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Abstract
The quadratic computational complexity in the self-attention mechanism of popular transformer
architectures poses significant challenges for training and inference, particularly in terms of effi-
ciency and memory requirements. Towards addressing these challenges, this paper introduces a
novel fast computation method for gradient calculation in multi-layer transformer models. Our ap-
proach enables the computation of gradients for the entire multi-layer transformer model in almost
linear time n1+o(1), where n is the input sequence length. This breakthrough significantly reduces
the computational bottleneck associated with the traditional quadratic time complexity. Our theory
holds for any loss function and maintains a bounded approximation error across the entire model.
Furthermore, our analysis can hold when the multi-layer transformer model contains many practical
sub-modules, such as residual connection, casual mask, and multi-head attention. By improving
the efficiency of gradient computation in large language models, we hope that our work will fa-
cilitate the more effective training and deployment of long-context language models based on our
theoretical results.

1. Introduction

Large Language Models (LLMs), such as ChatGPT [99], GPT-4 [1], Claude 3.5 [7], Llama 3.1 [83,
112], and others, have demonstrated immense potential to enhance various aspects of our daily lives,
e.g., conversation AI [78], AI agent [18, 124], search AI [93], AI assistant [29, 57, 89, 135] and
many so on. One of the most emergent abilities of LLMs is dealing with long-context information,
a format that is crucial for recording material like academic papers, official reports, legal documents,
and so on. LLMs have proven adept at tackling long-context tasks, including Retrieval Augmented
Generation (RAG) [37, 61], zero-shot summarization [19, 81, 139, 142], and maintaining very long-
term conversations [88, 128, 130], and so on. This proficiency has necessitated the development of
long-context modeling capabilities within LLMs.

LLMs are mainly based on Transformer architecture, the key module of which is the self-
attention mechanism. In attention computation, we will compute the attention score between each
pair of tokens, which is the complexity bottleneck during long context training and inference. In
detail, we need to spend O(n2d) running time for each self-attention block, which is quadratic
in n, where n is the length of the context token and d is the hidden feature dimension of the
model. For example, LLaMA 3.1 405B [83], one of the cutting-edge LLMs, supports n =128k
and d = 4096 taking 30.84M GPU training hours, which underscores the need for more efficient
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training processes for such extensive context models. Given the extensive context lengths of LLMs,
this quadratic scaling results in several critical challenges: (1) a marked decrease in training ef-
ficiency [43, 51, 86]; (2) substantial memory requirements to accommodate the large quadratic
gradient matrices [63, 85]; and (3) significant energy usage, which in turn contributes to higher
carbon dioxide emissions [98, 106].

One seminal work [3] showed that the self-attention inference can be approximated in almost
linear time. However, this result is for the inference time but does not address the main chal-
lenge, which is the expensive computation in the training time. In this work, we address this main
challenge, by proving that the quadratic computational complexity in the back-propagation of self-
attention can be approximated in almost linear time. This suggests we may be able to save the
substantial resources required for training Large Language Models.

1.1. Key background

We first introduce a basic background, starting with defining the softmax function.

Definition 1 (Softmax) Let z ∈ Rn. We define Softmax : Rn → Rn satisfying

Softmax(z) := exp(z)/⟨exp(z),1n⟩.

Here we apply exp to a vector entry-wise.

Then, we introduce the definition of a single self-attention layer.

Definition 2 (Single layer self-attention) Let n be the number of tokens and d be the hidden di-
mension size. Let X ∈ Rn×d denote the input data matrix. Let Q := XWQ,K := XWK , V :=
XWV ∈ Rn×d. Let W := WQW

⊤
K ∈ Rd×d be the key-query weight matrix, and let WV ∈ Rd×d

be the value weight matrix. The self-attention function Attn(Q,K, V ) is:

Attn(Q,K, V ) = Softmax(QK⊤/d)V.

We remark that we apply Softmax to each row of the n× n matrix.
The above Attn function takes Q,K, V as parameters, and can be re-parameterized by input

matrix X and then re-written in the following sense

Attn(X) := f(X) ·X ·WV ,

where (1) A := exp(XWX⊤/d) ∈ Rn×n and exp is applied element-wise, (2) D := diag(A1n) ∈
Rn×n, and (3) f(X) := D−1A ∈ Rn×n is the attention matrix.

In contemporary LLMs, the architecture typically incorporates multiple layers of transformers.
Consequently, in order to design a fast training algorithm for the entire model, it is imperative
to examine the self-attention layers within these multi-layer transformer structures. We provide a
formal definition for multi-layer self-attention as follows.

Definition 3 (Multi-layer transformer) Let m denote the number of transformer layers in the
model. Let X be the input sentence. Let gi denote components other than self-attention in the i-th
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transformer layer. Let Attni denote the self-attention module in the i-th transformer layer (see also
Definition 2). We define an m-layer transformer as

Fm(X) := gm ◦ Attnm ◦ gm−1 ◦ Attnm−1 ◦ · · · ◦ g1 ◦ Attn1 ◦ g0(X),

where ◦ denotes function composition.

In Definition 3, the gi includes the layer norm, MLP, residual connection, dropout, positional
encoding, multi-head concatenation, and other operations. All forward and backward computations
of these modules can be run in linear time with respect to n. Thus, in this work, we mainly focus on
the acceleration of self-attention module. Specifically, as shown in Definition 2, the n× n attention
matrix f(X) dominates the computational complexity, introducing a quadratic bottleneck. In the
exact computation case, if the attention matrix is full rank, no acceleration is possible. However,
by compromising negligible accuracy, designing a fast sub-quadratic algorithm becomes feasible.
Fortunately, by employing the polynomial kernel approximation method from Aggarwal and Alman
[2], we can approximate the attention matrix and achieve an almost linear time n1+o(1) algorithm,
effectively breaking the quadratic bottleneck.

1.2. Our contributions

We now state our main contributions as follows:

Theorem 4 (Main result, informal version of Theorem 9) Let n be the number of tokens, and
d be the hidden dimension size. We assume d = O(log n) and each number in matrices can be
written using O(log n) bits. There exists an algorithm (Algorithm 1) that can compute the gradient
of multi-layer self-attention (see also Definition 3) in almost linear time n1+o(1)d = n1+o(1), where
the approximation error of entire model can be bounded in 1/ poly(n).

Our assumption is mild when the context length n is large, as we usually see feature dimension
d as a constant, which is also used in Alman and Song [3, 4]. Our results indicate that large language
models (LLMs) can be trained in almost linear time n1+o(1) and maintain a robust approximation
guarantee, while the traditional way takes Ω(n2) time. This advancement is realized through the ap-
plication of polynomial kernel approximation [3, 4]. To be more specific, by leveraging the inherent
sparsity within the dense attention matrix, we are able to perform efficient low-rank approxima-
tion, thereby significantly accelerating the computation of the dense matrices. Our framework is
applicable to any loss function, making it universally applicable. Furthermore, our analysis can
hold when the multi-layer transformer model contains many practical sub-modules, such as residual
connection, casual mask, and multi-head attention (Section 4).

Our contributions are as follows:

• We introduce a fast computation method that allows the gradient of each self-attention layer to
be approximated in almost linear time n1+o(1) with 1/poly(n) error, breaking the quadratic
time complexity bottleneck (Theorem 8).

• We extend our single-layer results to module-wise gradient computation so that our Algo-
rithm 1 can provide approximated gradient computation in m ·n1+o(1) time for m-layer trans-
former. Furthermore, the approximation of the gradient diverges from the exact gradient by
an error of 1/poly(n) when considered across the entire model (Theorem 9).
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• Additionally, our analysis can hold when the multi-layer transformer model contains residual
connection, casual mask, and multi-head attention (Section 4).

2. Preliminary

Notations For any positive integer n, we use [n] to denote set {1, 2, · · · , n}. For two vectors
x ∈ Rn and y ∈ Rn, we use ⟨x, y⟩ to denote the inner product between x, y. Namely, ⟨x, y⟩ =∑n

i=1 xiyi. We use ei to denote a vector where only i-th coordinate is 1, and other entries are 0. For
each a, b ∈ Rn, we use a ⊙ b ∈ Rn to denote the Hardamard product, i.e. the i-th entry of (a ⊙ b)
is aibi for all i ∈ [n]. We use 1n to denote a length-n vector where all the entries are ones. We use
∥A∥∞ to denote the ℓ∞ norm of a matrix A ∈ Rn×d, i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use
poly(n) to denote polynomial time complexity with respective to n.

2.1. Loss function

The loss function is the optimization objective in the training of LLMs, and we define it as follows.

Definition 5 (Loss function L(X)) For some input matrix X ∈ Rn×d, we define the one-unit loss
function ℓ(X)j,k : Rn×d → R, for any j ∈ [n], k ∈ [d]. Furthermore, we define the overall loss
function L(X), such that

L(X) =
n∑

j=1

d∑
k=1

ℓ(X)j,k

2.2. Close forms of gradient components

In training large language models (LLMs), updating the model necessitates computing the gradient
of weights for every layer. Consequently, it becomes essential to derive the closed-form expressions
for all corresponding gradient components with respect to the weights of the query, key, and value
matrices in the transformer model. We first define some intermediate variables before detailing
these gradient components in each self-attention transformer layer.

Definition 6 (Intermediate variables Ti) Let m denote the number of transformer layers in the
model. Let m-layer self-attention transformer be defined as Definition 3. Let d denote the hidden
dimension. Let n denote the sequence length. Let X ∈ Rn×d be the input sentence. Let gi denote
components other than self-attention in the i-th transformer layer. Let Attni denote the self-attention
module in the i-th transformer layer (see also Definition 2).

For i ∈ {0, 1, 2, · · · ,m}, we define Ti(X) ∈ Rn×d be the intermediate variable (hidden states)
output by i-th layer self-attention transformer. Namely, we have

Ti(X) =

{
g0(X), i = 0;

(gi ◦ Attni)(Ti−1(X)), i ∈ [m].

Here, we use ◦ to denote function composition.
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Then, we are ready to introduce the close forms of the three gradient components in a single
self-attention transformer layer. Notably, according to the chain rule, the gradient of the k-th trans-
former layer in LLMs depends on the gradient components from the (k + 1)-th transformer layer.
The gradient can be calculated for every transformer layer by combining the upstream and local
gradients. The close forms of the gradients for each layer in multi-layer transformers are formalized
in the following lemma (Lemma 7).

Lemma 7 (Close form of gradient components, informal version of Lemma 18) Let L(X) be
defined as Definition 5. Let Wi = WQiW

⊤
Ki
,WVi ∈ Rd×d denote the attention weight in the

i-th transformer layer. Let Ti(X) denote the intermediate variable output by i-th self-attention
transformer layer (see Definition 6). Let Gi ∈ Rn×d denote the gradient matrix resulting from the
application of the chain rule up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) . For j ∈ [n], k ∈ [d],

let Gi(j, k) denote the (j, k)-th entry of Gi, let dAttni(Ti−1(X))j,k
dTi−1(X) ∈ Rn×d denote the gradient of

(j, k)-th entry of Attni(Ti−1(X)). Then, we can show that

• Part 1.

dL(X)

dTi−1(X)
=

n∑
j=1

d∑
k=1

Gi(j, k) ·
dAttni(Ti−1(X))j,k

dTi−1(X)
.

• Part 2.

dL(X)

dWi
=

n∑
j=1

d∑
k=1

Gi(j, k) ·
dAttni(Ti−1(X))j,k

dWi
.

• Part 3.

dL(X)

dWVi

=

n∑
j=1

d∑
k=1

Gi(j, k) ·
dAttni(Ti−1(X))j,k

dWVi

.

Based on the above close forms of three gradient components, we can move on to our main
results smoothly.

3. Main Result

3.1. Fast computing for single layer

In the case of single-layer attention, we provide our theorem that state the three gradient components
can be calculated in almost linear time with negligible error.

Theorem 8 (Single-layer gradient approximation) We assume d = O(log n) and each number
in matrices can be written using O(log n) bits. Let L(X) be defined as Definition 5. Suppose we
have a single-layer self-attention transformer model (m = 1 in Definition 3). We can approximate
one-layer self-attention for three gradient components, i.e. dL(X)

dX , dL(X)
dW and dL(X)

dWV
, in n1+o(1)

time with 1/ poly(n) error.

Proof We finish the proof by Lemma 11, 12 and 13.
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3.2. Fast computing for multi-layer transformers

Based on the results demonstrated in previous sections, we are ready to introduce our main result:
the whole transformer model can be approximated in almost linear time.

Theorem 9 (Main result, formal version of Theorem 4) Let m denote the number of transformer
layers. We assume d = O(log n) and each number in matrices can be written using O(log n) bits.
We can show that, for any i ∈ [m], all the gradient components (see also Lemma 7) of the i-th
layer can be computed by Algorithm 1 in almost linear time n1+o(1), and the approximation error
of entire m layer transformer model can be bounded by 1/poly(n).

Proof The theorem can be proved by directly combining Theorem 8 and Lemma 15.

Theorem 9 demonstrates that, during the training of a multi-layer transformer model, at each
training iteration, the gradient computation for the weight matrices of each layer can be performed
in almost linear time n1+o(1). This result supports the feasibility of fast training for any transformer-
based LLMs. We achieve acceleration in multi-layer transformer networks primarily through the
application of the chain rule during back-propagation. By extending our single-layer transformer
result to each individual layer, we ensure that gradients can be efficiently propagated from the final
loss L(X) to the initial input X . This process is accomplished within almost linear time. For a
detailed illustration, please refer to Algorithm 1.

4. Extension

Multi-head attention and residual connections. Multi-head attention and residual connections
are important components in attention mechanisms. While these components were not involved in
our initial analysis for simplicity, incorporating them into our algorithm is straightforward. The de-
tailed analysis of incorporating residual connection with our framework can be found in Section M
and Lemma 85. For the synergy with multi-head attention, we provide comprehensive analysis
in Section N and Lemma 89. Our algorithm maintains the capability to compute gradients for
multi-layer transformers with multi-head attention and residual connection in almost linear time,
suggesting that it can be readily adapted to more practical transformer models.

Causal attention mask. The causal attention mask is critical to prevent transformers from “cheat-
ing” during training by ensuring future information is not used. The full-rank characteristic of the
causal attention mask poses challenges for low-rank approximations. Nevertheless, we have iden-
tified a method to accelerate the computation of causal masked attention by exploiting its inherent
properties, as demonstrated in Liang et al. [72], remaining almost linear time complexity. More
detailed analysis can be found in Section L and Lemma 81 and 82.

5. Conclusion

The attention mechanism in transformer models inherently has quadratic time complexity with re-
spect to the input token length. In this work, we propose a novel Algorithm 1, which can ap-
proximately train a multi-layer transformer model in almost linear time, introducing only a small
error. Moreover, our algorithm is compatible with any loss function, practical sub-modules (resid-
ual connection, casual mask, multi-head attention). We believe our theoretical findings will play an
important role in accelerating the training of LLMs in the future.
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and memory-efficient exact attention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344–16359, 2022.

[23] Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic at-
tention sparsification algorithms for over-parameterized feature dimension. arXiv preprint
arXiv:2304.04397, 2023.

[24] Yichuan Deng, Zhao Song, Shenghao Xie, and Chiwun Yang. Unmasking transformers: A
theoretical approach to data recovery via attention weights. arXiv preprint arXiv:2310.12462,
2023.

[25] Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen.
Get more with less: Synthesizing recurrence with kv cache compression for efficient llm
inference. arXiv preprint arXiv:2402.09398, 2024.

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,

8



MULTI-LAYER TRANSFORMERS GRADIENT CAN BE APPROXIMATED IN ALMOST LINEAR TIME

et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[27] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti,
Liangzhen Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al.
Layer skip: Enabling early exit inference and self-speculative decoding. arXiv preprint
arXiv:2404.16710, 2024.

[28] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
formers for high-resolution image synthesis. In Forty-first International Conference on Ma-
chine Learning, 2024.

[29] Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin,
and Jiaxuan You. How far are we from agi. arXiv preprint arXiv:2405.10313, 2024.

[30] Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A practical survey on faster
and lighter transformers. ACM Computing Surveys, 55(14s):1–40, 2023.

[31] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[32] Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-
training quantization and pruning. Advances in Neural Information Processing Systems, 35:
4475–4488, 2022.

[33] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately
pruned in one-shot. In International Conference on Machine Learning, pages 10323–10337.
PMLR, 2023.

[34] Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regres-
sion. arXiv preprint arXiv:2303.16504, 2023.

[35] Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention
computation. arXiv preprint arXiv:2307.08045, 2023.

[36] Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention computation.
In Neurips Safe Generative AI Workshop 2024, 2024.

[37] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2023.

[38] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model
tells you what to discard: Adaptive kv cache compression for llms. arXiv preprint
arXiv:2310.01801, 2023.

[39] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

9



MULTI-LAYER TRANSFORMERS GRADIENT CAN BE APPROXIMATED IN ALMOST LINEAR TIME

[40] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahadevan, and Ab-
hinav Shrivastava. Layouttransformer: Layout generation and completion with self-attention.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1004–
1014, 2021.

[41] Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir
Zandieh. Hyperattention: Long-context attention in near-linear time. In The Twelfth In-
ternational Conference on Learning Representations, 2024.

[42] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. Advances in neural information processing systems, 28, 2015.

[43] Nan He, Hanyu Lai, Chenyang Zhao, Zirui Cheng, Junting Pan, Ruoyu Qin, Ruofan Lu, Rui
Lu, Yunchen Zhang, Gangming Zhao, et al. Teacherlm: Teaching to fish rather than giving
the fish, language modeling likewise. arXiv preprint arXiv:2310.19019, 2023.

