is nearly competitive for small circuits but
falls behind for larger circuits. We attribute this to WM’s inability to make use of the parameter
space of larger models. Detailed experimental results are provided in Appendix C.4.

4. Conclusion

This paper studied the optimal transport problem for probabilistic circuits. We introduced a Wasserstein-
type distance CWp between two PCs an proposed an efficient algorithm that computes the distance
and corresponding optimal transport plan in quadratic time in the size of the input circuits, pro-
vided that their circuit structures are compatible. We show that CWp always upper-bounds the true
Wasserstein distance, and that—when compared to the naive application of an existing algorithm
for computing a Wasserstein-type distance between GMMs to PCs—the former is exponentially
faster to compute between circuits. Lastly, we propose an iterative algorithm to minimize the em-
pirical Wasserstein distance between a circuit and data, suggesting an alternative, viable approach to
parameter estimation for PCs which is mainly done using maximum-likelihood estimation. While
performance was competitive with the EM algorithm for small circuits, and we leave as future work
to get Wasserstein Minimization to fully exploit the increased expressiveness of larger models.

We consider this work an initial stepping stone towards a deeper understanding of optimal trans-
port theory for probabilistic circuits. Future work includes exploring more expressive formulations
of coupling circuits to close the gap between CWp and MWp, extending the marginal-preserving
properties of coupling circuits to the multimarginal setting, and computing Wasserstein barycenters
for PCs.
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Algorithm 1 COUPLE(n,m): coupling circuit that optimizes CWp
p(n,m) of compatible PCs rooted at

nodes n,m
Note: We omit calls to a cache storing previously-computed coupling circuits COUPLE(n,m) for
simplicity.
if n,m are input nodes then

r ← new product(n,m) ▷ Product node with children n,m
end
if n,m are sum nodes then

r ← new sum node with parameters θi,j
foreach ci ∈ n.children, cj ∈ m.children do

r.children[i, j]← COUPLE(ci, cj)
end

LP←



minimize
∑
i

∑
j

CWp(r.children[i, j]) ∗ θi,j

subject to ∀i,
∑
j

θi,j = θi

∀j,
∑
i

θi,j = θj

θi,j ∈ [0, 1]

solve LP ▷ Solve for optimal parameters θi,j
end
if n,m are product nodes then

r ← new product node
foreach c1 ∈ n.children, c2 ∈ m.children where sc(c1) = sc(c2) do

add COUPLE(c1, c2) to r.children ▷ Child is the coupling of corresponding children
end

end
return n

Appendix A. Algorithms

A.1. Algorithm for Computing the Coupling Circuit between PCs

Algorithm 1 details the construction of a coupling circuit and the computation of the optimal pa-
rameters for sum nodes. LP represents a linear program and we assume that sum nodes in n1 have i
children and sum nodes in n2 have j children. With caching of both CWp(n) and COUPLE(n1, n2)
calls, this algorithm runs in quadratic time.

A.2. Algorithm for Computing the Wasserstein Objective for a Coupling Circuit

Given a coupling circuit rooted at n, Algorithm 2 computes the value of the Wasserstein objective
(see Definition 1) for the coupling. With caching, this algorithm runs in linear time.

A.3. Algorithm for Minimum Wasserstein Parameter Estimation

Our proposed algorithm is broadly divided into two steps: an inference step and a minimization
step. These steps are performed iteratively until model convergence. The inference step populates
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Algorithm 2 CWp(n): p-Wasserstein objective for a coupling circuit rooted at n with i children.

if n is a product node with input node children then
return Wp(n.children[0], n.children[1])

end
if n is a product node without input node children then

return
∑

i CWp(n.children[i])
end
if n is a sum node then

return
∑

i θiCWp(n.children[i])
end

a cache, which stores the expected distance of each data point at each node in the circuit. This
inference step is done in linear time in a bottom-up recursive fashion, making use of the cache for
already-computed results. This is provided in algorithm 3.