[44] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.

[45] Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu.
On sparse modern hopfield model. In Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS), 2023.

[46] Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po
Wang, and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In
Forty-first International Conference on Machine Learning (ICML), 2024.

[47] Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric
modern hopfield models. arXiv preprint arXiv:2404.03900, 2024.

[48] Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of
modern hopfield models: A fine-grained complexity analysis. In Forty-first International
Conference on Machine Learning (ICML), 2024.

[49] Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computa-
tional limits of low-rank adaptation (lora) for transformer-based models. arXiv preprint
arXiv:2406.03136, 2024.

[50] Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably
efficient criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079,
2024.

[51] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small lan-
guage models with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

[52] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry.
Accelerated sparse neural training: A provable and efficient method to find n: m transposable
masks. Advances in neural information processing systems, 34:21099–21111, 2021.

10



MULTI-LAYER TRANSFORMERS GRADIENT CAN BE APPROXIMATED IN ALMOST LINEAR TIME

[53] Tian Jin, Michael Carbin, Dan Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Prun-
ing’s effect on generalization through the lens of training and regularization. Advances in
Neural Information Processing Systems, 35:37947–37961, 2022.

[54] Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers
via sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

[55] Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the com-
putational complexity of self-attention. In International Conference on Algorithmic Learning
Theory, pages 597–619. PMLR, 2023.

[56] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[57] Tzu-Sheng Kuo, Aaron Lee Halfaker, Zirui Cheng, Jiwoo Kim, Meng-Hsin Wu, Tongshuang
Wu, Kenneth Holstein, and Haiyi Zhu. Wikibench: Community-driven data curation for
ai evaluation on wikipedia. In Proceedings of the CHI Conference on Human Factors in
Computing Systems, pages 1–24, 2024.

[58] N Lee, T Ajanthan, and P Torr. Snip: single-shot network pruning based on connection
sensitivity. In International Conference on Learning Representations. Open Review, 2019.

[59] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 3045–3059, 2021.

[60] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–
19286. PMLR, 2023.

[61] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
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Appendix
Roadmap. In Section A, we offer the related work. In Section B, we provide a remark for

our definition of loss function L(X), showing that the most popular cross-entropy loss function is
a special case of our general loss function definition. In Section C, we explain the techniques we
employ, including low-rank approximation, some tricks for accelerating computation of gradients,
and an analysis of the approximation error. In Section D, we discuss more extensions our algorithm,
where we show that our algorithm facilitates the prompt tuning of LLMs, and preserves the poten-
tial of combining with concurrent hardware acceleration techniques. In Section E, we provide a
detailed discussion about several potential extensions of our framework. In Section F, we introduce
basic notations and concepts used in our paper, along with the low-rank approximation technique
introduced in Alman and Song [3] and Alman and Song [4]. In Section G, we provide details about
how we integrate the gradient of Ti(X) into matrix form. In Section H, we explain how to apply
the low-rank approximation technique to accelerate the computation for the gradient on Ti(X). In
Section I, we extend the result of Alman and Song [4] to arbitrary loss functions and accelerate the
computation of gradient on W via the low-rank approximation technique. In Section J, we calculate
the gradient on WV and accelerate the computation of the gradient on WV . In Section K, with the
help of math induction, we analyze the time complexity and the approximation error across the en-
tire model. In Section L, we discuss how our framework can expand to an attention mechanism with
a causal attention mask. In Section M, we provide details about how to integrate our framework with
attention mechanism with the residual connection. In Section N, we argue that, with the addition of
multi-head attention, our algorithm can still achieve almost linear time gradient computation.

Appendix A. Related Work

Beyond the Previous Works Our algorithm exhibits significant advancements over two brilliant
related prior studies, namely Alman and Song [3] and Alman and Song [4]. In Alman and Song [3],
the authors proposed an almost linear time algorithm for computing the forward process of the at-
tention mechanism. In contrast, Alman and Song [4] introduced an almost linear time algorithm for
the backward of attention mechanism. However, Alman and Song [4] has the following limitations:
(1) only computing gradients for a single layer of the attention mechanism, which cannot extend
to multiple layers; (2) calculating gradients with respect to a specific loss, namely the ℓ2 loss; (3)
computing gradients only for the weight matrix Wi (as defined in Definition 2), but ignore other
crucial components such as the MLP layer following attention computation and the activation func-
tion. In our work, we have the following improvements beyond Alman and Song [4]: (1) we enable
almost linear time gradient computation across an entire transformer layer, incorporating both the
MLP layer and the activation function; (2) our algorithm supports gradient calculation for any loss
function L(X) (see Definition 5); (3) we extend the gradient calculation to include not only Wi but
also Ti(X) and WVi . These advancements collectively demonstrate a substantial leap forward from
the methodologies in Alman and Song [3] and Alman and Song [4].

Attention mechanism. Attention mechanisms, including self-attention and cross-attention, are
pivotal techniques employed in state-of-the-art neural networks. Since it was introduced in Vaswani
et al. [114], it has gained widespread adoption across various domains. In particular, it is integral to
decoder-only LLMs [96] and the Vision Transformer (ViT) architecture [26]. The former has been
instrumental in the remarkable success of LLMs, while the latter has significantly advanced the
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Algorithm 1 Almost Linear Time (ALT) Multi-layer Transformer Gradient Approximation Algo-
rithm

1: datastructure ALTGRAD ▷ Theorem 8 and 9
2: members
3: n ∈ R: the length of input sequence
4: d ∈ R: the hidden dimension
5: m ∈ R: the number of transformer layers
6: L(X) ∈ R: the loss function ▷ Definition 5
7: Ti ∈ Rn×d: the output of i-th transformer layer
8: Attni ∈ Rn×d: the output that pass i-th attention layer
9: Wi,WVi ∈ Rd×d : the weight matrices in i-th transformer layer

10: end members
11:

12: procedure SINGLEGRAD(dL(X)
dTi

) ▷ Theorem 8

13: Compute Gi =
dL(X)
dAttni

via Lemma 14 ▷ n1+o(1) time

14: Compute D̃6, D̃7, D̃8, D̃2, D̃4 via Lemma 55, 56, 58, 60 ▷ n1+o(1) time
15: /* Approximate dL(X)

dTi−1
, Lemma 11 */

16: g̃t ← D̃6 + D̃7 + D̃8 + D̃2 + D̃4 ▷ n1+o(1) time
17: /* Approximate dL(X)

dWi
, Lemma 12 */

18: Construct U3, V3 via Lemma 12 ▷ n1+o(1) time
19: g̃w ← (T⊤

i−1U3) · (V ⊤
3 Ti−1) ▷ n1+o(1) time

20: /* Approximate dL(X)
dWVi

, Lemma 13 */

21: Construct U1, V1 via Lemma 27 ▷ n1+o(1) time
22: g̃v ← (T⊤

i−1U1) · (V ⊤
1 Gi) ▷ n1+o(1) time

23: return g̃t, g̃w, g̃v ▷ g̃t, g̃w, g̃v are the approximated dL(X)
dTi−1

, dL(X)
dWi

, dL(X)
dWVi

in next iteration,
respectively.

24: end procedure
25:

26: procedure MULTIGRAD(L(X)) ▷ Theorem 9
27: Compute dL(X)

dTm
▷ O(nd) time

28: g̃t ← dL(X)
dTm

29: for i = m→ 1 do
30: g̃t, g̃w, g̃v ← SINGLEGRAD (g̃t)
31: Optimize Wi via g̃w using optimizer
32: Optimize WVi via g̃v using optimizer
33: end for
34: end procedure
35: end datastructure

field of computer vision, encompassing applications such as image generation [97, 119, 121], de-
tection [68, 141], segmentation [111, 134], and layout generation [14, 40, 118]. Moreover, attention
mechanism can be integrated into multi-modal models [77, 117, 127, 136], math reasoning [62],
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diffusion models [28, 50, 75, 87, 94], differential privacy [10, 76, 101, 103, 120] and many other
techniques.

Long-context modeling in LLMs. As LLMs grow in size and capability, in-context learning
(ICL) [91, 102, 132] has become a preferred method for directing these models to perform a va-
riety of tasks, as opposed to the resource-intensive process of fine-tuning. Nonetheless, research
has indicated that longer prompts can impair LLMs performance due to the limitation on maximum
sequence length during pre-training [65]. Consequently, extending the maximum sequence length
during pre-training and fine-tuning stages is imperative. Enhancing training efficiency is crucial
given the prevalent use of the Transformer architecture in LLMs, which incurs a quadratic com-
putational cost relative to sequence length. Addressing this challenge, some studies have explored
continued fine-tuning of LLMs with extended context lengths [113], while others have experimented
with the interpolation and extrapolation capabilities of positional embedding [16, 95, 107]. How-
ever, these approaches have not fundamentally addressed the core issue: the quadratic computational
cost associated with sequence length in the attention mechanism [30, 55]. In this study, we delve
into accelerating the attention mechanism, thereby addressing the long-context modeling issue at its
essence.

Attention acceleration. Attention mechanism has faced criticism due to its quadratic time com-
plexity with respect to context length, a concern exacerbated by the increasing length in modern
large language models (LLMs) such as GPT-4 [1], Claude 3.5 [7], Llama 3.1 [83, 112], etc. Nev-
ertheless, this limitation can be circumvented by employing polynomial kernel approximation tech-
niques [2], which enable the derivation of a low-rank representation of the attention matrix. This
innovation significantly accelerates both the training and inference processes of a single attention
layer, achieving almost linear time complexity [3, 4], while our work supports both training and in-
ference for any multi-layer transformer. Furthermore, this approach can be extended to higher-order
attention mechanisms, i.e., tensor attention, maintaining almost linear time complexity during both
training and inference [5, 77]. Moreover, there are other theoretical approaches. For instance, Liang
et al. [72] introduces the conv-basis method to accelerate attention computation. Han et al. [41]
proposes a near-linear time algorithm under the assumptions of uniform softmax column norms and
sparsity.

Other approaches involve modifying model architectures to enable faster inference, such as
Mamba [21, 39], Linearizing Transformers [90, 138], PolySketchFormer [54], and the Hopfield
Model [45–48, 122, 123, 126] and so on. Another line of work is to prune the weights in a neural
network to reduce running time and memory consumption [9, 11, 17, 31–33, 42, 44, 52, 53, 58,
67, 79, 109, 110, 116]. In addition, specific techniques have been developed to accelerate LLM
generation, including KV-Cache compression [25, 38, 70, 82, 125, 131, 140] and speculative de-
coding [27, 64, 108].

Attention theory. Bahdanau et al. [8] introduced attention mechanisms in NLP, enhancing encoder-
decoder architecture with variable-length vectors to improve machine translation. Building on this,
Luong et al. [84] developed local and global attention variants, further refining NLP tasks. At-
tention mechanisms found diverse applications: Xu et al. [129] applied them to image captioning,
Vaswani et al. [114]’s Transformer model revolutionized NLP by capturing word relationships, and
Veličković et al. [115] incorporated attention into graph neural networks. Recent Large Language
Model research has focused extensively on attention computation [3, 12, 15, 23, 56, 71, 133]. Stud-
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ies by Chen et al. [15], Kitaev et al. [56], Zandieh et al. [133] use Locality Sensitive Hashing for
attention approximation, with Zandieh et al. [133] offering efficient dot-product attention. Brand
et al. [12] and Alman and Song [3] explore static and dynamic attention calculations, while Li
et al. [71] investigates hyperbolic regression regularization. Deng et al. [23] proposes algorithms
for reducing attention matrix dimensionality in LLMs. Attention has also been examined from
optimization and convergence perspectives [34, 69, 104, 137], investigating word co-occurrence
learning [69], regression problems with exponential activation functions [34], attention mechanism
evolution during training [104], and the impact of heavy-tailed noise on stochastic gradient descent
[137]. Theoretical explorations of attention variants include quantum attention [35], tensor attention
[5, 77], and differentially private attention [36, 73, 76].

Appendix B. Remark of Loss Function Definition

Remark 10 Typically, in Definition 5, the most widely used loss function in the LLM training pro-
cedure is the cross-entropy loss function, which can also be viewed as a summation of one unit loss
function.

The output matrix of the multi-layer transformer needs to pass an additional linear layer to map
the hidden dimension d to the vocabulary size dvoc. Assuming dvoc is a constant, the weight matrix
dimensions for this additional MLP layer are d × dvoc. The probability tensor Ypred ∈ Rn×dvoc is
the final output. We denote the ground truth as Ygt ∈ Rn×dvoc corresponding to Ypred. According
to the cross-entropy loss definition, the formula is expressed as

Lcross−entropy(X) = −
n∑

j=1

dvoc∑
k=1

(Ygt)j,k log((Ypred)j,k)

where the summation iterates over all elements, and the ground truth (Ygt)j,k = 1 for the correct
class and 0 otherwise.

Appendix C. Technical Overview

C.1. Low-rank approximation for attention matrix

In this section, we delve into the crucial technique behind our work: the low-rank approximation of
the attention matrix, which is achieved through the polynomial method [2, 6]. Drawing inspiration
from Alman and Song [3], the intuition of this approximation lies in the fact that the attention matrix
f(X) ∈ Rn×n (as defined in Definition 2), also referred to as the similarity matrix in attention
mechanism, can be effectively approximated by low-rank matrices U1, V1 ∈ Rn×k1 , where k1 =
no(1). The naive method for calculating the attention matrix f(X) has a time complexity of O(n2),
whereas the input data X ∈ Rn×d contains only d · n = n1+o(1) entries. This discrepancy suggests
the potential of using low-rank representations of f(X) to design a fast algorithm.

An example of how to use the low-rank representations is the attention forward (Attn(X) :=
f(X)V in Definition 2) as in Alman and Song [3]: approximating f(X) along does not lead to fast
algorithm, since U1V

⊤
1 still requires n × n entries. But by using the structure of the whole, we

can do it faster. By expressing f(X) as U1V
⊤
1 , the attention forward becomes U1︸︷︷︸

n×k1

V ⊤
1︸︷︷︸

k1×n

V︸︷︷︸
n×d

. It

is well known that different multiplication sequences can lead to dramatically different numbers of
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operations required, so the order of matrix multiplications matters. We first perform V ⊤
1 V ∈ Rk1×d

and this cost O(k1nd) = n1+o(1) time. Then we perform U1V
⊤
1 V costing O(nk1d) = n1+o(1)

time.
This method significantly reduces the computation time of the attention forward from O(n2) to

almost linear time, n1+o(1). Driven by this technique and analyzing the close forms of the gradients,
we can extend the acceleration to the gradient of the entire model.

C.2. Accelerating gradient computation of Ti(X)

Based on the low-rank approximation method mentioned in Section C.1, we can compute the gra-
dient of L(X) with respect to the intermediate variable Ti(X), which denotes the output of the
i-th transformer layer. This computation is critical as it enables us to calculate gradients for other
gradient components because of the chain rule.

Extending to any kind of loss function. According to the findings in Deng et al. [24], the gradient
dL(X)
dTi(X) can be decomposed into five components, namely C6(X), C7(X), C8(X), C2(X), C4(X),
as detailed in Lemma 34. However, the gradient result presented in Deng et al. [24] is tailored to
a specific loss function, the ℓ2 loss, limiting its applicability to a narrow range of scenarios. In
this study, we extend the scope of their findings by extending them to apply to any loss function
L(X), as defined in Definition 5. By incorporating Gi =

dL(X)
dAttni(Ti−1(X)) , we derive a closed-form

expression for the gradient of L(X) with respect to Ti(X), which is detailed in Section G.2.

Accelerating the gradient computation. To accelerate the gradient computation for Ti(X), we
need the matrix form of the gradients, as discussed in Section G. This approach is essential for
understanding the underlying mechanisms when applying the low-rank approximation technique in
gradient calculations. Subsequently, using that technique, we can accelerate the gradient compu-
tation for dL(X)

dTi(X) (Lemma 11). By individually applying this technique to each of the five terms,

we demonstrate that each term can be computed in almost linear time, n1+o(1), as shown in Sec-
tions H.1, H.2, H.3, H.4, and H.5.

The next step is to aggregate these terms, as described in Section H.6. Since all five terms are
n × d matrices, the summation of these terms remains almost linear in complexity. Conclusively,
we are safe to argue that for any single-layer transformer, the gradient computation with respect to
the input tensor can be performed in almost linear time n1+o(1), as stated in Lemma 11.

The statement made for a single transformer layer can be readily generalized to any layer
within an m-layer transformer model. For instance, consider the intermediate variables Ti(X) and
Ti−1(X) (as defined in Definition 6), where Ti(X) = (gi ◦ Attni)(Ti−1(X)). Given the gradi-
ent dL(X)

dTi(X) , as established in the previous paragraph, we can compute the gradient with respect to

Ti−1(X), namely dL(X)
dTi−1(X) , in almost linear time n1+o(1). For a multi-layer transformer model, the

above process can be conducted recursively. Thus, we can compute the gradient of the loss function
L(X) on any Ti(X) in almost linear time n1+o(1).

Lemma 11 (Fast computation for dL(X)
dTi(X) , informal version of Lemma 61) Let L(X) be defined

as Definition 5. Let m denote the number of self-attention transformer layers (see Definition 3). Let
Ti(X) denote the intermediate variable output by i-th self-attention transformer layer (see Defini-
tion 6). We show that dL(X)

dTi(X) can be approximated in n1+o(1) time, with 1/ poly(n) approximation
error.
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C.3. Accelerating gradient computation of Wi and WVi

In Section C.2, we detailed the fast computation of gradients for intermediate variables Ti(X).
Given that Wi is defined as the product WQiW

⊤
Ki

(see Definition 2), with WQi and WKi representing
the query and key weight matrices, respectively, the gradients of Wi and WVi represent all trainable
weight matrices in a transformer layer. Consequently, by determining the gradients for Wi and WVi

across each layer, we achieve almost linear time gradient back-propagation throughout multi-layer
transformer models.

Fast gradient computation. The prior study in Alman and Song [4] demonstrated that the gra-
dient of Wi can be computed in almost linear time. We extend their findings by adapting their
approach to accommodate any loss function L(X) (as defined in Definition 5) and further general-
ize their results to include the gradient computation for both Wi and WVi in each transformer layer
(Lemma 12 and 13).

Lemma 12 (Fast computation for dL(X)
dWi

, informal version of Lemma 66) Let L(X) be defined
as Definition 5, and m be the number of self-attention transformer layers (Definition 3). For any
i ∈ [m], let Wi = WQiW

⊤
Ki
,WVi ∈ Rd×d denote the attention weight in the i-th transformer layer.

We show that dL(X)
dWi

can be approximated in n1+o(1) time, with 1/ poly(n) approximation error.

Lemma 13 (Fast computation for dL(X)
dWVi

, informal version of Lemma 70) Let L(X) be defined
as Definition 5, and m be the number of self-attention transformer layers (Definition 3). For any
i ∈ [m], let Wi = WQiW

⊤
Ki
,WVi ∈ Rd×d denote the attention weight in the i-th transformer layer.

We show that dL(X)
dWVi

can be approximated in n1+o(1) time, with 1/ poly(n) approximation error.

C.4. Accelerating gradient computation for multi-Layer transformers

In this section, our focus turns to extending the single-layer transformer result from the previous
section to a multi-layer transformer.

Running time analysis. We derive the closed-form gradient for the non-attention components
within a transformer layer, namely the gi function defined in Definition 3. With the closed-form
gradient of gi established in Lemma 71, we then demonstrate in Lemma 14 that the gradient com-
putation for gi can also be achieved in almost linear time. Given that the number of layers m is
much smaller than n, we can treat m as a constant. Consequently, with respect to running time,
since the computation time for gradients on each layer is n1+o(1), we only need to iteratively repeat
this procedure for m time. Therefore, the overall running time for computing gradients across the
entire model is m · n1+o(1).

Lemma 14 (Computation time for Gi, informal version of Lemma 72) Let Ti(X) be defined as
Definition 6, i.e. Ti(X) = (gi ◦ Attni)(Ti−1(X)). Let Gi ∈ Rn×d denote the gradient matrix
resulting from the application of the chain rule up to the function gi, i.e., Gi = dL(X)

dAttni(Ti−1(X)) .

Assume we already have dL(X)
dTi(X) . Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and

gi(Z) = ϕ(Z · Wg), where Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation
function. Let ϕ′ denote the derivative of ϕ. Then, we show that Gi can be computed in n1+o(1) time.
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Error propagation analysis. Here, we consider the approximation error. In our setting, the ap-
proximation error originates from the low-rank approximation of the attention matrix, as detailed in
Lemma 27. As discussed in previous sections, the approximation error in each layer can be bounded
by 1/ poly(n). Then, we only need to focus on how error propagates in different layers.

We first prove that our 1/ poly(n) approximation error statement holds for a single-layer trans-
former, as evidenced in Lemma 73. Subsequently, through mathematical induction and leveraging
the results of error propagation over the gradient of gi, we can show that the approximation error can
be bounded by 1/ poly(n) for any m-layer transformer (Lemma 15), where the number of layers m
is considered as a constant.

Lemma 15 (Multi-layer transformer gradient approximation, informal version of Theorem 74)
Let L(X) be defined as Definition 5. Let X be defined as Definition 2. Suppose we have a m-layer
transformer (see Definition 3). Then, for any i ∈ [m], we can show that: (i) Running time: Our
algorithm can approximate dL(X)

dTi−1(X) , dL(X)
dWi

, and dL(X)
dWVi

in n1+o(1) time; (ii) Error bound: The ap-
proximation of the entire transformer model can be bounded by 1/ poly(n). Namely, our algorithm
output g̃ satisfies ∥g̃ − dL(X)

dX ∥∞ ≤ 1/ poly(n).

Appendix D. More Extensions

Prompt tuning. Prompt tuning (or prefix learning) is a prevalent approach in parameter-efficient
fine-tuning (PEFT), which requires the calculation of gradients on input data X . Given our algo-
rithm’s ability to compute gradients for intermediate variables Ti in approximately linear time, we
can similarly accelerate the gradient computation for input data X , thus enhancing the efficiency of
the prompt tuning process. Additional details are provided in Section E.5.

Synergy with system-level attention acceleration. Many contemporary works focus on system-
level acceleration of attention mechanisms, often by leveraging caching and mitigating I/O bottle-
necks. Our algorithm has the potential to integrate with such advancements. By combining our
theoretical improvements in computation time (from O(n2) to n1+o(1)) with system-level optimiza-
tions, the overall efficiency of attention mechanism computation may increase dramatically. We
leave the implementation of our method on GPU as future work since there are several coding
challenges. More details can be found in Section E.4.

Appendix E. Discussion and Extension Details

In Section E.1, we argue that our framework can easily adapt to the multi-head attention mechanism.
In Section E.2, we introduce how to integrate residual connection to our framework. In Section E.3,
we detail the integration of the causal attention mask into our algorithm. In Section E.4, we discuss
the possibility of the synergy between our theoretical side attention acceleration and the existing
system-level attention acceleration mechanism. In Section E.5, we show how to expedite prompt
tuning using our results.

E.1. Multi-head attention

The multi-head attention mechanism was first introduced by Vaswani et al. [114]. This innovation
allows a token to simultaneously attend to multiple positions within the same layer, thereby enrich-
ing the model’s capacity for capturing various dependencies. However, this enhanced capability
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comes with an increase in the size of the attention matrix f(X) from 1×n×n to h×n×n, where
h is the number of attention heads. To mitigate the computational burden, each head’s vector is
derived by splitting the original vector, reducing the dimensionality of each head to dh := d/h. To
summarize, the key distinctions between multi-head and single-head attention are (1) an enlarged
attention matrix f(X) and (2) a reduced dimensionality dh within each attention head.

Enlarged attention matrix. As previously discussed, the attention matrix’s dimensionality in-
creases with the number of heads, h. Despite this expansion, the application of the low-rank ap-
proximation technique, as outlined in Section C.1, ensures that the computation time for the atten-
tion matrix remains almost linear. Specifically, for a constant number of heads h in the multi-head
mechanism, the time complexity for computing f(X) ∈ Rh×n×n is h · n1+o(1) = n1+o(1).

Reduced dimensionality. Another differentiating factor of multi-head attention is the lower di-
mensionality processed by each head, i.e. dh := d/h, compared the full d in single-head attention.
This reduction ensures that the gradient computation time does not increase with the introduction
of multiple attention heads.

We provide comprehensive analysis of the synergy of our algorithm with multi-head attention
in Section N. We first prove in Lemma 89, with the addition of multi-head attention, the gradient
over the attention mechanism can be computed in almost linear time. Then, we further prove that
for any multi-layer transformer, with multi-head attention, the gradient can be computed in almost
linear time as well.

E.2. Residual connection

Residual connection is a pivotal technique in deep neural network architectures, effectively ad-
dressing issues such as vanishing and exploding gradients during training process, and facilitating
faster convergence of the model. Residual connection is also integrated into the standard attention
mechanism. Formally, given the intermediate variable Ti(X) output by the i-th transformer layer
as defined in Definition 6, we provide the formal definition of residual connection in Definition 83
and 84. Since the residual connection only brings an additional add operation to each component
and with Ti(X) belonging to the space Rn×d, the residual connection introduces only a marginal
computational overhead of O(n · d) per layer. Consequently, the total computational cost for each
layer is O(n · d) + n1+o(1) = n1+o(1). Hence, by intuition, the inclusion of residual connections
does not compromise the overall complexity of our method.

The detailed analysis is provided in Section M, where we first prove in Lemma 85, that if the
gradient over one structure can be computed in almost linear time, then with the addition of the
residual connection, the gradient can also be computed in almost linear time. Then we use math
induction to extend our result to the entire multi-layer transformer model.

E.3. Causal attention mask

In transformer training, attention mask is a crucial component, designed to prevent a given token
from attending to future tokens in the sequence. Causal attention mask is a widely used atten-
tion mask, which is configured as a lower triangular matrix, where elements on or below the main
diagonal are ones, with all other entries being zeros.

Now we describe how to incorporate this into our algorithm. Let M ∈ {0, 1}n×n represent the
causal attention mask (see Definition 76). Let f̂(X) := D−1(M ⊙A) where A = exp(XWX⊤/d)
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and D := diag((M ⊙ A) · 1n). Lemma 75 reveals that A has a low-rank representation given by
U0V

⊤
0 . Using Lemma 77, we know (M ⊙ (U0V

⊤
0 )) · v for any vector v ∈ Rn can be computed in

almost linear time.
To integrate the causal mask into the gradient computation within each transformer layer, we

first find all instances that have the structure of f(X)·H or (f(X)⊙(UV ⊤))·H , where H,U, V are
low rank matrices. Then, we replace f(X) with f̂(X) in these instances. More detailed analysis of
causal attention can be found in Section L. To be more specific, we group the gradient components
for Ti,Wi,WVi into two categories, one for dot product (Lemma 81), another for Hadamard product
(Lemma 82). After showing each component can be calculated in almost linear time, the overall
gradient computation remains n1+o(1) time. Thus, our framework can seamlessly accommodate
causal attention masks.

E.4. System-level attention acceleration

The attention computing acceleration involves a two-pronged strategy that leverages both system-
level improvements (e.g. Flash Attention [20, 22, 100]) and the theoretical time complexity im-
provements (e.g. our work and Han et al. [41]).

Numerous efforts have been made in the literature to accelerate attention calculations at the sys-
tem level. For instance, Flash Attention [20, 22, 100] targets the I/O bottleneck inherent in attention
mechanisms. Studies such as block-wise parallel decoding [105] focus on implementing parallel de-
coding within transformer models to enhance inference speed. Additionally, recent advancements
in the field of speculative decoding, such as Medusa [13], leverage a smaller, more efficient model
to generate predictions, with the larger model only responsible for validating, the smaller model’s
outputs [60].

Despite these innovations, the aforementioned methods do not address the fundamental quadratic
time complexity O(n2) of the attention mechanisms. This presents an opportunity to complement
our low-rank approximation technique, with these system-level optimizations, thereby achieving
an even greater acceleration in attention computation. For instance, we could design an I/O-aware
algorithm for Algorithm 1, similar to the approach taken by Flash Attention, to effectively leverage
GPU acceleration.

To implement our algorithm practically on GPU, we have some coding challenges to fix: (1)
we need to define some new tensor operations in PyTorch, e.g. Eq. (5), Eq. (8); (2) we need to
systematically re-implement some back-propagation function of the current PyTorch function; (3)
we need to implement some CUDA function to run our algorithm in parallel for the casual mask,
see discussion in Section E.3. We may leave this as our future work.

E.5. Prompt tuning

Prompt tuning, as introduced by various studies [49, 59, 66, 74, 80, 92], has emerged as a parameter-
efficient fine-tuning strategy for large language models (LLMs). Specifically, prompt tuning in-
volves adjusting “soft prompts” conditioned on frozen LLMs. This method requires relatively small
number of tuneable parameters compared with fine-tuning the entire LLMs, making it a popular
choice for conserving training resources, including data and computational power.

The analysis reveals that the essence of prompt tuning involves computing gradients with respect
to the soft prompts Xp across the entire model. In both prompt tuning and full fine-tuning, the
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quadratic O(n2) computational complexity of gradient calculation remains the same due to the self-
attention mechanism inherent in LLMs.

In this work, leveraging the low-rank approximation technique discussed in Section C.1, our
algorithm (Algorithm 1) efficiently computes gradients on soft prompts Xp over the entire model
in almost linear time. This suggests that our method is universal and can also be applied within
traditional prompt tuning frameworks.

Appendix F. Preliminary on Gradient Calculation

In Section F.1, we list several useful math facts used in the following sections of this paper. In
Section F.2, we provide the close forms of the gradient components. In Section F.3, we introduce
some mathematical definitions to facilitate understanding of gradient calculations. In Section F.4,
we list some low rank approximation technique introduced in Alman and Song [3] and Alman and
Song [4]. In Section F.5, we demonstrate that the entries of matrices defined in Section F.3 are
bounded.

Notations. For two vectors x ∈ Rn and y ∈ Rn, we use ⟨x, y⟩ to denote the inner product
between x, y. Namely, ⟨x, y⟩ =

∑n
i=1 xiyi. We use ei to denote a vector where only i-th coordinate

is 1, and other entries are 0. For each a, b ∈ Rn, we use a ⊙ b ∈ Rn to denote the Hardamard
product, i.e. the i-th entry of (a ⊙ b) is aibi for all i ∈ [n]. We use 1n to denote a length-n
vector where all the entries are ones. We use ∥A∥∞ to denote the ℓ∞ norm of a matrix A ∈ Rn×d,
i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use poly(n) to denote polynomial time complexity with
respective to n.

F.1. Basic math facts

In this section, we provide some useful basic math facts,

Fact 16 Let x, y, z ∈ Rn. Then we have

• ⟨x⊙ y, z⟩ = x⊤ diag(y)z.

• ⟨x, (y ⊙ z)⟩ = ⟨y, (x⊙ z)⟩ = ⟨z, (y ⊙ x)⟩

• ⟨x, y⟩ = ⟨x⊙ y,1n⟩.

Then, we introduce a classical folklore used for the Hadamard product of two matrices.

Fact 17 (Folklore, [4]) Let U1, V1 ∈ Rn×k1 . Let U2, V2 ∈ Rn×k2 . Then we have

( U1︸︷︷︸
n×k1

V ⊤
1︸︷︷︸

k1×n

)⊙ ( U2︸︷︷︸
n×k2

V ⊤
2︸︷︷︸

k2×n

) = (U1 ⊘ U2)︸ ︷︷ ︸
n×k1k2

(V1 ⊘ V2)
⊤︸ ︷︷ ︸

k1k2×n

Here, given U1 ∈ Rn×k1 and U2 ∈ Rn×k2 , the U1 ⊘ U2 ∈ Rn×k1k2 is the row-wise Kronecker
product, i.e., (U1 ⊘ U2)i,l1+(l2−1)k1 := (U1)i,l1Ui,l2 for all i ∈ [n], l1 ∈ [k1] and l2 ∈ [k2].
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F.2. Close form of three gradient components

In this section, we show how to derive the close form for the gradient components within each layer
of a multi-layer transformer.

Lemma 18 (Close form of gradient components, formal version of Lemma 7) If we have the be-
low conditions,

• Let L(X) be defined as Definition 5.

• Let Wi := WQiW
⊤
Ki
∈ Rd×d be the key-query weight matrix, WVi ∈ Rd×d be the value

weight matrix for the i-th transformer layer.

• Let Ti(X) denote the intermediate variable output by i-th self-attention transformer layer
(see Definition 6).

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi, let dAttni(Ti−1(X))i2,j2
dTi−1(X) ∈

Rn×d denote the gradient of (i2, j2)-th entry of Attni(Ti−1(X)).

Then, we can show that

• Part 1.

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

• Part 2.

dL(X)

dWi
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWi
.

• Part 3.

dL(X)

dWVi

=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWVi

.

Proof We have

• L(X) ∈ R.

• Attni(Ti−1(X)) ∈ Rn×d, Ti−1(X) ∈ Rn×d.

• Wi ∈ Rd×d,WVi ∈ Rd×d.

Therefore, we have
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• dL(X)
dTi−1(X) ∈ Rn×d, dAttni(Ti−1(X))

dTi−1(X) ∈ R(n×d)×(n×d).

• dL(X)
dWi

∈ Rd×d, dAttni(Ti−1(X))
dWi

∈ R(n×d)×(d×d).

• dL(X)
dWVi

∈ Rd×d, dAttni(Ti−1(X))
dWVi

∈ R(n×d)×(d×d).

Then, simply applying chain rule, we can get the final results.

F.3. Basic notations for computing gradients

Before we move on to compute gradients, we need to define some useful notations.
We begin with introducing the index for a matrix.

Definition 19 (Simplified notations) For any matrix Z ∈ Rn×d, for i ∈ [n], j ∈ [d], we have
following definitions:

• Let Zi,j︸︷︷︸
scalar

and Z(i, j) denote the (i, j)-th entry of Z.

• Let Zi,∗︸︷︷︸
d×1

and Z(i, ∗) denote the i-th row of Z.

• Let Z∗,j︸︷︷︸
n×1

and Z(∗, j) denote the j-th column of Z.

Then, we define the exponential matrix in the attention mechanism.

Definition 20 (Exponential function u) If we have the below conditions,

• Let X ∈ Rn×d

• Let W := WQW
⊤
K ∈ Rd×d

We define u(X) ∈ Rn×n as follows

u(X) := exp(XWX⊤)

Then, we introduce the summation vector of the aforementioned exponential matrix.

Definition 21 (Sum function of softmax α) If we have the below conditions,

• Let X ∈ Rn×d

• Let u(X) be defined as Definition 20

We define α(X) ∈ Rn as follows

α(X) := u(X) · 1n
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Then, with the help of the summation vector, we are ready to normalize the exponential matrix
and get the softmax probability matrix.