The minimization step is done top-down recursively, and seeks to route the data at a node to its
children in a way that minimizes the total expected distance between the routed data at each child
and the sub-circuit. The root node is initialized with all data routed to it. At a sum node, each data
point is routed to the child that has the smallest expected distance to it (making use of the cache
from the inference step), and the edge weight corresponding to a child is equal to the proportion of
data routed to that child; at a product node, the data point is routed to both children. Input node
parameters are updated to reflect the empirical distribution of the data routed to that node. The
minimization step is thus also done in linear time, and we note that this algorithm guarantees a non-
decreasing objective function (see Appendix B.8 for a proof). The algorithm for this is provided in
algorithm 4.

Appendix B. Proofs

B.1. Hardness Proof of the∞-Wasserstein Distance Between Circuits

Theorem 1 Suppose P and Q are probabilistic circuits over n Boolean variables. Then computing
the∞-Wasserstein distance between P and Q is coNP-hard, even when P and Q are deterministic
and structured-decomposable.

Proof We will prove hardness by reducing the problem of deciding equivalence of two DNF formu-
las, which is known to be coNP-hard, to Wasserstein distance computation between two compatible
PCs.

Consider a DNF α containing m terms {α1, . . . , αm} over Boolean variables X. We will con-
struct a PC Pα associated with this DNF as follows. For each term αi, we construct a product of
input nodes—one for each X ∈ X whose literal appears in term αi, 1[X = 1] for a positive literal
and 1[X = 0] for negative. Then we construct a sum unit with uniform parameters over these
products as the root of our PC: Pα =

∑m
i=1

1
mPαi . We can easily smooth this PC by additionally

multiplying Pαi with a sum node 1
21[X = 0]+ 1

21[X = 1] for each variable X that does not appear
in αi. Furthermore, note that every product node in this circuit fully factorizes the variables X, and
thus the PC is trivially compatible with any decomposable circuit over X and in particular with any
other PC for a DNF over X, constructed as above.
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Algorithm 3 INFERENCE(n,D): returns a cache storing the distance between each datapoint dj ∈
D and each sub-circuit rooted at n, where n has children ci. For conciseness, we omit checking for
cache hits
for ci ∈ n.children do

INFERENCE(ci, D) ▷ recursively build cache
end
if n is a product node then

for dj ∈ D do
cache[n, dj ]←

∑
icache[ci, dj ]

end
end
if n is a sum node then

for dj ∈ D do
cache[n, dj ]←

∑
i θicache[ci, dj ]

end
end
if n is an input node then

for dj ∈ D do
cache[n, dj ]← dist(n, dj) ▷ here, dist(n, dj) is the expected distance between n and dj

end
end
return cache

Algorithm 4 LEARN(n,D, cache): learns the parameters of circuit rooted at n on datapoints dj ∈ D

if not all parents of n have been learned then
return ▷ We only call this method on nodes who’s parents have all been learned

end
if n is a product node then

for ci ∈ n.children do
routing[ci]← routing[n] ▷ products route their data to their children

end
end
if n is a sum node then
∀θi, θi ← 0 ▷ zero out parameters
for dj ∈ routing[n] do

▷ route data points at current node to children
ci ← argminci cache[ci, dj ] ▷ ci is the child node of n for which dj has the lowest distance
routing[ci]← dj ▷ route dj to ci
θi ← θi +

1
|routing[n]| ▷ update parameter weight

end
end
if n is an input node then

n.parameters← parameters matching empirical distribution of routing[n]
end

11
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Clearly, the above PC Pα assigns probability mass only to the models of α. In other words, for
any x ∈ {0, 1}n, Pα(x) > 0 iff x |= α (i.e. there is a term αi that is satisfied by x).

B.2. Recursive Computation of the Wasserstein Objective

Referring to Definition 1, the Wasserstein objective for a given coupling circuit C(x,y) is the
expected distance between x and y. Below, we demonstrate that the Wasserstein objective at a sum
node that decomposes into C(x,y) =

∑
i θiCi(x,y) is simply the weighted sum of the Wasserstein

objectives at its children:

EC(x,y)[∥x− y∥pp] =
∫
∥x− y∥ppC(x,y)dxdy =

∫
∥x− y∥pp

∑
i

θiCi(x,y)dxdy

=
∑
i

θi

∫
∥x− y∥ppCi(x,y)dxdy =

∑
i

θi ECi(x,y)[∥x− y∥pp] (3)