Definition 22 (Softmax probability function f ) If we have the below conditions,

• Let X ∈ Rn×d

• Let u(X) ∈ Rn×n be defined as Definition 20

• Let α(X) ∈ Rn be defined as Definition 21

We define f(X) ∈ Rn×n as follows

f(X) := diag(α(X))−1u(X)

where we define f(X)⊤j0 ∈ Rn is the j0-th row of f(X).

Besides the probability matrix introduced above, we introduce the value matrix in the following
definition.

Definition 23 (Value function h) If we have the below conditions,

• Let X ∈ Rn×d

• Let WV ∈ Rd×d

We define h(X) ∈ Rn×d as follows

h(X) = XWV

Then, we introduce s(X) to represent the output of the attention mechanism.

Definition 24 (Self-attention output s) If we have the below conditions,

• Let f(X) be defined as Definition 22

• Let h(X) be defined as Definition 23

We define s(X) ∈ Rn×d as follows

s(X) = f(X)h(X)

Then, we introduce q(X) and p(X) to facilitate the calculation of the gradient on W .

Definition 25 (Definition of q(X)) If we have the below conditions,

• Let h(X) ∈ Rn×d be defined as in Definition 23.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.
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We define q(X) ∈ Rn×n as

q(X) = Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

.

where we define q(X)⊤j0 ∈ Rn is the j0-th row of q(X).

Definition 26 (Definition of p(X), Definition C.5 in Alman and Song [4]) For every index j0 ∈
[n], we define p(X)j0 ∈ Rn as

p(X)j0 := (diag(f(X)j0)− f(X)j0f(X)⊤j0)q(X)j0

where we have p(X) ∈ Rn×n and we define p(X)⊤j0 ∈ Rn is the j0-th row of p(X).
Furthermore, we define p1(X) = f(X) ⊙ q(X) and p2(X) = diag(p1(X) · 1n)f(X). Addi-

tionally, we can calculate p(X) as

p(X) = p1(X)− p2(X)

F.4. Low rank representations

Using Alman and Song [3]’s polynomial method techniques, we can obtain the following low-rank
representation result.

Lemma 27 (Low rank representation to f , Section 3 of Alman and Song [3], Lemma D.1 of Alman and Song [4])
For any A = o(

√
log n), there exists a k1 = no(1) such that: Let X ∈ Rn×d and W ∈ Rd×d

be a square matrix. It holds that ∥XW∥∞ ≤ R, ∥X∥∞ ≤ R, then there are two matrices
U1, V1 ∈ Rn×k1 such that ∥U1V

⊤
1 −f(X)∥∞ ≤ ϵ/ poly(n). Here f(X) = D−1 exp(XWX⊤) (see

also Definition 22) and we define D = diag(exp(XWX⊤)1n) (see also Definition 21). Moreover,
these matrices U1, V1 can be explicitly constructed in n1+o(1) time.

A similar technique can be applied to s(X).

Lemma 28 (Low rank representation to s) Let d = O(log n). Assume that each number in the
n × d matrices h(X) ∈ Rn×d can be written using O(log n) bits. Let n × d matrix s(X) ∈ Rn×d

be defined as Definition 24. Then, there are two matrices U1, V1 ∈ Rn×k1 we have ∥U1V
⊤
1 h(X)−

s(X)∥∞ ≤ ϵ/ poly(n).

Proof We can show that

∥U1V
⊤
1 h(X)− s(X)∥∞ = ∥U1V

⊤
1 h(X)− f(X)h(X)∥∞

= ∥(U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

)h(X)︸ ︷︷ ︸
n×d

∥∞

≤ n∥U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

∥∞∥h(X)︸ ︷︷ ︸
n×d

∥∞

≤ n∥U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

∥∞ · poly(n)
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≤ ϵ/ poly(n)

where the 1st step is from the choice of s(X), the 2nd step comes from AC − BC = (A − B)C
holds for any matrices A, B, and C, the 3rd step is because of basic linear algebra, the 4th step
is due to each number in h(X) can be written using O(log(n)) bits, the fifth step follows from
∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/poly(n).

We can also get a low-rank representation of p1(x) and p2(x).

Lemma 29 (Low rank representation to p1(X), Lemma D.4 of Alman and Song [4]) Let k1 =
no(1). Let k2 = no(1). Assume that p1(X) := f(X)⊙ q(X). Assume U1, V1 ∈ Rn×k1 approximates
the f(X) such that ∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/poly(n). Assume U2, V2 ∈ Rn×k2 approximates the

q(X) ∈ Rn×n such that ∥U2V
⊤
2 −q(X)∥∞ ≤ ϵ/poly(n). Then there are matrices U3, V3 ∈ Rn×k3

such that ∥U3V
⊤
3 − p1(X)∥∞ ≤ ϵ/ poly(n). The matrices U3, V3 can be explicitly constructed in

n1+o(1) time.

Lemma 30 (Low rank representation p2(X), Lemma D.5 of Alman and Song [4]) Let k1 = no(1).
Let k2 = no(1). Let k4 = no(1). Assume that p2(X) is an n × n where j0-th row p2(X)j0 =
f(X)j0f(X)⊤j0q(X)j0 for each j0 ∈ [n]. Assume U1, V1 ∈ Rn×k1 approximates the f(X) such
that ∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/ poly(n). Assume U2, V2 ∈ Rn×k2 approximates the q(X) ∈ Rn×n

such that ∥U2V
⊤
2 − q(X)∥∞ ≤ ϵ/ poly(n). Then there are matrices U4, V4 ∈ Rn×k4 such that

∥U4V
⊤
4 − p2(X)∥∞ ≤ ϵ/poly(n). The matrices U4, V4 can be explicitly constructed in n1+o(1)

time.

F.5. Bounded entries of matrices

In this section, we provide proof that entries of matrices are bounded.
We begin with the exponential matrix f(X).

Lemma 31 (Bounded entries of f(X)) If we have the below conditions,

• Let f(X) ∈ Rn×n be defined in Definition 22.

Then, we can show that

∥f(X)∥∞ ≤ 1

Proof By Definition 22, we have

f(X) = diag(α(X))−1u(X)

By Definition 21, we have

α(X) = u(X)1n

Combining above two equations, we have

∥f(X)∥∞ ≤ 1

A similar analysis can be applied to h(X) and s(X) as well.
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Lemma 32 (Bounded entries of h(X)) If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Assuming each entry of X,W,WV can be re represented using O(log(n)) bits.

• Let h(X) ∈ Rn×d be defined in Definition 23.

Then, we can show that

∥h(X)∥∞ ≤ poly(n)

Proof By Definition 23, we have

h(X) := XWV

Then, we have

∥h(X)∥∞ = ∥XWV ∥∞
≤ n∥X∥∞∥WV ∥∞
≤ poly(n)

where the 1st step is from the definition of h(X), the 2nd step comes from basic linear algebra, the
3rd step is because of each entry in X and WV can be represented by O(log(n)) bits.

Lemma 33 (Bounded entries of s(X)) If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Assuming each entry of X,W,WV can be re represented using O(log(n)) bits.

• Let s(X) ∈ Rn×d be defined in Definition 24.

Then, we can show that

∥s(X)∥∞ ≤ poly(n)

Proof By Definition 24, we have

s(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

h(X)︸ ︷︷ ︸
n×d

Then, we have

∥s(X)∥∞ = ∥f(X)h(X)∥∞
≤ n∥f(X)∥∞∥h(X)∥∞
≤ poly(n)

where the 1st step is from the definition of c(X), the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma 31, 32.
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Appendix G. Matrix View

In this section, we dive into analyzing the gradient of dL(X)
dTi−1(X) .

In Section G.1, we give the gradient of s(X) with respective to X . In Section G.2, we show the
close form of the gradient on Ti(X) via the chain rule. In Section G.3, we integrate each Ci(X) to its
corresponding matrix term Bi(X). In Section G.4, applying the similar technique used in the previ-
ous section, we integrate the gradient on Ti(X) into its corresponding matrix view. In Section G.5,
we further apply matrix integration on each matrix term in the gradient on Ti(X) calculated in the
previous section. In Section G.6, we give the matrix view of all gradient components.

G.1. Gradient of s(X)

In this section, we give the gradient of s(X) with respective to X .
The results from Deng et al. [24] give the gradient of c(X). By chain rule, the gradient of s(X)

is equivalent to the gradient of c(X) from Deng et al. [24], since c(X) = s(X) − B where B is a
constant matrix.

Lemma 34 (Gradient of s(X)i0,j0 , Lemma B.16 in Deng et al. [24]) If we have the below con-
ditions,

• Let s(X) ∈ Rn×d be defined as Definition 24

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where we have definitions:

– C1(X) := −s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, Xi0,∗⟩
– C2(X) := −s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩
– C3(X) := f(X)i0,i0 · h(X)i0,j0 · ⟨Wj1,∗, Xi0,∗⟩
– C4(X) := ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩
– C5(X) := f(X)i0,i0 · (WV )j1,j0

• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C6(X) + C7(X) + C8(X)

where we have definitions:

– C6(X) := −s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩

* This is corresponding to C1(X)

– C7(X) := f(X)i1,i0 · h(X)i1,j0 · ⟨Wj1,∗, Xi0,∗⟩

* This is corresponding to C3(X)

– C8(X) := f(X)i1,i0 · (WV )j1,j0

* This is corresponding to C5(X)
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G.2. Gradient on Ti(X)

In the Lemma 35, we use the chain rule to calculate the close form of the gradient on Ti(X).

Lemma 35 (Gradient for Ti(X)) If we have the below conditions,

• Let Attni be defined as Definition 2.

• Let Ti(X) ∈ Rn×d be defined as Definition 6.

• Let s(X) be defined as Definition 24.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, for i1 ∈ [n], j1 ∈ [d], we have

dL(X)

dTi−1(X)i1,j1
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0) ·
ds(X)i0,j0
dXi1,j1

Proof By Lemma 18, we have

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

By Definition 2 and Definition 24, we have

Attni(Ti−1(X)) = s(Ti−1(X))

Therefore, by combining above two equations and substituting variable Ti−1(X) = X , we have

dL(X)

dTi−1(X)i1,j1
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0) ·
ds(X)i0,j0
dXi1,j1

G.3. Matrix view of C(X)

In this section, we will provide the matrix view of Ci(X) ∈ R, for i ∈ {6, 7, 8, 2, 4}. We will
consider each Ci(X) one by one. We begin with C6(X).

Lemma 36 (Matrix view of C6(X)) If we have the below conditions,

• Let C6(X, i1, j1) := −s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩ be defined as in Lemma 34.

• We define a matrix B6(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B6(i1, j1) denote the
(i1, j1)-th entry of B6(X). We define B6(i1, j1) = C6(X, i1, j1).
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Then, we can show that

B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

Proof We have

C6(X, i1, j1) = − s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩
= − s(X)i0,j0 · f(X)i1,i0 ·X⊤

i0,∗Wj1,∗

where the 1st step is from the choice of C6(X), the 2nd step comes from ⟨a, b⟩ = a⊤b holds for any
a, b ∈ Rd.

We have

B6(X)(i1, ∗)︸ ︷︷ ︸
d×1

= − s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)i1,i0︸ ︷︷ ︸
1×1

W︸︷︷︸
d×d

Xi0,∗︸ ︷︷ ︸
d×1

Then, we have

B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

A similar analysis procedure can also be applied on C7(X).

Lemma 37 (Matrix view of C7(X)) If we have the below conditions,

• Let C7(X, i1, j1) := f(X)i1,i0 · h(X)j0,i1 · ⟨Wj1,∗, Xi0,∗⟩ be defined as in Lemma 34.

• We define a matrix B7(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B7(i1, j1) denote the
(i1, j1)-th entry of B7(X). We define B7(i1, j1) = C7(X, i1, j1).

Then, we can show that

B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

Proof We have

C7(X, i1, j1) = f(X)i1,i0 · h(X)i1,j0 · ⟨Wj1,∗, Xi0,∗⟩
= f(X)i1,i0 · h(X)i1,j0 ·W⊤

j1,∗Xi0,∗

where the 1st step is from the choice of C7(X), the 2nd step comes from ⟨a, b⟩ = a⊤b holds for any
a, b ∈ Rd.

We have

B7(X)(i1, ∗) = f(X)i1,i0 · h(X)i1,j0 ·W ·Xi0,∗
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Then, we have

B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

Then, we provide an analysis of C8(X).

Lemma 38 (Matrix view of C8(X)) If we have the below conditions,

• Let C8(X, i1, j1) := f(X)i1,i0 · (WV )j1,j0 be defined as in Lemma 34.

• We define a matrix B8(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B8(i1, j1) denote the
(i1, j1)-th entry of B8(X). We define B8(i1, j1) = C8(X, i1, j1).

Then, we can show that

B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

Proof We have

C8(X, i1, j1) = f(X)i1,i0 · (WV )j1,j0

where the 1st step is from the choice of C7(X).
We have

B8(X)(i1, ∗) = f(X)i1,i0 · (WV )∗,j0

Then, we have

B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

Now, we consider C2(X).

Lemma 39 (Matrix view of C2(X)) If we have the below conditions,

• Let C2(X, j1) := −s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩ be defined as in Lemma 34.

• We define a matrix B2(X) ∈ Rd. For all j1 ∈ [d], the j1-th entry of B2(X) is defined as
C2(X, j1).

Then, we can show that

B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1
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Proof We have

C2(X, j1) = − s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩
= − s(X)i0,j0 · (XW∗,j1)

⊤f(X)i0,∗

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤
∗,j1︸ ︷︷ ︸

1×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

where the 1st step is from the choice of C2(X), the second step follows from ⟨a, b⟩ = a⊤b, for any
a, b ∈ Rn.

Then, we have

B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

Finally, we analyze C4(X), which is the last term we need to compute.

Lemma 40 (Matrix view of C4(X)) If we have the below conditions,

• Let C4(X, j1) := ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩ be defined as in Lemma 34.

• We define a matrix B4(X) ∈ Rd. For all j1 ∈ [d], the j1-th entry of B4(X) is defined as
C4(X, j1).

Then, we can show that

B4(X)︸ ︷︷ ︸
d×1

= W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

(f(X)i0,∗ ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

Proof We have

C4(X, j1) = ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩
= ⟨f(X)i0,∗ ⊙ h(X)∗,j0 , (XW∗,j1)⟩
= (XW∗,j1)

⊤(f(X)i0,∗ ⊙ h(X)∗,j0)

where the 1st step is from the choice of C4(X), the 2nd step comes from Fact 16, and the last step
follows from basic linear algebra.

G.4. Matrix view of gradient on Ti(X)

Since we have got the matrix view of each Ci(X) term in the previous section, we can get the matrix
view of the gradient on Ti(X) in Lemma 41.

Lemma 41 (Matrix view of single entry of gradient) If we have the below conditions,

• Let s(X) be defined as Definition 24.
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• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let B6(X), B7(X), B8(X) ∈ Rn×d be defined in Lemma 36, Lemma 37, and Lemma 38

• Let B2(X), B4(X) ∈ Rd be defined in Lemma 39 and Lemma 40.

For any i0 ∈ [n], j0 ∈ [d], we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Proof
By Lemma 34, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X) (1)

• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C6(X) + C7(X) + C8(X) (2)

Since for any i1 ∈ [n], j1 ∈ [d], let Gi(i0, j0)·
ds(X)i0,j0
dXi1,j1

denote the (i1, j1)-th entry of Gi(i0, j0)·
ds(X)i0,j0

dX , we consider the following two cases:

• Case 1. The i0-th row of Gi(i0, j0) ·
ds(X)i0,j0

dX .

• Case 2. The other n− 1 rows of Gi(i0, j0) ·
ds(X)i0,j0

dX where i1 ̸= i0.

We first consider Case 1.
Recall that the matrix view of C2(X), C4(X) ∈ R are B2(X), B4(X) ∈ Rd, and the matrix

view of C6(X), C7(X), C8(X) ∈ R are B6(X), B7(X), B8(X) ∈ Rn×d, respectively.
For k ∈ {6, 7, 8}, we use Bk(X)(s, ∗) ∈ Rd to denote the s-th row of Bk(X).
We use (Gi(i0, j0) ·

ds(X)i0,j0
dX )(i0, ∗) ∈ Rd to denote the i0-th row of Gi(i0, j0) ·

ds(X)i0,j0
dX .

Since C6(X), C7(X), C8(X) are the corresponding parts of C1(X), C3(X), C5(X), and by
Eq. (1), then we can have the following

(Gi(i0, j0) ·
ds(X)i0,j0

dX
)(i0, ∗) = Gi(i0, j0)︸ ︷︷ ︸

1×1

· (B6(X)(i0, ∗) +B7(X)(i0, ∗) +B8(X)(i0, ∗) +B2(X) +B4(X))︸ ︷︷ ︸
d×1

We then consider Case 2.
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For k ∈ {6, 7, 8}, we use Bk(X)(̸= s, ∗) ∈ R(n−1)×d to denote the matrix Bk(X) with the s-th
row removed.

Similarly, we use (Gi(i0, j0) ·
ds(X)i0,j0

dX )(̸= i0, ∗) ∈ R(n−1)×d to denote the matrix Gi(i0, j0) ·
ds(X)i0,j0

dX with the i0-th row removed.
By Eq. (2), we have

(Gi(i0, j0) ·
ds(X)i0,j0

dX
)(̸= i0, ∗) = Gi(i0, j0)︸ ︷︷ ︸

1×1

· (B6(X)(̸= i0, ∗) +B7(X)(̸= i0, ∗) +B8(X)(̸= i0, ∗))︸ ︷︷ ︸
d×(n−1)

Combining Case 1. and Case 2. together, we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Then, we have the matrix view of Ti(X) gradient.

Lemma 42 (Matrix view of Ti(X) gradient) If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let T (X) be defined as Definition 6.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let B6(X), B7(X), B8(X) ∈ Rn×d be defined in Lemma 36, Lemma 37, and Lemma 38

• Let B2(X), B4(X) ∈ Rd be defined in Lemma 39 and Lemma 40.

Then, we have

dL(X)

dTi−1(X)
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Proof By Lemma 41, we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Then, by Lemma 18 we have

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

After combining the above two equations, we are done.
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G.5. Matrix view of each term in gradient on Ti(X)

In this subsection, we reduce the double summation to a matrix product for easy and clear analysis.
We first work on the B6 term.

Lemma 43 (Matrix view of B6(X) term) If we have the below conditions,

• Let B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

be defined in Lemma 36.

• We define z6(X) ∈ Rn×n, which satisfies

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

• Let f(X) ∈ Rn×n be defined in Definition 22.

• Let W ∈ Rd×d be defined in Definition 2.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B6(X)︸ ︷︷ ︸
n×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Proof

n∑
i0=1

d∑
j0=1

Gi(i0, j0)B6(X) = −
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

where the 1st step is from the choice of B6(X), the 2nd step comes from basic algebra, the 3rd step
is because of a⊤b =

∑d
i=1 ai · bi holds for any a, b ∈ Rd, the 4th step is due to (AB)⊤ = B⊤A⊤

for any matrices A and B.
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Recall that we have z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

.

Then, we have

−
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= −
n∑

i0=1

z6(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

where the 1st step is from the choice of z6(X), the 2nd step comes from basic linear algebra.

Then, we can get the matrix view of B7(X) term.

Lemma 44 (Matrix view of B7(X) term) If we have the below conditions,

• Let B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

be defined in Lemma 37.

• We define z7(X) ∈ Rn×n, which satisfies

z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

).

• Let X ∈ Rn×d,W ∈ Rd×d be defined in Definition 2.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Proof We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

(f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

=

n∑
i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

h(X)∗,j0︸ ︷︷ ︸
n×1

)) · (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d
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=

n∑
i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)) · (X⊤
i0,∗W

⊤)︸ ︷︷ ︸
1×d

where the 1st step is from the choice of B7(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra.

Recall that we have z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

).

Then we have

n∑
i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)) · (X⊤
i0,∗W

⊤)︸ ︷︷ ︸
1×d

=
n∑

i0=1

z7(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

where the 1st step is from the choice of z7(X), the 2nd step comes from basic linear algebra.

Then, we consider B8(X).

Lemma 45 (Matrix view of B8(X) term) If we have the below conditions,

• Let B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

be defined in Lemma 38.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

Proof We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

=
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

=
n∑

i0=1

f(X)∗,i0︸ ︷︷ ︸
n×1

(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

)
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=

n∑
i0=1

f(X)∗,i0︸ ︷︷ ︸
n×1

Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

W⊤
V︸︷︷︸

d×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

where the 1st step is from the choice of B8(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to basic linear algebra.

Now, we can do the matrix view of B2(X) term.

Lemma 46 (Matrix view of B2(X) term) If we have the below conditions,

• Let B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

be defined in Lemma 39

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• We define z2(X) ∈ Rn×n, which satisfies

z2(X)i0,∗︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

• Let X ∈ Rn×d,W ∈ Rd×d be defined in Definition 2

Then we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Proof We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= −
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

) ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

ei0︸︷︷︸
n×1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d
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where the 1st step is from the choice of B2(X), the 2nd step comes from basic algebra, the 3rd step
is because of a⊤b =

∑d
i=1 ai · bi holds for any a, b ∈ Rd, the 4th step is due to (AB)⊤ = B⊤A⊤

holds for any matrix A,B.
Recall that we have z2(X)i0,∗︸ ︷︷ ︸

n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

.

Then, we have

−
n∑

i0=1

ei0︸︷︷︸
n×1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

ei0︸︷︷︸
n×1

z2(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

where the 1st step is from the choice of z2(X), the 2nd step comes from basic linear algebra.

Finally, we do a similar analysis for the term B4(X). Then, we get all the matrix views we need.

Lemma 47 (Matrix view of B4(X) term) If we have the below conditions,

• Let B4(X)︸ ︷︷ ︸
d×1

= W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

(f(X)i0,∗ ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

be defined in Lemma 40.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• We define z4(X) ∈ Rn×n, which satisfies

z4(X)i0,∗︸ ︷︷ ︸
n×1

= f(X)i0,∗︸ ︷︷ ︸
n×1

⊙ (h(X)Gi(i0, ∗))︸ ︷︷ ︸
n×1

Then we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Proof We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

=
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗ ⊙ h(X)⊤∗,j0)︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d
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=

n∑
i0=1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗︸ ︷︷ ︸
1×n

⊙(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

h(X)⊤∗,j0︸ ︷︷ ︸
1×n

)) X︸︷︷︸
n×d

W︸︷︷︸
d×d

=

n∑
i0=1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗︸ ︷︷ ︸
1×n

⊙ (h(X)Gi(i0, ∗))⊤︸ ︷︷ ︸
1×n

) X︸︷︷︸
n×d

W︸︷︷︸
d×d

=

n∑
i0=1

ei0︸︷︷︸
n×1

z4(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

where the 1st step is from the choice of B4(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to the choice of z4(X), the 5th step follows
from basic linear algebra.

G.6. Components of gradient on Ti(X)

Definition 48 (Definition of Dk) If we have the below conditions,

• For k1 ∈ {6, 7, 8}, let Bk1(X) ∈ Rn×d be defined as Lemma 36, 37, and 38, respectively.

• For k2 ∈ {2, 4}, let Bk2(X) ∈ Rd×1 be defined as Lemma 39 and 40, respectively.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

We define Dk ∈ Rn×d as follows:

• For k1 ∈ {6, 7, 8}, we define

Dk1 :=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

Bk1(X)︸ ︷︷ ︸
n×d

• For k2 ∈ {2, 4}, we define

Dk2 :=
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

Bk2(X)⊤︸ ︷︷ ︸
1×d

Definition 49 (Definition of K) If we have the below conditions,

• Let s(X) ∈ Rn×d be defined as Definition 24.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .
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We define K ∈ Rn, where for each i0 ∈ [n], we define

Ki0︸︷︷︸
1×1

= Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

Furthermore, we have

K︸︷︷︸
n×1

= (Gi ⊙ s(X))︸ ︷︷ ︸
n×d

1d︸︷︷︸
d×1

Lemma 50 (Close form of Dk) If we have the below conditions,

• Let X ∈ Rn×d,W ∈ Rd×d be defined as Definition 2.

• For k ∈ {6, 7, 8, 2, 4}, let Dk ∈ Rn×d be defined as Definition 48.

• For k3 ∈ {6, 7, 2, 4}, let zk3(X) ∈ Rn×n be defined as Lemma 43, 44, 46, and 47, respec-
tively.

• Let K ∈ Rn be defined as Definition 49.

• We define z6(X) ∈ Rn×n, which satisfies

z6(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

diag(K)︸ ︷︷ ︸
n×n

.

• We define z7(X) ∈ Rn×n, which satisfies

z7(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙(h(X)︸ ︷︷ ︸
n×d

G⊤
i︸︷︷︸

d×n

)

• We define z2(X) ∈ Rn×n, which satisfies

z2(X)︸ ︷︷ ︸
n×n

= diag(K)︸ ︷︷ ︸
n×n

f(X)︸ ︷︷ ︸
n×n

• We define z4(X) ∈ Rn×n, which satisfies

z4(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙( Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

)

Then, we can show that the close forms of Dk can be written as follows:

• D6 = − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

.

• D7 = z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

.
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• D8 = f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

.

• D2 = − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

.

• D4 = z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

.

Proof We finish the proof by parts.

• By Lemma 43, we have the close form of D6.

• By Lemma 44, we have the close form of D7.

• By Lemma 45, we have the close form of D8.

• By Lemma 46, we have the close form of D2.

• By Lemma 47, we have the close form of D4.

Appendix H. Fast Computation for Gradient on T (X)

In this section, we give an almost linear time n1+o(1) algorithm for each Bi(X) term. Namely, we
consider B6(X), B7(X), B8(X), B2(X), B4(X) in Section H.1, H.2, H.3, H.4, and H.5, respec-
tively.

H.1. Fast computation for B6(X) term

Before we introduce the almost linear time algorithm for B6(X) term, we need to introduce the
accelerated algorithm for the key component term, z6(X), in Lemma 52.

We first compute K, which is defined in Definition 49

Lemma 51 (Computation time for K) If we have the below conditions,

• Let K ∈ Rn be defined as Definition 49.

Then, we can show that K can be computed in O(n · d) time.

Proof Since for each i0 ∈ [n], we have

Ki0︸︷︷︸
1×1

= Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

Then, we have that it takes O(d) time for calculating each entry.
Since there are total n entries in K, the overall computation time for K is O(n · d).

We now compute z6(X).

48



MULTI-LAYER TRANSFORMERS GRADIENT CAN BE APPROXIMATED IN ALMOST LINEAR TIME

Lemma 52 (Fast computation for z6(X)) If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let z6(X) ∈ Rn×n be defined in Lemma 43.

Then, for some k6 = no(1), there are matrices U6, V6 ∈ Rn×k6 such that ∥U6V
⊤
6 − z6(X)∥∞ ≤

ϵ/ poly(n). The matrices U6, V6 can be constructed in n1+o(1) time.

Proof Recall in Lemma 43, we have define z6(X) satisfying the following equation

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(3)

Recall that K ∈ Rn has been defined in Definition 49. By Lemma 51, we have K can be
computed in O(n · d) time.

We also have

z6(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

diag(K)︸ ︷︷ ︸
n×n

By Lemma 27, we have U1, V1 ∈ Rn×k1 such that

∥U1V
⊤
1 − f(X)∥∞ ≤ ϵ/ poly(n)

Let U6 = U1, V6 = diag(K)V1.
We have V6 = diag(K)︸ ︷︷ ︸

n×n

V1︸︷︷︸
n×k1

can be computed in nk1 time.

The overall running time for constructing U6 and V6 is n1+o(1).
Then, we consider the error bound.
We have

∥U6V
⊤
6 − z6(X)∥∞ = ∥U1V

⊤
1 diag(K)− f(X) diag(K)∥∞

≤ n∥U1V
⊤
1 − f(X)∥∞∥ diag(K)∥∞

≤ n(ϵ/poly(n))∥ diag(K)∥∞
≤ ϵ/ poly(n)

where the 1st step is from the choice of U6, V6, the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma 27, the 4th step is due to ∥ diag(K)∥∞ ≤ poly(n).

Then, we are ready to introduce the almost linear time algorithm for B6(X) term.
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Lemma 53 (Fast computation for B6(X) term) If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let B6(X) ∈ Rn×n be defined in Lemma 36.

• We define D6 ∈ Rn×d, where D6 :=
∑n

i0=1

∑d
j0=1Gi(i0, j0)B6(X).

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D6 in n1+o(1) time, and it can
achieve ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃6 satisfying

∥D6 − D̃6∥∞ ≤ ϵ/poly(n)

Proof
Recall that in Lemma 43, we have defined z6(X) ∈ Rn×n, which satisfies

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

And, in that Lemma, we also have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B6(X)︸ ︷︷ ︸
n×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Let U6, V6 ∈ Rn×k6 be defined as Lemma 52.
Let z̃6(X) = U6V

⊤
6 .

By Lemma 52, we have

∥z̃6(X)− z6(X)∥∞ ≤ ϵ/ poly(n) (4)

Proof of running time.
We compute in the following way:

• Compute V ⊤
6︸︷︷︸

k6×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
6 X︸ ︷︷ ︸
k6×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U6︸︷︷︸
n×k6

V ⊤
6 XW⊤︸ ︷︷ ︸
k6×d

, which takes n1+o(1) time.
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Therefore, the overall running time is n1+o(1).
Proof of error bound.
We have

∥z̃6(X)XW⊤ − z6(X)XW⊤∥∞
≤ d · n∥z̃6(X)− z6(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(4), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

H.2. Fast computation for B7(X) term

Similar to the analysis process of B6(X) term, we first provide the almost linear time algorithm for
z7(X), then provide that algorithm for B7(X).

Lemma 54 (Fast computation for z7(X)) If we have the below conditions,

• Let z7(X) ∈ Rn×n be defined in Lemma 44.

• By Lemma 27, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −

f(X)∥∞ ≤ ϵ/ poly(n).

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k7 = no(1), there are matrices U7, V7 ∈ Rn×k7 such that ∥U7V
⊤
7 − z7(X)∥∞ ≤

ϵ/ poly(n). The matrices U7, V7 can be constructed in n1+o(1) time.

Proof Recall that in Lemma 44, we have defined z7(X) ∈ Rn×n, where the i0-th column of z7(X)
satisfies

z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)

which is equivalent to

z7(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙(h(X)︸ ︷︷ ︸
n×d

G⊤
i︸︷︷︸

d×n

)
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By Lemma 27, we know f̃(X) := U1V
⊤
1 is a good approximation for f(X).

We choose U7 = U1 ⊘ h(X) and V7 = V1 ⊘Gi, where U7, V7 ∈ Rn×k1d.
Proof of running time.
For U7 = U1 ⊘ h(X), since U1 ∈ Rn×k1 , h(X) ∈ Rn×d, constructing U7 takes O(ndk1) =

O(n1+o(1)) time.
Similarly, constructing V7 takes O(n1+o(1)) time.
Proof of error bound.
Using Fact 17, we have

∥U7V
⊤
7 − z7(X)∥∞ = ∥U7V

⊤
7 − f(X)⊙ (h(X)G⊤

i )∥∞
= ∥(U1 ⊘ h(X))(V1 ⊘Gi)

⊤ − f(X)⊙ (h(X)G⊤
i )∥∞

= ∥(U1V
⊤
1 )⊙ (h(X)G⊤

i )− f(X)⊙ (h(X)G⊤
i )∥∞

= ∥f̃(X)⊙ (h(X)G⊤
i )− f(X)⊙ (h(X)G⊤

i )∥∞
≤ d∥h(X)∥∞∥Gi∥∞ · ϵ/ poly(n)
≤ ϵ/poly(n) (5)

where the 1st step is from the definition of z7(X), the 2nd step comes from the choice of U7

and V7, the 3rd step is because of Fact 17, the 4th step is due to the definition of f̃(X), the 5th
step follows from ∥f̃(X) − f(X)∥∞ ≤ ϵ/ poly(n), the sixth step follows from Lemma 32 and
∥Gi∥∞ ≤ poly(n).

Then, we can do similarly fast computation for B7 term.

Lemma 55 (Fast computation for B7(X) term) If we have the below conditions,

• Let B7(X) ∈ Rn×d be defined in Lemma 37.

• We define D7 ∈ Rn×d, where D7 :=
∑n

i0=1

∑d
j0=1Gi(i0, j0)B7(X).

• Let X ∈ Rn×d,W,WV ∈ Rd×d, B ∈ Rn×d be defined in Definition 2.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D7 in n1+o(1) time, and it can
achieve ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃7 satisfies

∥D7 − D̃7∥∞ ≤ ϵ/poly(n)
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Proof In Lemma 44, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Let U7, V7 ∈ Rn×k7 be defined in Lemma 54.
Let z̃7(X) := U7V

⊤
7 .

By Lemma 54, we have

∥z̃7(X)− z7(X)∥∞ ≤ ϵ/ poly(n) (6)

Proof of running time.
We compute in the following way:

• Compute V ⊤
7︸︷︷︸

k7×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
7 X︸ ︷︷ ︸
k7×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U7︸︷︷︸
n×k7

V ⊤
7 XW⊤︸ ︷︷ ︸
k7×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).
Proof of error bound.
We have

∥z̃7(X)XW⊤ − z7(X)XW⊤∥∞
≤ d · n∥z̃7(X)− z7(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq. (6), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

H.3. Fast computation for B8(X) term

Then, we can do fast computations on B8(X) term.

Lemma 56 (Fast computation for B8(X) term) If we have the below conditions,

• Let B8(X) ∈ Rn×d be defined in Lemma 38.

• We define D8 ∈ Rn×d, where D8 :=
∑n

i0=1

∑d
j0=1Gi(i0, j0)B8(X).

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.
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• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D8 in n1+o(1) time, and it can
achieve ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃8 satisfies

∥D8 − D̃8∥∞ ≤ ϵ/poly(n)

Proof Recall that in Lemma 45, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

Let f̃(X) := U1V
⊤
1 denote the approximation of f(X).

By Lemma 27, we have

∥f(X)− f̃(X)∥∞ ≤ ϵ/ poly(n) (7)

Proof of running time.
We compute in the following way:

• Compute V ⊤
1︸︷︷︸

k1×n

Gi︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
1 Gi︸ ︷︷ ︸
k1×d

W⊤
V︸︷︷︸

d×d

, which takes n1+o(1) time.

• Compute U1︸︷︷︸
n×k1

V ⊤
1 GiW

⊤
V︸ ︷︷ ︸

k1×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).
Proof of error bound.
We have

∥f̃(X)GiW
⊤
V − f(X)GiW

⊤
V ∥∞

≤ d · n∥f̃(X)− f(X)∥∞∥Gi∥∞∥WV ∥∞
≤ d · n(ϵ/ poly(n))∥Gi∥∞∥WV ∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(7), the 3rd step is
because of ∥Gi∥∞ ≤ poly(n) and ∥WV ∥∞ ≤ poly(n).
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H.4. Fast computation for B2(X) term

Then, we provide the proof of how to do fast computation on B2(X).