Now, consider a decomposable product node, where C(x,y) = C1(x1,y1)C2(x2,y2)
3. Be-

low, we see that the Wasserstein objective at the parent is simply the sum of the Wasserstein objec-
tives at its children:

EC(x,y)[∥x− y∥pp] =
∫
∥x− y∥ppC(x,y)dxdy =

∫
∥x− y∥ppC1(x1,y1)C2(x2,y2)dxdy

=

∫
(∥x1 − y1∥pp + ∥x2 − y2∥pp)× C1(x1,y1)C2(x2,y2)dx1dx2dy1dy2

=

(∫
∥x1 − y1∥ppC1(x1,y1)dx1dy1

)
+

(∫
∥x2 − y2∥pp)C2(x2,y2)dx2dy2

)
= EC1(x1,y1)[∥x1 − y1∥pp] + EC2(x2,y2)[∥x2 − y2∥pp] (4)

Thus, we can push computation of Wasserstein objective down to the leaf nodes of a coupling circuit.

B.3. Proof of the Metric Properties of CWp

Proposition 1 (Metric Properties of CWp) For any set C of compatible circuits, CWp defines a
metric on C

Proof It is clear that CWp is symmetric since construction of the coupling circuit is symmetric.
Furthermore, since CWp upper-bounds Wp, it must also be non-negative.

If CWp(P,Q) = 0, then Wp(P,Q) = 0 so P = Q. Any constraint-satisfying assignment of
the parameters of a coupling circuit between P and P would also result in the Wasserstein objective
at the root node being 0, since the base-case computation of Wp at the leaf nodes would always be
zero.

Now, we show that CWp satisfies the triangle inequality. Let P,Q,R ∈ C be compatible PCs
over random variables X,Y, and Z, and let d1 = CWp(P,Q), d2 = CWp(P,R), and d3 =
CWp(R,Q) with optimal coupling circuits C1, C2, and C3. We can construct circuits C2(x|z) and

3. We assume for notational simplicity that product nodes have two children, but it is straightforward to rewrite a product
node with more than two children as a chain of product nodes with two children each and see that our result still holds.

12
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C3(y|z) that are still compatible with C2 and C3, since conditioning a circuit preserves the structure.
Because all of these are compatible, we can then construct circuit C(X,Y,Z) = C2(X|Z)C3(Y|Z)R(Z).
Thus, C is a coupling circuit of P,Q, and R such that C2(x,y) =

∫
C(x,y, z)dz and C3(y, z) =∫

C(x,y, z)dx. Then we have:

CWp(P,Q) =

∫
∥x− y∥ppC1(x,y)dxdy =

∫
∥(x− z)− (y − z)∥ppC(x,y, z)dxdydz

≤
∫
∥x− z∥ppC2(x, z)dxdz+

∫
∥z− y∥ppC3(y, z)dydz

= CWp(P,R) + CWp(R,Q)

Thus, CWp satisfies the triangle inequality, which concludes the proof.

B.4. Proof of the Optimality of Coupling Circuit Parameter Learning in A.1

Theorem 2 Suppose P and Q are compatible probabilistic circuits with coupling circuit C. Then
the parameters of C - and thus CWp - can be computed exactly in a bottom-up recursive fashion.

Proof We will construct a recursive argument showing that the optimal parameters of C can be
computed exactly. Let n ∈ C be some non-input node in the coupling circuit C that is the product
of nodes n1 and n2 in P and Q respectively. Then we have three cases:

Case 1: n is a product node with input node children Due to the construction of the coupling
circuit, n must have two children that are input nodes with scopes Xk and Yk. Thus, CWp(n) is
simply computed in closed-form as the p-Wasserstein distance between the input distributions.

Case 2: n is a product node with non-input node children By recursion, CWp(n) =
∑

i CWp(ci)
for each child ci of n (see 4).