Lemma 57 (Fast computation for z2(X)) If we have the below conditions,

• Let z2(X) ∈ Rn×n be defined as in Lemma 46.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k9 = no(1), there are matrices U9, V9 ∈ Rn×k9 such that ∥U9V
⊤
9 − z2(X)∥∞ ≤

ϵ/ poly(n). The matrices U9, V9 can be constructed in n1+o(1) time.

Proof
Recall that in Lemma 46, we have defined z2(X) ∈ Rn×n, where the i0-th row of z2(X)

satisfies

z2(X)i0,∗︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

Recall that K ∈ Rn has been defined in Definition 49.
By Lemma 51, we have K can be computed in O(n · d) time.
We also have

z2(X)︸ ︷︷ ︸
n×n

= diag(K)︸ ︷︷ ︸
n×n

f(X)︸ ︷︷ ︸
n×n

By Lemma 27, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −f(X)∥∞ ≤

ϵ/ poly(n).
Let U9 = diag(K)U1, V6 = V1.
We have U9 = diag(K)︸ ︷︷ ︸

n×n

U1︸︷︷︸
n×k1

can be computed in nk1 time.

The overall running time for constructing U9 and V9 is n1+o(1).
Then, we consider the error bound.
We have

∥U9V
⊤
9 − z2(X)∥∞ = ∥ diag(K)U1V

⊤
1 − diag(K)f(X)∥∞

≤ n∥U1V
⊤
1 − f(X)∥∞∥diag(K)∥∞

≤ n(ϵ/ poly(n))∥ diag(K)∥∞
≤ ϵ/ poly(n) (8)

where the 1st step is from the choice of U6, V6, the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma 27, the 4th step is due to ∥ diag(K)∥∞ ≤ poly(n).
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Lemma 58 (Fast computation for B2(X) term) If we have the below conditions,

• Let B2(X) ∈ Rn×d be defined in Lemma 39.

• We define D2 ∈ Rn×d, where D2 :=
∑n

i0=1

∑d
j0=1Gi(i0, j0)︸ ︷︷ ︸

1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

.

• Let X ∈ Rd×n,W,WV ∈ Rd×d, B ∈ Rn×d be defined in Definition 2.

• Assuming each entry of X,W,WV , B,Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D2 in n1+o(1) time, and it can
achieve ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃2 satisfies

∥D2 − D̃2∥∞ ≤ ϵ/poly(n)

Proof
In Lemma 46, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Let U9, V9 ∈ Rn×k9 be defined in Lemma 57.
Let z̃2(X) := U9V

⊤
9 .

By Lemma 57, we have

∥z̃2(X)− z2(X)∥∞ ≤ ϵ/ poly(n) (9)

Proof of running time.
We compute in the following way:

• Compute V ⊤
9︸︷︷︸

k9×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
9 X︸ ︷︷ ︸
k9×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U9︸︷︷︸
n×k9

V ⊤
9 XW︸ ︷︷ ︸
k9×d

, which takes n1+o(1) time.
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Therefore, the overall running time is n1+o(1).
Proof of error bound.
We have

∥z̃2(X)XW − z2(X)XW∥∞
≤ d · n∥z̃2(X)− z2(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(9), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

H.5. Fast computation for B4(X) term

Finally, our analysis shows that we can do fast computations for B4(X) term. After that, we showed
that all terms can be computed quickly.

Lemma 59 (Fast computation for z4(X)) If we have the below conditions,

• Let z4(X) ∈ Rn×n be defined in Lemma 47.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k10 = no(1), there are matrices U10, V10 ∈ Rn×k10 , let z̃4(X) := U10V
⊤
10 , such

that ∥z̃4(X)− z4(X)∥∞ ≤ ϵ/poly(n). The matrices U10, V10 can be constructed in n1+o(1) time.

Proof
In Lemma 47, we have defined z4(X) ∈ Rn×n, where the i0-th column of z4(X) satisfies

z4(X)i0,∗︸ ︷︷ ︸
n×1

= (f(X)i0,∗︸ ︷︷ ︸
n×1

⊙ (h(X)Gi(i0, ∗))︸ ︷︷ ︸
n×1

)

which is equivalent to

z4(X)︸ ︷︷ ︸
n×n

= (f(X)︸ ︷︷ ︸
n×n

⊙ Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

)

By Lemma 27, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −f(X)∥∞ ≤

ϵ/ poly(n).
We choose U10 = U1 ⊘Gi and V10 = V1 ⊘ h(X), where U10, V10 ∈ Rn×k1d.
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Proof of running time.
For U10 = U1 ⊘ Gi, since U1 ∈ Rn×k1 , Gi ∈ Rn×d, constructing U10 takes O(ndk1) =

O(n1+o(1)) time.
Similarly, constructing V10 takes O(n1+o(1)) time.
Proof of error bound.
Let f̃(X) := U1V

⊤
1 .

Using Fact 17, we have

∥z̃4(X)− z4(X)∥∞
= ∥U10V

⊤
10 − f(X)⊙ (Gi · h(X)⊤)∥∞

= ∥(U1 ⊘Gi)(V1 ⊘ h(X))⊤ − f(X)⊙ (Gi · h(X)⊤)∥∞
= ∥(U1V

⊤
1 )⊙ (Gi · h(X)⊤)− f(X)⊙ (Gi · h(X)⊤)∥∞

where the 1st step is from the definition of z̃4(X), z4(X), the 2nd step comes from the choice of
U10 and V10, the 3rd step is because of Fact 17.

∥(U1V
⊤
1 )⊙ (Gi · h(X)⊤)− f(X)⊙ (Gi · h(X)⊤)∥∞

= ∥U1V
⊤
1 − f(X)∥∞∥Gi · h(X)⊤∥∞

≤ d · (ϵ/ poly(n))∥h(X)∥∞∥Gi∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from ∥U1V1 − f(X)∥∞ ≤
ϵ/poly(n), the 3rd step is because of Lemma 32 and ∥Gi∥∞ ≤ poly(n).

Lemma 60 (Fast computation for B4(X) term) If we have the below conditions,

• Let B4(X) ∈ Rn×d be defined in Lemma 40.

• We define D4 ∈ Rn×d, where D4 :=
∑n

i0=1

∑d
j0=1Gi(i0, j0)︸ ︷︷ ︸

1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D4 in n1+o(1) time, and it can
achieve ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃4 satisfies

∥D4 − D̃4∥∞ ≤ ϵ/poly(n)
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Proof In Lemma 47, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Let z̃4(X) := U10V
⊤
10 .

By Lemma 59, we have

∥z̃4(X)− z4(X)∥∞ ≤ ϵ/ poly(n) (10)

Proof of running time.
We compute in the following way:

• Compute V ⊤
10︸︷︷︸

k10×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
10X︸ ︷︷ ︸

k10×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U10︸︷︷︸
n×k10

V ⊤
10XW︸ ︷︷ ︸
k10×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).
Proof of error bound.
We have

∥z̃4(X)XW − z4(X)XW∥∞
≤ d · n∥z̃4(X)− z4(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(10), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

H.6. Putting everything together

After we have analyzed each Bi(X) term in the previous section, we put them together in this
section, to analyze the overall running time and error bound of the gradient of L(X) on Ti(X) in
Lemma 61.

Lemma 61 (Fast computation for dL(X)
dTi−1(X) , formal version of Lemma 11) If we have the below

conditions,

• Let L(X) be defined as Definition 5.
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• Let m denote the number of self-attention transformer model (see Definition 3).

• For any i ∈ [m], let Ti(X) be defined as Definition 6.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition 2.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Assume Gi can be computed in n1+o(1) time.

We can show that dL(X)
dTi−1(X) can be approximated in n1+o(1) time, with 1/ poly(n) approximation

error. Namely, our algorithm can output g̃t in n1+o(1) time, which satisfies

∥g̃t −
dL(X)

dTi−1(X)
∥∞ ≤ 1/ poly(n)

Proof By Lemma 42, we have

dL(X)

dTi−1(X)
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

=
∑

i∈{2,4,6,7,8}

Di

where the 1st step is from Lemma 42, the 2nd step comes from the definition of D6, D7, D8, D2, D4.
Then, by Lemma 53, 55, 56, 58, 60, we have D6, D7, D8, D2, D4 ∈ Rn×d can be approximated

in n1+o(1) time, with up to ϵ/ poly(n) error.
Namely, for i ∈ {2, 4, 6, 7, 8}, let D̃i ∈ Rn×d denote the approximated version of D, we have

∥D̃i −D∥∞ ≤ ϵ/poly(n)

Let g̃t =
∑

i∈{2,4,6,7,8} D̃i.
Proof of running time.
The running time for g̃t =

∑
i∈{2,4,6,7,8} D̃i is 5nd.

Therefore, the overall running time for computing g̃t is n1+o(1).
Proof of error bound.
We have

∥g̃t −
dL(X)

dTi−1(X)
∥∞ = ∥

∑
i∈{2,4,6,7,8}

(D̃i −Di)∥∞

≤
∑

i∈{2,4,6,7,8}

∥(D̃i −Di)∥∞

≤ ϵ/ poly(n)
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where the 1st step is from the definition of g̃t and dL(X)
dTi−1(X) , the 2nd step comes from basic algebra,

the 3rd step is because of ∥D̃i −D∥∞ ≤ ϵ/poly(n).
Then, choose ϵ = 1/poly(n), we have

∥g̃t −
dL(X)

dTi−1(X)
∥∞ ≤ 1/ poly(n)

Appendix I. Fast Computation for Gradient on W

In Section I.1, we introduce some essential notations used in this section. In Section I.2, we offer the
gradient of s(X) on W , which is equivalent to the gradient of the output of the attention mechanism
on W . In Section I.3, we illustrate the gradient of L(X) on W . In Section I.4, we introduce the
almost linear time algorithm for calculating the gradient of L(X) on W , along with the error bound
analysis.

I.1. Key concepts

Definition 62 (Definition of A, [4]) Let A1, A2 ∈ Rn×d be two matrices. Suppose that A = A1 ⊗
A2 ∈ Rn2×d2 . We define Aj0 ∈ Rn×d2 be a n × d2 size sub-block from A. Note that there are n
such sub-blocks.

Remark 63 Note that the A1, A2 matrices in Definition 62 is X in our setting. Since in Alman and
Song [4], they consider a more general setting, where A1, A2 can be difference matrices, while in
our problem, we consider self-attention. Therefore, in our paper, we have A1 = A2 = X .

I.2. Gradient of s(X) on W

We begin with introducing the close form of the gradient of s(X).
Alman and Song [4] proved the close form of the gradient of c(X) = s(X)−B with respect to

W for a constant matrix B. By chain rule, this is equivalent to the gradient of s(X) with respect to
W .

Lemma 64 (Gradient of s(X) on W , Lemma B.1 in Alman and Song [4]) If we have the below
conditions,

• Let A be defined as Definition 62. For every i ∈ [d2], define Aj0,i ∈ Rn to be the i-th column
for Aj0 ∈ Rn×d2 .

• Let f(X), h(X), s(X) be defined as Definition 22, 23, 24.

• Let W ∈ Rd×d be defined as Definition 2. Let w ∈ Rd2 denote the vector representation of
W .

Then, for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d]

ds(X)j0,i0
dwi

= ⟨Aj0,i⊙f(X)j0 , h(X)i0⟩ − ⟨f(X)j0 , h(X)i0⟩ · ⟨Aj0,i, f(X)j0⟩
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I.3. Gradient of L(X) on W

Differing from the ℓ2 loss function used in Alman and Song [4], our framework supports arbitrary
loss functions. Therefore, we use Lemma 65 to illustrate the gradient of L(X) on W .

Lemma 65 (Gradient of L(X) on W ) If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let W ∈ Rd×d, X ∈ Rn×d be Defined as Definition 2.

• Let p(X) be defined as Definition 26.

Then, we can show that

dL(X)

dWi
= X⊤ · p(X) ·X

Proof By Lemma 64, we have, for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d]

ds(X)j0,i0
dwi

= ⟨Aj0,i︸︷︷︸
n×1

⊙ f(X)j0︸ ︷︷ ︸
n×1

, h(X)i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(X)j0︸ ︷︷ ︸
n×1

, h(X)i0︸ ︷︷ ︸
n×1

⟩ · ⟨Aj0,i︸︷︷︸
n×1

, f(X)j0︸ ︷︷ ︸
n×1

⟩ (11)

By Fact 16, we have

⟨Aj0,i⊙f(X)j0 , h(X)i0⟩ = A⊤
j0,i diag(f(X)j0)h(X)i0

and

⟨f(X)j0 , h(X)i0⟩ · ⟨f(X)j0 ,Aj0,i⟩ = A⊤
j0,i f(X)j0f(X)⊤j0h(X)i0

By Eq. (11), for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d], we have

ds(X)j0,i0
dwi

= A⊤
j0,i(diag(f(X)j0)− f(X)j0f(X)⊤j0)h(X)i0

which implies,

ds(X)j0,i0
dW

= A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

(12)

By Lemma 18, for i ∈ [m], we have

dL(X)

dWi
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWi
. (13)

By the definition of s(X) (Definition 24), we have

s(X) = Attni(Ti−1(X))
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Combining Eq. (12) and Eq. (13), for each i ∈ [m], we have

dL(X)

dWi
=

n∑
j0=1

d∑
i0=1

Gi(j0, i0)︸ ︷︷ ︸
1×1

· A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

(14)

Recall that we have defined q(X) in Definition 25,

q(X)j0 :=
d∑

i0=1

Gi(j0, i0) · h(X)i0 (15)

Recall that p(x)j0 ∈ Rn is define as Definition 26,

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0 . (16)

Then, we have

dL(X)

dWi

=
n∑

j0=1

d∑
i0=1

Gi(j0, i0)︸ ︷︷ ︸
1×1

· A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

=
n∑

j0=1

A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

q(X)j0︸ ︷︷ ︸
n×1

=
n∑

j0=1

A⊤
j0 pj0(X)

= X⊤︸︷︷︸
d×n

p(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

where the 1st step is from Eq. (14), the 2nd step comes from Eq. (15), the 3rd step is because of
Eq. (16), the 4th step is due to the tensor tricks.

I.4. Fast computation

Finally, we introduce the almost linear time algorithm and its error analysis of the gradient of L(X)
on W in Lemma 66.

Lemma 66 (Fast computation for dL(X)
dWi

) If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let m denote the number of self-attention transformer layers (see Definition 3).

• For any i ∈ [m], let Wi = WQiW
⊤
Ki

denote the attention weight in the i-th transformer layer.
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We can show that dL(X)
dWi

can be approximated in n1+o(1) time, with 1/ poly(n) approximation
error. Namely, our algorithm can output g̃w in n1+o(1) time, which satisfies

∥g̃w −
dL(X)

dWi
∥∞ ≤ 1/ poly(n)

Proof Recall by Lemma 29, 30, we have defined p1(X), p2(X) ∈ Rn×n.
In those Lemmas, we have p1(X), p2(X) have low rank approximation U3V

⊤
3 and U4V

⊤
4 , re-

spectively.
By the definition of p(X) (Definition 26), we have

p(X) = p1(X)− p2(X) (17)

Then, by Lemma 65, we have

dL(X)

dWi

= X⊤p(X)X

= X⊤(p1(X)− p2(X))X

where the 1st step is from Lemma 65, the 2nd step comes from Eq. (17).
Let p̃1(X), p̃2(X) denote the low rank approximations for p1(X), p2(X), respectively.
Proof of running time. We first compute X⊤p̃1(X)X in following order

• Compute X⊤︸︷︷︸
d×n

U3︸︷︷︸
n×k3

, which takes n1+o(1) time.

• Compute X⊤U3︸ ︷︷ ︸
d×k3

V ⊤
3︸︷︷︸

k3×n

, which takes n1+o(1) time.

• Compute X⊤U3V
⊤
3︸ ︷︷ ︸

d×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

The overall running time for X⊤p̃1(X)X is n1+o(1).
Similarly, the overall running time for X⊤p̃2(X)X is n1+o(1).
Since X⊤p̃1(X)X,X⊤p̃2(X)X ∈ Rd×d, the computation time for X⊤(p̃1(X) − p̃2(X))X is

O(d2).
Therefore, the overall running time for X⊤(p̃1(X)− p̃2(X))X is n1+o(1).
Proof of error bound.
We consider the error for X⊤p̃1(X)X first.

∥X⊤p̃1(X)X −X⊤p1(X)X∥∞
= ∥X⊤(p̃1(X)− p1(X))X∥∞
≤ n2∥X∥2∞∥p̃1(X)− p1(X)∥∞
≤ n2(ϵ/ poly(n))∥X∥2∞
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≤ ϵ/ poly(n) (18)

where the 1st step is from basic algebra, the 2nd step comes from basic linear algebra, the 3rd step
is because of ∥p̃1(X)− p1(X)∥∞ ≤ ϵ/poly(n), the 4th step is due to ∥X∥∞ ≤ poly(n).

Similarly, we can have

∥X⊤p̃2(X)X −X⊤p2(X)X∥∞ ≤ ϵ/poly(n) (19)

Therefore, we have

∥X⊤p̃(X)X −X⊤p(X)X∥∞
= ∥X⊤p̃1(X)X −X⊤p1(X)X +X⊤p̃2(X)X −X⊤p2(X)X∥∞
≤ ∥X⊤p̃1(X)X −X⊤p1(X)X∥∞ + ∥X⊤p̃2(X)X −X⊤p2(X)X∥∞
≤ (ϵ/ poly(n)) + (ϵ/poly(n))

= ϵ/ poly(n)

where the 1st step is from basic algebra, the 2nd step comes from triangle inequality, the 3rd step is
because of Eq. (18) and Eq. (19), the 4th step is due to basic algebra.