Case 3: n is a sum node Let θi,j be the parameter corresponding to the product of the i-th child of
n1 and j-th child of n2. We want to solve the following optimization problem inf EPn(X,Y)[∥X−Y∥pp],
which can be rewritten as follows:

inf EPn(X,Y)[∥X−Y∥pp] = inf

∫
Rd×Rd

∥X−Y∥pp Pn(X,Y)dXdY (5)

Rewriting the distribution of n as a mixture of its child distributions ci,j , we get:

= inf
θ,Pi,j

∫
Rd×Rd

∥X−Y∥pp
∑
i,j

θi,jPci,j (X,Y)dXdY (6)

Due to linearity of integrals, we can bring out the sum:

= inf
θ,Pi,j

∑
i,j

θi,j

∫
Rd×Rd

∥X−Y∥pp Pci,j (X,Y)dXdY (7)

Lastly, due to the acyclicity of PCs, we can separate out infθi,Pi,j
into infθi infPi,j and push the

latter infimum inside the sum.

= inf
θ

∑
i,j

θi,j(inf
Pi,j

∫
Rd×Rd

∥X−Y∥pp Pci,j (X,Y)dXdY) (8)

13
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Thus, we can solve the inner optimization problem first (corresponding to the optimization
problems at the children), and then the outer problem (the optimization problem at the current
node). Therefore, a bottom-up recursive algorithm is exact.

B.5. Proof of the Marginal-Matching Properties of Coupling Circuits

Theorem 3 Let P and Q be compatible PCs. Then any feasible coupling circuit C as defined in
Def. 4 matches marginals to P and Q.

Proof We will prove this by induction. Our base case is two corresponding input nodes n1, n2 ∈
P,Q. The sub-circuit in C rooted at the product of n1 and n2 is a product node with copies of n1

and n2 as children, which clearly matches marginals to n1 and n2.
Now, let n1 and n2 be arbitrary corresponding nodes in P and Q, and assume that the product

circuits for all children of the two nodes match marginals. We then have two cases:

Case 1: n1, n2 are product nodes Since the circuits are compatible, we know that n1 and n2 have
the same number of children - let the number of children be k. Thus, let c1,i represent the i’th child
of n1, and let c2,i represent the i’th child of n2. The coupling circuit of n1 and n2 (denoted n) is
a product node with k children, where the i’th child is the coupling circuit of c1,i and c2,i (denoted
ci).

By induction, the distribution Pci(X,Y) at each child coupling sub-circuit matches marginals
to the original sub-circuits: Pci(X) = Pc1,i(X), and Pci(Y) = Pc2,i(Y). n1 and n2 being prod-
uct nodes means that Pn1(X) =

∏
i Pc1,i(X) and Pn2(Y) =

∏
i Pc2,i(Y), so thus Pn(X) =∏

i Pci(X) =
∏

i Pc1,i(X) and Pn(Y) =
∏

i Pci(Y) =
∏

i Pc2,i(Y). Therefore, n matches
marginals to n1 and n2.

Case 2: n1, n2 are sum nodes Let the number of children of n1 be k1 and the number of children
of n2 be k2. Let c1,i represent the i’th child of n1, and let c2,j represent the j’th child of n2. The
coupling circuit of n1 and n2 (denoted n) is a sum node with k1 ∗ k2 children, where the (i, j)’th
child is the coupling circuit of c1,i and c2,j (denoted ci,j).

By induction, the distribution Pci,j (X,Y) at each child coupling sub-circuit matches marginals
to the original sub-circuits: Pci,j (X) = Pc1,i(X), and Pci,j (Y) = Pc2,j (Y). n1 and n2 being sum
nodes means that Pn1(X) =

∑
i θiPc1,i(X) and Pn2(Y) =

∑
j θjPc2,j (Y), so thus

Pn(X) =
∑
i

∑
j

θi,jPci,j (X) =
∑
i

∑
j

θi,jPc1,i(X) =
∑
i

θiPc1,i(X) = Pn1(X)

Pn(Y) =
∑
i

∑
j

θi,jPci,j (Y) =
∑
i

∑
j

θi,jPc2,j (Y) =
∑
j

θjPc2,j (Y) = Pn2(Y) (9)

Note that we rewrite
∑

i θi,j = θj and
∑

j θi,j = θi by the constraints on coupling circuits.
Therefore, n satisfies marginal constraints.
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B.6. Proving that Computing Minimum Wasserstein Parameters is NP-Hard

Theorem 4 Computing the parameters of probabilistic circuit C is NP-hard.