Then, we choose ϵ = 1/poly(n), we have

∥g̃w −
dL(X)

dWi
∥∞ ≤ 1/ poly(n)

Appendix J. Fast Computation for Gradient on WV

In Section J.1, we introduce the close form of the gradient of s(X) on WV . In Section J.2, we
provide the close form of the gradient of L(X) on WV . In Section J.3, based on the close form
calculated in the previous section, we introduce the almost linear time algorithm for computing the
gradient of L(X) on WV .

J.1. Gradient of s(X) on WV

Since s(X) = f(X)h(X), we begin with considering the gradient of h(X) on WV in Lemma 67.

Lemma 67 (Gradient of h(X) on WV ) If we have the below conditions,

• Let h(X) be defined as Definition 23.

• Let WV be defined as Definition 2.

Then, for any i0 ∈ [n], j0 ∈ [d] and any i1, j1 ∈ [d], we have

dh(X)i0,j0
d(WV )i1,j1

=

{
Xi0,i1 j0 = j1

0 j0 ̸= j1
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Proof Since hi0,j0 satisfies

hi0,j0 = X⊤
i0,∗(WV )∗,j0 ,

we have hi0,j0 only depends on (WV )∗,j0 .
Hence, we have, for j0 ̸= j1,

dh(X)i0,j0
d(WV )i1,j1

= 0

For j0 = j1 case, we have

dh(X)i0,j0
d(WV )i1,j0

= Xi0,i1

Combining the result in the previous Lemma and the chain rule, we can have the gradient of
s(X) on WV in Lemma 68.

Lemma 68 (Gradient of s(X) on WV ) If we have the below conditions,

• Let s(X) be defined as Definition 24.

• Let WV be defined as Definition 2.

Then, for any i2 ∈ [n], j2 ∈ [d] and any i1, j1 ∈ [d], we have

• Part 1.

ds(X)i2,j2
d(WV )i1,j1

=

{
f(X)⊤i2,∗X∗,i1 j2 = j1

0 j2 ̸= j1

• Part 2.

ds(X)i2,j2
dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

Proof Proof of Part 1.
By Definition 24, we have

s(X)i2,j2 := f(X)⊤i2,∗h(X)∗,j2 (20)

Therefore, s(X)i2,j2 is only depends on h(X)∗,j2 , which further means s(X)i2,j2 is only de-
pends on (WV )∗,j2 .

Hence, for j1 ̸= j2, we have

ds(X)i2,j2
d(WV )i1,j2

= 0
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We consider j1 = j2 case.
By, Eq. (20), we can derive that

ds(X)i2,j2
dh(X)i3,j2

= f(X)i2,i3 (21)

By chain rule, we have

ds(X)i2,j2
d(WV )i1,j2

=

d∑
i3=1

ds(X)i2,j2
dh(X)i3,j2

dh(X)i3,j2
d(WV )i1,j2

=

d∑
i3=1

f(X)i2,i3
dh(X)i3,j2
d(WV )i1,j2

=
d∑

i3=1

f(X)i2,i3Xi3,i1

= f(X)⊤i2,∗X∗,i1 (22)

where the 1st step is from chain rule, the 2nd step comes from Eq. (21), the 3rd step is because of
Lemma 67, the 4th step is due to basic linear algebra.

Proof of Part 2.
By Eq (22), we have

ds(X)i2,j2
d(WV )∗,j2︸ ︷︷ ︸

d×1

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

which implies

ds(X)i2,j2
dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

J.2. Gradient of L(X) on WV

Since we have already got the close form of the gradient of s(X) on WV , we can easily extend it
and get the close form of the gradient of L(X) on WV in Lemma 69.

Lemma 69 (Gradient of L(X) on WV ) If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let WV be defined as Definition 2.
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Then, we can show that

dL(X)

dWVi︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

Proof We slightly abuse the notation, using WV to represent Vi in Lemma 67, 68.
By Lemma 68, we have

ds(X)i2,j2
dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

(23)

By Lemma 18, we have

dL(X)

dWVi

=
n∑

i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWVi

. (24)

By Definition 24 and Definition 2, we have

s(X) = Attni(Ti−1(X))

Therefore, combining Eq. (23) and Eq. (24), we have

dL(X)

dWVi

=
n∑

i2=1

d∑
j2=1

Gi(i2, j2)︸ ︷︷ ︸
1×1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

=

n∑
i2=1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

d∑
j2=1

Gi(i2, j2)︸ ︷︷ ︸
1×1

e⊤j2︸︷︷︸
1×d

=
n∑

i2=1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

Gi(i2, ∗)⊤︸ ︷︷ ︸
1×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

where the 1st step is from Eq. (23) and Eq. (24), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to basic linear algebra.
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J.3. Fast computation

Finally, we can introduce our almost linear time algorithm for computing the L(X) gradient on WV .

Lemma 70 (Fast computation for dL(X)
d(WV )i

) If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let m denote the number of self-attention transformer layers (see Definition 3).

• For any i ∈ [m], let WVi ∈ Rd×d denote the attention weight in the i-th transformer layer.

We can show that dL(X)
dWVi

can be approximated in n1+o(1) time, with 1/ poly(n) approximation

error. Namely, our algorithm can output g̃v in n1+o(1) time, which satisfies

∥g̃v −
dL(X)

dWVi

∥∞ ≤ 1/poly(n)

Proof
Recall in Lemma 27, U1V

⊤
1 is the low rank approximation of f(X).

Let f̃(X) := U1V
⊤
1 denote the low rank approximation of f(X).

Recall in Lemma 69, we have

dL(X)

dWVi︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

Proof of running time.
We compute X⊤f̃(X)Gi in following order

• Compute X⊤︸︷︷︸
d×n

· U1︸︷︷︸
n×k1

, which takes n1+o(1) time.

• Compute X⊤ · U1︸ ︷︷ ︸
d×k1

· V ⊤
1︸︷︷︸

k1×n

, which takes n1+o(1) time.

• Compute X⊤ · U1 · V ⊤
1︸ ︷︷ ︸

d×n

· Gi︸︷︷︸
n×d

, which takes d2 · n time.

The overall running time is n1+o(1).
Proof of error bound.
We have

∥X⊤ · f(X) ·Gi −X⊤ · f̃(X) ·Gi∥∞
= ∥X⊤ · (f(X)− f̃(X)) ·Gi∥∞
≤ n2∥X∥∞∥f(X)− f̃(X)∥∞∥Gi∥∞
≤ n2(ϵ/ poly(n))∥X∥∞∥Gi∥∞
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≤ ϵ/ poly(n)

where the 1st step is from basic algebra, the 2nd step comes from basic linear algebra, the 3rd
step is because of ∥f(X) − f̃(X)∥∞ ≤ ϵ/ poly(n), the 4th step is due to ∥X∥∞ ≤ poly(n) and
∥Gi∥∞ ≤ poly(n).

Let g̃v = X⊤ · f̃(X) ·Gi.
We choose ϵ = 1/ poly(n). Then, we have

∥g̃v −
dL(X)

dWVi

∥∞ ≤ 1/poly(n)

Appendix K. Gradient Approximation for Entire Model

In Section K.1, we introduce the close form of Gi and argue that Gi can be computed in almost linear
time n1+o(1). In Section K.2, we provide the almost linear time algorithm for gradient computing
on a single-layer transformer. In Section K.3, with the help of math induction, we introduce the
almost linear time algorithm for computing the gradient of the multi-layer transformer, along with
its approximation error.

K.1. Computation time for Gi

Here we consider gi in Definition 3 as a linear layer with an arbitrary non-linear activation ϕ. Since
gi can be viewed as a composition of an MLP and an activation function, we begin with analyzing
the Ti gradient on Attni.

Lemma 71 (Gradient of Ti on Attni ) If we have the below conditions,

• Let Ti(X) be defined as Definition 6.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(ZWg), where Wg ∈
Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote the
derivative of ϕ.

• We simplify the notation, using Ti and Attni to represent Ti(X) and Attni(Ti−1(X)), respec-
tively.

• For any matrix Z ∈ Rn×d, we use Z(i, j) to denote the (i, j)-th entry of Z.

Then, we can show that, for any i4, i5 ∈ [n], j4, j5 ∈ [d],

• Part 1.

dTi(i4, j4)

dAttni(i5, j5)
=


ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

i4 = i5

0 i4 ̸= i5
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• Part 2.

dTi(i4, j4)

dAttni︸ ︷︷ ︸
n×d

= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

Proof Proof of Part 1.
By the definition of Ti (Definition 6), for i4 ∈ [d], j4 ∈ [n], we have

Ti(i4, j4) = ϕ(Attni(i4, ∗)⊤Wg(∗, j4))

Therefore, for any i5 ̸= i4, we have

dTi(i4, j4)

dAttni(i5, j5)
= 0

Then, we consider i4 = i5 case.
By basic calculus, we have

dTi(i4, j4)

dAttni(i4, j5)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

Combining two equations mentioned above, we have the result for Part 1.
Proof of Part 2.

By result of Part 1, for i5 = i4, we have

dTi(i4, j4)

dAttni(i4, j5)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

which implies

dTi(i4, j4)

dAttni(i4, ∗)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(∗, j4)︸ ︷︷ ︸
d×1

By result of Part 1, for i5 ̸= i4, we have

dTi(i4, j4)

dAttni(i5, ∗)
= 0

By basic linear algebra, combining the two equations mentioned above, we have

dTi(i4, j4)

dAttni
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

Then, we can argue that the computation for Gi can be done in almost linear time n1+o(1).
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Lemma 72 (Computation time for Gi, formal version of Lemma 14) If we have the below con-
ditions,

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Assuming we already have dL(X)
dTi(X) .

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(ZWg), where Wg ∈
Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote the
derivative of ϕ.

• We simplify the notation, using Ti and Attni to represent Ti(X) and Attni(Ti−1(X)), respec-
tively.

• For any matrix Z ∈ Rn×d, we use Z(i, j) to denote the (i, j)-th entry of Z.

Then, we can show that Gi can be computed in n1+o(1) time.

Proof
Let gTi := dL(X)

dTi
, and for any i4 ∈ [n], j4 ∈ [d], let gTi(i4, j4) denote the (i4, j4)-th entry of

gTi .
Similarly, for any i5 ∈ [n], j5 ∈ [d], let Ti(i5, j5) denote the (i5, j5)-th entry of Ti.
We can have

Gi =
dL(X)

dAttni

=
dL(X)

dTi
· dTi

dAttni

= gTi ·
dTi

dAttni

=

n∑
i4=1

d∑
j4=1

gTi(i4, j4) ·
dTi(i4, j4)

dAttni

where the 1st step is from the definition of Gi, the 2nd step comes from chain rule, the 3rd step is
because of the definition of gTi , the 4th step is due to chain rule.

n∑
i4=1

d∑
j4=1

gTi(i4, j4) ·
dTi(i4, j4)

dAttni

=
n∑

i4=1

d∑
j4=1

gTi(i4, j4)︸ ︷︷ ︸
1×1

ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

=
n∑

i4=1

ei4︸︷︷︸
n×1

d∑
j4=1

gTi(i4, j4)︸ ︷︷ ︸
1×1

ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d
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=

n∑
i4=1

ei4︸︷︷︸
n×1

(Wg︸︷︷︸
d×d

(gTi(i4, ∗)︸ ︷︷ ︸
d×1

⊙ϕ′(Attni(i4, ∗)⊤Wg)︸ ︷︷ ︸
d×1

))⊤

= (gTi ⊙ ϕ′(AttniWg))︸ ︷︷ ︸
n×d

W⊤
g︸︷︷︸

d×d

(25)

where the 1st step is from Lemma 71, the 2nd step comes from basic algebra, the 3rd step is because
of basic linear algebra, the 4th step is due to basic linear algebra.

By Eq. (25), we have the close form of Gi.
We can compute Gi in the following order

• Compute (gTi ⊙ ϕ′(AttniWg))︸ ︷︷ ︸
n×d

, which takes n · d time.

• Compute (gTi ⊙ ϕ′(AttniWg))︸ ︷︷ ︸
n×d

W⊤
g︸︷︷︸

d×d

, which takes d2 · n time.

Therefore, the overall running time for Gi is n1+o(1).

K.2. Fast computation for single-layer transformer

In this section, we dive into the computation time and approximation error of the gradient of a
single-layer transformer. We demonstrate in the following Lemma that the gradient of a single-
layer transformer can be computed in almost linear time n1+o(1), and its error can be bounded by
1/poly(n).

Lemma 73 (Single-layer transformer gradient approximation) If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let X be defined as Definition 2.

• Let the gradient matrix Gi ∈ Rn×d be defined as Gi =
dL(X)

dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(Z · Wg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote the
derivative of ϕ.

• Suppose we have a single-layer transformer (see Definition 3).

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.
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• Part 2: error bound. The approximation error of the single-layer transformer can be
bounded by 1/poly(n). Namely, our algorithm output g̃1 satisfies

∥g̃1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof By Definition 3, a single-layer transformer has following structure:

g1 ◦ Attn1 ◦ g0(X)

By the definition of Gi, we have

G1 =
dL(X)

dAttn1(T0(X))

=
dL(X)

dT1(X)
· dT1(X)

dAttn1(T0(X))
(26)

By Lemma 72, we have G1 can be computed in n1+o(1) time.
Proof of Part 1: running time.

For less confusion, in this part of the proof, we ignore the approximation error temporarily.
Since we have got G1, we use methods mentioned in Lemma 61, 66, 70 to compute dL(X)

dT0(X) ,
dL(X)
dW1

, dL(X)
dWV1

,

respectively, which takes n1+o(1) time for each.
Then, since we have dL(X)

dT0(X) , again by Lemma 72, we have dL(X)
dX can be computed in n1+o(1)

time.
Therefore, the overall running time is n1+o(1).
Proof of Part 2: error bound.

Then, we move on to the error bound.
By Lemma 72 and Eq. (26), there is no approximation error when computing G1.
By Lemma 61, 66, 70, we have there is 1/ poly(n) approximation error on dL(X)

dT0(X) ,
dL(X)
dW1

, dL(X)
dWV1

,
respectively.

Let g̃t0 , g̃w1 , g̃v1 denote the approximation results of dL(X)
dT0(X) ,

dL(X)
dW1

, dL(X)
dWV1

, respectively.
We have

∥g̃t0 −
dL(X)

dT0(X)
∥∞ ≤ 1/ poly(n) (27)

and

∥g̃w1 −
dL(X)

dW1
∥∞ ≤ 1/poly(n)

and

∥g̃v1 −
dL(X)

dWV1

∥∞ ≤ 1/ poly(n)

Let G̃0 = g̃t0 ·
dT0(X)
dX denote the approximated version of G0.
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We have

∥G̃0 −G0∥∞

= ∥(g̃t0 −
dL(X)

dT0(X)
) · dT0(X)

dX
∥∞

≤ n · d∥g̃t0 −
dL(X)

dT0(X)
∥∞∥

dT0(X)

dX
∥∞

≤ n · d(1/ poly(n))∥dT0(X)

dX
∥∞

≤ 1/ poly(n)

where the 1st step is from the definition of G̃0, the 2nd step comes from basic linear algebra, the
3rd step is because of Eq. (27), the 4th step is due to each entry can be written by O(log n) bits.

Let g̃1 = G̃0.
Therefore, we have

∥g̃1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

K.3. Fast computation for multi-layer transformer

Since we have already demonstrated that almost linear time gradient computation can be applied to
a single-layer transformer, with the help of math induction, we can easily generalize that result to
the multi-layer transformer. In the following Lemma, we display that the gradient of the multi-layer
transformer can be computed in almost linear time, and its approximation error can be bounded by
1/poly(n).

Lemma 74 (Multi-layer transformer gradient approximation, formal version of Lemma 15) If
we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let X be defined as Definition 2.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let gradient components for each layer be computed according to Lemma 61, 66, 70.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(Z · Wg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote the
derivative of ϕ.

• Suppose we have a m-layer transformer (see Definition 3).
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Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the multi-layer transformer can be bounded
by 1/poly(n). Namely, our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof We use math induction to prove this Lemma.
Step 1: Proof of a single-layer transformer.

Firstly, by Lemma 73, we have that for one-layer transformer, our conclusion is established.
Step 2: Assumption for k-layer transformer.
Secondly, we assume for any k, for k-layer transformer model, we have

• Our algorithm can approximate dL(X)
dX in O(n1+o(1)) time.

• The approximation error of the k-layer transformer can be bounded by 1/ poly(n). Namely,
our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

Step 3: Proof of (k + 1)-layer transformer.
Thirdly, we consider the (k + 1)-layer transformer model.
Without loss of generality, we assume that the additional transformer layer is added at the be-

ginning of the model.
Namely, let Fk denote a k-layer transformer model. We have

Fk(X) = gk ◦ Attnk ◦ · · · ◦ g1 ◦ Attn1 ◦ g0(X)

Let the (k + 1)-layer transformer model have the following structure:

Fk+1(X) = Fk ◦ Attn ◦ g(X) (28)

Let T0 := g(X).
By assumption, we have

• dL(X)
dAttn(T0)

can be approximated in n1+o(1) time.

• Let g̃k denote the approximated version of dL(X)
dAttn(T0)

. We have

∥g̃k −
dL(X)

dAttn(T0)
∥∞ ≤ 1/ poly(n) (29)

Step 3.1: Proof of the running time for (k + 1)-layer transformer
For less confusion, in this part of the proof, we ignore the approximation error temporarily.
By the assumption, we have dL(X)

dAttn(T0)
can be approximated in n1+o(1) time.