Proof We will prove this hardness result by reducing k-means clustering - which is known to be
NP-hard [4] - to learning the minimum Wasserstein parameters of a circuit. Consider a set of points
x1...xn ∈ Rd and a number of clusters k. We will construct a Gaussian PC C associated with this
problem as follows: the root of C is a sum node with k children; each child is a product node with d
univariate Gaussian input node children (so each product node is a multivariate Gaussian comprised
of independent univariate Gaussians). Minimizing the parameters of C over xi corresponds to
finding a routing of data points xi that minimizes the total distance between all xi’s and the mean
of the multivariate Gaussian child each xi is routed to. A solution to k-means can be retrieved by
taking the mean of each child of the root sum node to be the center of each of k clusters.

B.7. Deriving a Closed-Form Solution to the Linear Programs for Parameter Updates

For a sum node s with m children s1...sm and a dataset with n datapoints d1...dn each with weight
wj , we construct a linear program with m ∗ n variables xi,j as follows:

min
m∑
i=1

n∑
j=1

Esi [∥X− dj∥22]xi,j s.t.
m∑
i=1

xi,j = wj ∀j

Note that the constraints do not overlap for differing values of j. Thus, we can break this problem
up into n smaller linear programs, each with the following form:

min
m∑
i=1

Esi [∥X− dj∥22]xi,j s.t.
m∑
i=1

xi,j = wj

The only constraint here requires that the sum of objective variables is equal to wj . Thus, the
objective is minimized when xi,j corresponding to the smallest coefficient takes value wj and all
other variables take value 0. Thus, the solution to the original linear program can be thought of as
assigning each data point to the sub-circuit that has the smallest expected distance to it.

B.8. Proof that the Wasserstein Minimization Algorithm has a Monotonically Decreasing
Objective

Theorem 5 For a circuit rooted at n and dataset D routed to it, the Wasserstein distance between
the empirical distribution of D and sub-circuit rooted at n will not increase after an iteration of
algorithm A.3

Proof Let En[D] denote the Wasserstein distance between the empirical distribution of D and sub-
circuit rooted at n before an iteration of algorithm A.3, and let En′ [D] denote the distance after an
iteration. We will show by induction that En′ [D] ≤ En[D]. Our base case is when n is an input
node. By setting the parameters of n to as closely match the empirical distribution of D as possible,
there is no parameter assignment with a lower Wasserstein distance to D so thus one iteration of
algorithm A.3 does not increase the objective value.

Recursively, we have two cases:
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Figure 2: Runtime for algorithms computing CW2 and MW2. The first pair of graphs considers only tree-
shaped PCs, whereas the second pair considers graph-shaped PCs as well. Note that the right-side graphs use
logarithmic scaling. Number of circuit edges represents the number of edges in both circuits combined, and
each data point represents an average over 100 runs.

Case 1: n is a product node By the decomposition of the Wasserstein objective, we have that
En[D] =

∑
i Eci [D], which is ≥

∑
i Ec′i

[D] = En′ [D] by induction.

Case 2: n is a sum node By the decomposition of the Wasserstein objective, we have that
En[D] =

∑
i θi Eci [Di] (where Di ⊆ D is the data routed to ni), which is ≥

∑
i θi Ec′i

[Di] =
En′ [D] by induction. Our parameter updates also update each Di → D′

i, but that also guaran-
tees that Ec′i

[Di] ≥ Ec′i
[D′

i] since Di = D′
i is within the feasible set of updates for Di. Thus,

En[D] ≥ En′ [D], so therefore the Wasserstein objective is monotonically decreasing.

Appendix C. Additional Experimental Results

C.1. Additional CWp Runtime Results

To evaluate the runtime of computing CW2, we consider a fixed variable scope and randomly con-
struct a balanced region tree for the scope. Then, we randomly construct two PCs for this region
tree; the PCs are constructed with a fixed sum node branching factor and fixed rejoin probability
- which is the chance that a graph connection to an existing node in the PC will be made to add a
child rather than creating a new node for the child, and is 0% in the case of trees and 50% in the
case of graphs. We implement our algorithm as detailed in appendix A.1 to compute the optimal
transport map and value for CW2, as well as also implement a PC-to-GMM unrolling algorithm and
the algorithm proposed by Chen et al. [2] to compute MW2 [5]. The value obtained for each circuit
size is averaged over 100 runs, and we omit data points for experiments that ran out of memory. See
Figure 2 for the graphs.

The experiments were conducted on a machine with an Intel Core i9-10980XE CPU and 256Gb
of RAM (these experiments made no use of GPUs); linear programs were solved using Gurobi [7].
Each experiment was conducted with a fixed random seed, and the parameter values for sum nodes
were clamped to be greater than 0.01 for numeric stability.

C.2. Comparing CW2 and MW2

To evaluate the proximity of CW2 to MW2, we adopt the same framework as we did for runtime
experiments to randomly construct compatible PCs and compute CW2 and MW2 between them.
Due to the exponential blowup of computing MW2 it quickly becomes impractical to compute (see
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Figure 3: Ratio of CW2

MW2
, lower is better. Empirically, the gap between CW2 and MW2 grows roughly linearly

in the size of the circuit. The hue of each point represents the circuit depth, with lighter points being a higher
depth. Circuit depth does not seem to affect the ratio significantly.

runtime experiments in Appendix C.1); however, we still attempt to provide some empirical insight
into the difference between CWp and MWp.

We note that the ratio CW2
MW2

appears to grow linearly in the size of the circuit; furthermore, for
graph-shaped circuits, the ratio is closer to 1 than for tree-shaped circuits. Figure 3 provides an
in-depth look at these observations.

C.3. Visualizing Transport Maps between Circuits

Since our algorithm does not only return CWp between two circuits but also the corresponding
transport plan, we can visualize the transport of point densities between the two distributions by
conditioning the coupling circuit on an assignment of random variables in one circuit. We can
similarly visualize the transport map for an arbitrary region in one PC to another by conditioning on
the random variable assignments being within said region. See Figure 4 for an example.

Since the transport plan for a single point (or region of points) is itself a PC, we can query it like
we would any other circuit; for example, computing maximum a posteriori - which is tractable if the
original two circuits are marginal-deterministic [3] - for the transport plan of a point corresponds
to the most likely corresponding point in the second distribution for the given point. Because a
coupling circuit inherits the structural properties of the original circuit, it is straightforward to un-
derstand what queries are and are not tractable for a point transport map.

C.4. Empirical Wasserstein Parameter Estimation Experimental Results

To understand the effectiveness of parameter estimation via minimizing the empirical Wasserstein
distance, we evaluated the performance of PCs trained using the HCLT [10] structure with cate-
gorical input distributions on the MNIST [8] dataset. The baseline for this experiment is the EM
algorithm for circuits [6].

We first generated the structure of the circuits using the HCLT implementation provided in
PyJuice [11], varying the size of each block to increase or decrease the number of parameters.
We then learned two sets of circuit parameters per structure per block size: one set of parameters
was learned using mini-batch EM with a batch size of 1000, and the other set was learned using
an implementation of the algorithm detailed in Appendix A.3. We perform early stopping for the
EM algorithm that stops training once the point of diminishing returns has been surpassed. All
experiments were ran on a single NVIDIA L40s GPU.
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Figure 4: Visualization of transporting the indicated points from the distribution parameterized by PC 1 to
the distribution parameterized by PC 2. The top two figures visualize the distributions, while the bottom two
figures visualize where the point density indicated is transported to from the first to the second distribution.

Figure 5: Visualization of the performance of PCs learned using Expectation Maximization (red triangles)
and Wasserstein Minimization (our approach, blue dots). The bits-per-dimension (bpd) of the learned circuits
does not decrease significantly with an increase in circuit size for circuits learned using the empirical Wasser-
stein distance.
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When using bits-per-dimension as a benchmark, we observe that our algorithm performs nearly
as well as EM for small circuits (block size of 4). However, as the size of the circuit increases,
the performance of our algorithm hardly improves; empirically, our approach to Wasserstein min-
imization does not make good use of the larger parameter space of larger models, with models
that are orders of magnitude larger having better but still comparable performance to their smaller
counterparts. We refer to Figure 5 for more details.
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