We compute dL(X)
dX in following order:
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• Since we already have dL(X)
dAttn(T0)

, by Lemma 61, the computation time for dL(X)
dT0

is n1+o(1).

• Since we have dL(X)
dT0

, by Lemma 72, the computation time for dL(X)
dX is n1+o(1).

Therefore, for (k + 1)-layer transformer, the overall running time for dL(X)
dX is n1+o(1).

Step 3.2: Proof of the error bound for (k + 1)-layer transformer
By Lemma 61, during the process of solving the approximated version of dL(X)

dg(X) , the approxi-
mation error will not be magnified by more than poly(n).

Let g̃t0 denote the approximated version of dL(X)
dg(X) , we have

∥g̃t0 −
dL(X)

dg(X)
∥∞

≤ poly(n)∥g̃k −
dL(X)

dT (X)
∥∞

≤ 1/ poly(n) (30)

where the 1st step is from the above statement, the 2nd step comes from Eq. (29), the 3rd step is
because of basic algebra.

Then, we consider

dL(X)

dX
=

dL(X)

dg(X)
· dg(X)

dX
(31)

Recall that we have g̃ = dL(X)
dX . Then, we have

∥g̃ − dL(X)

dX
∥∞

= ∥(g̃t0 −
dL(X)

dg(X)
) · dg(X)

dX
∥∞

≤ n · d∥g̃t0 −
dL(X)

dg(X)
∥∞∥

dg(X)

dX
∥∞

≤ n · d(1/ poly(n))∥dg(X)

dX
∥∞

≤ 1/ poly(n)

where the 1st step is from Eq. (31), the 2nd step comes from basic linear algebra, the 3rd step is
because of Eq. (30), the 4th step is due to each entry can be written by O(log n) bits.

Step 4: Use math induction.
So far, with the assumption that our statement holds under k-layer transformer, we have proved

that our statement still holds under (k + 1)-layer transformer.
Therefore, by math induction, our statement holds for any m-layer transformer.
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Appendix L. Causal Attention Mask

This section will discuss how to combine the causal attention mask with our framework. We argue
that even with the causal attention mask, we can also achieve almost linear time gradient computing
for the multi-layer transformer.

In Section L.1, we introduce essential tools from literature to deal with the causal mask added on
the attention matrix. In Section L.2, we show that with the addition of causal mask, our framework
can still achieve almost linear time gradient computation.

L.1. Tools from previous work

Firstly, we restate a classical low-rank approximation method in the literature.

Lemma 75 (Low-rank approximation, [3]) Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ R, and ∥K∥∞ ≤
R. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter ϵ ∈ (0, 1), there is a positive integer
g bounded above by

g = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/R)
, R2

})
,

and a positive integer r bounded above by

r ≤
(
2(g + d)

2g

)
such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation of A ∈ Rn×n. Furthermore,
the matrices U0 and V0 defining Ã can be computed in O(n · r) time.

Then, we provide the formal definition for the causal attention mask.

Definition 76 (Causal attention mask, [72]) We define the causal attention mask as M ∈ {0, 1}n×n,
where Mi,j = 1 if i ≥ j and Mi,j = 0 otherwise.

In previous work [72], they point out there exists an algorithm (Algorithm 2) that can calculate
low-rank matrices (with the causal attention mask) multiplication with any vector v in almost linear
time. We restate their results in Lemma 77.

Lemma 77 (Fast computation for causal attention mask on tensor, [72]) Let M ∈ {0, 1}n×n

be a causal attention mask defined in Definition 76. Let U0, V0 ∈ Rn×k. Let v ∈ Rn. Then, there
exists an algorithm (see Algorithm 2) whose output satisfies that

Y = (M ⊙ (U0V
⊤
0 ))v,

which takes O(nk) time.

We extend their results to the multiplication of matrix with no(1) columns.

Lemma 78 (Fast computation for causal attention mask on matrix) If we have the below con-
ditions,
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Algorithm 2 Causal attention mask algorithm, Algorithm 4 in Liang et al. [72]
1: procedure CAUSALMASK(U0 ∈ Rn×k, V0 ∈ Rn×k, v ∈ Rn) ▷ Lemma 77
2: c0 ← 0k
3: for j = 1→ n do
4: bj ← (V ⊤

0 )j︸ ︷︷ ︸
k×1

vj︸︷︷︸
scalar

▷ Let (V ⊤
0 )j denote the j-th row of V0 ∈ Rn×k

5: cj ← cj−1︸︷︷︸
k×1

+ bj︸︷︷︸
k×1

6: end for
7: for j = 1→ n do
8: Yj ← ⟨(U⊤

0 )j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

9: end for
10: return Y ▷ Y ∈ Rn

11: end procedure

• Let M ∈ {0, 1}n×n be a causal attention mask defined in Definition 76.

• Let U0, V0 ∈ Rn×k where k = no(1).

• Let H ∈ Rn×kH where kH = no(1).

Then, there exists an algorithm, whose output satisfies that

Z = (M ⊙ (U0V
⊤
0 ))H,

which takes n1+o(1) time.

Proof For j ∈ [kH ], let H∗,j ∈ Rn denote the j-th column of H .
By Lemma 77, we can compute (M ⊙ (U0V

⊤
0 ))H∗,j in O(nk) time.

There are kH columns in total. Therefore, the overall running time is O(nkkH) = O(n · no(1) ·
no(1)) = n1+o(1).

L.2. Fast computation with causal mask

We can easily change all low-rank matrices multiplication to the algorithm mentioned in Lemma 78.
Then, our framework can support the causal attention mask and still achieves almost linear time
gradient computing for the multi-layer transformer.

The causal mask directly affects the attention matrix, so it’s necessary to define the attention
matrix with the causal mask applied.

Definition 79 Let M ∈ {0, 1}n×n be a causal attention mask defined in Definition 76. We define
attention matrix with causal mask as:

f̂(X) := D−1(M ⊙A)

where A := exp(XWX⊤/d) and D := diag((M ⊙A) · 1n).
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After analyzing the components of gradients on Ti(X),Wi,WVi in Section H, I and J, we cate-
gorize them into two groups: one involving the dot product and the other involving the Hadamard
product of the attention matrix. Then, we can show f̂(X)H and (f̂(X) ⊙ (UV ⊤))H for low rank
matrices U, V,H can be approximated in almost linear time.

Lemma 80 If we have the below conditions,

• Let f̂(X) be defined in Definition 79.

• Let U, V ∈ Rn×k where k = no(1).

• Let H ∈ Rn×kH where kH = no(1).

Then, approximating the following takes n1+o(1) time:

• Part 1. f̂(X)H

• Part 2. (f̂(X)⊙ (UV ⊤))H

Proof From Definition 79, we know

f̂(X) := D−1(M ⊙A)

where D := diag((M ⊙A) · 1n).
By Lemma 75, U0V

⊤
0 is a good approximation for A. Then, we can approximate f̂(X) by:

D−1(M ⊙ (U0V
⊤
0 ))

where D := diag((M ⊙ (U0V
⊤
0 )) · 1n).

Using Lemma 77, we know (M⊙(U0V
⊤
0 )) ·v for any vector v ∈ Rn can be computed in almost

linear time.
We begin by examining the normalization matrix D−1. Calling Lemma 77, we compute (M ⊙

(U0V
⊤
0 )) · 1n in almost linear time. Then, it takes O(n) time to make (M ⊙ (U0V

⊤
0 )) · 1n diagonal.

Given that D is diagonal, its inverse D−1 can be determined in O(n) time. Thus, we can compute
D−1 in almost linear time.

Proof of Part 1. H can be viewed as a combination of kH vectors, each of size n. Calling
Lemma 78, we can compute (M ⊙ (U0V

⊤
0 ))H in n1+o(1) time.

Finally, we compute D−1︸︷︷︸
n×n

(M ⊙ (U0V
⊤
0 ))H︸ ︷︷ ︸

n×kH

, which takes n1+o(1) time since D−1 is diagonal.

The overall gradient computation remains n1+o(1) time.
Proof of Part 2. The proof for this part involves Fact 17. We can show

((D−1(M ⊙ (U0V
⊤
0 )))⊙ (UV ⊤))H

= ((M ⊙ (D−1U0V
⊤
0 ))⊙ (UV ⊤))H

= (M ⊙ ((D−1U0V
⊤
0 )⊙ (UV ⊤)))H

= (M ⊙ ((D−1U0)⊘ U)(V0 ⊘ V )⊤)H
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where the 1st step is from D(A⊙B) = (DA)⊙B = A⊙ (DB) for diagonal matrix D ∈ Rm×m

and A,B ∈ Rm×n, the 2nd step comes from (A⊙ B)⊙ C = A⊙ (B ⊙ C) for A,B,C ∈ Rm×n,
and the last step follows from Fact 17.

Let UM := (D−1U0)⊘ U and VM := V0 ⊘ V .
For UM , we compute D−1︸︷︷︸

n×n

U0︸︷︷︸
n×k

which takes nk time. We then compute (D−1U0)︸ ︷︷ ︸
n×k

⊘ U︸︷︷︸
n×k

which

takes O(nk2) time.
For VM , we compute V0︸︷︷︸

n×k

⊘ V︸︷︷︸
n×k

which takes O(nk2) time.

We now have (M ⊙ (UMV ⊤
M )H . Calling Lemma 78, we finish the proof.

We now prove for gradient components that have dot product.

Lemma 81 (Components for dot product) If we have the below conditions,

• Let f̂(X) be defined in Definition 79.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Let D6 = −f(X) diag(K)XW⊤ be defined in Lemma 50.

• Let D2 = −diag(K)f(X)XW be defined in Lemma 50.

• Let D8 = f(X)GiW
⊤
V be defined in Lemma 50.

• Let gv := X⊤f(X)Gi be the gradient on WVi and defined in Lemma 69.

Then, we can show the following can be approximated in almost linear time:

• Part 1. D̂6 = −f̂(X) diag(K)XW⊤

• Part 2. D̂2 = −diag(K)f̂(X)XW

• Part 3. D̂8 = f̂(X)GiW
⊤
V

• Part 4. ĝv := X⊤f̂(X)Gi

Proof Proof of Part 1. For D̂6, we compute diag(K)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

first, which takes nd time.

Then, we compute f̂(X)︸ ︷︷ ︸
n×n

diag(K)X︸ ︷︷ ︸
n×d

using Part 1. of Lemma 80, which takes n1+o(1) time.

Finally, we compute f̂(X) diag(K)X︸ ︷︷ ︸
n×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

Proof of Part 2. For D̂2, we compute f̂(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

using Part 1. of Lemma 80, which takes

n1+o(1) time.
Then, we compute diag(K)︸ ︷︷ ︸

n×n

f̂(X)X︸ ︷︷ ︸
n×d

, which takes nd time.
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After that, we compute diag(K)f̂(X)X︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.

Proof of Part 3. For D̂8, we compute in the following steps:
We compute f̂(X)︸ ︷︷ ︸

n×n

Gi︸︷︷︸
n×d

using Part 1. of Lemma 80, which takes n1+o(1) time.

Then, we compute f̂(X)Gi︸ ︷︷ ︸
n×d

W⊤
V︸︷︷︸

d×d

, which takes n · d2 time.

Proof of Part 4. For ĝv, we compute in the following steps:
We compute f̂(X)︸ ︷︷ ︸

n×n

Gi︸︷︷︸
n×d

using Part 1. of Lemma 80, which takes n1+o(1) time.

Then, we compute X⊤︸︷︷︸
d×n

f̂(X)Gi︸ ︷︷ ︸
n×d

, which takes n · d2 time.

We then prove for gradient components that have Hadamard product.

Lemma 82 (Components for Hadamard product) If we have the below conditions,

• Let f̂(X) be defined in Definition 79.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up
to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Let D7 = (f(X)⊙ (h(X)G⊤
i ))XW⊤ be defined in Lemma 50.

• Let D4 = (f(X)⊙ (Gih(X)⊤))XW be defined in Lemma 50.

• Let gw := X⊤p(X)X = X⊤(p1(X) − p2(X))X be the gradient on Wi and defined in
Definition 26 and Lemma 66 where p1(X) = f(X) ⊙ q(X) and p2(X) = diag(p1(X) ·
1n)f(X).

Then, we can show the following can be approximated in almost linear time:

• Part 1. D̂7 = (f̂(X)⊙ (h(X)G⊤
i ))XW⊤

• Part 2. D̂4 = (f̂(X)⊙ (Gih(X)⊤))XW

• Part 3. ĝw := X⊤(p̂1(X) − p̂2(X))X where p̂1(X) = f̂(X) ⊙ q(X) and p2(X) =
diag(p̂1(X) · 1n)f̂(X).

Proof Proof of Part 1. For D̂7, we can compute (f̂(X)⊙ (h(X)G⊤
i ))︸ ︷︷ ︸

n×n

X︸︷︷︸
n×d

using Part 2. of

Lemma 80, which takes n1+o(1) time.
We then compute (f̂(X)⊙ (h(X)G⊤

i ))X︸ ︷︷ ︸
n×d

W⊤︸︷︷︸
d×d

, which takes nd2 time.

Proof of Part 2. For D̂7, we can compute (f̂(X)⊙ (Gih(X)⊤))︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

using Part 2. of

Lemma 80, which takes n1+o(1) time.
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We then compute (f̂(X)⊙ (Gih(X)⊤))X︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

, which takes nd2 time.

Proof of Part 3. For ĝw, we consider X⊤p̂1(X)X first. Based on Definition 25, we have
p̂1(X) = f̂(X)⊙ q(X) = f̂(X)⊙ (Gih(X)⊤). We then compute (f̂(X)⊙ (Gih(X)⊤))X using
Part 2. of Lemma 80, which takes n1+o(1) time. After that, we compute X⊤︸︷︷︸

d×n

(f̂(X)⊙ (Gih(X)⊤))X︸ ︷︷ ︸
n×d

,

which takes nd2 time.
Now we consider X⊤p̂2(X)X . By definition, p̂2(X) = diag(p̂1(X) · 1n)f̂(X). We first com-

pute p̂1(X) ·1n = (f̂(X)⊙(Gih(X)⊤)) ·1n using Part 2. of Lemma 80, which takes n1+o(1) time.
Meanwhile, we compute f̂(X)X using Part 1. of Lemma 80, which takes n1+o(1) time. We then
have diag(p̂1(X) · 1n)︸ ︷︷ ︸

n×n

f̂(X)X︸ ︷︷ ︸
n×d

, which takes nd time. Finally, we compute X⊤︸︷︷︸
d×n

diag(p̂1(X) · 1n)f̂(X)X︸ ︷︷ ︸
n×d

,

which takes nd2 time.
Together, X⊤p̂1(X)X︸ ︷︷ ︸

d×d

−X⊤p̂2(X)X︸ ︷︷ ︸
d×d

takes d2 time.

Thus, we show that our framework can support causal attention masks.

Appendix M. Residual Connection

In this section, we discuss how to adapt our framework to the attention mechanism with the residual
connection.

In Section M.1, we provide a formalized definition of the two residual connections used in the
attention mechanism. In Section M.2, we argue that with the addition of the residual connection,
the gradient over the attention mechanism can be computed in almost linear time n1+o(1) and the
approximation error can be bound by 1/ poly(n). In Section M.3, we use math induction to show
that the gradient over the entire transformer with the residual connection can also be computed in
almost linear time n1+o(1).

M.1. Key concepts

Recall that in Definition 6, we have defined Ti(X) ∈ Rn×d as the intermediate variable output
by the i-th transformer layer. For simplicity, we use Ti to represent Ti(X) in the rest part of this
section. Namely, we have

Ti = (gi ◦ Attni)(Ti−1)

Then, we consider adding the residual connection to our framework. Note that there are two
residual connection operations in one transformer layer. We first define the residual connection over
the Attni in Definition 83.

Definition 83 (Residual connection over Attni) If we have the below conditions,

• Let Ti be defined as Definition 6.

• Let Attni be defined as Definition 2.
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We define Zi ∈ Rn×d as the output with the residual connection of Attni. Namely, we have

Zi = Ti−1 + Attni(Ti−1)

Then, we consider the second residual connection over the MLP layer gi, where we have the
formal definition for this in Definition 84.

Definition 84 (Residual connection over gi) If we have the below conditions,

• Let the multi-layer transformer be defined as Definition 3.

• Let the intermediate variable Ti be defined as Definition 6.

• Let gi denote the components other than self-attention in the i-th transformer layer.

• Let Zi ∈ Rn×d be defined as Definition 83.

Then Ti, the output of i-th layer transformer with the residual connection, should have the
following form:

Ti = Zi + gi(Zi)

M.2. Analysis of the residual connection

In the previous section, we have defined the two residual connection operations.
In this section, we argue that if the gradient computation can be done in almost linear time

without the residual connection, then with the addition of the residual connection, the gradient
computation can also be completed in almost linear time.

Lemma 85 (Analysis of the residual connection) If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let YR ∈ Rn×d and XR ∈ Rn×d denote the output and input of the residual connection,
respectively.

• Let H : Rn×d → Rn×d denote some layer in the transformer, such as MLP, Attn, etc.

• Suppose the residual connection can be written as

YR = XR + H(XR).

• Assuming we have dL(X)
dYR

∈ Rn×d, then we can calculate dL(X)
dYR

dH(XR)
dXR

in almost linear time
n1+o(1).

Then, we can show that,

• dL(X)
dXR

can be calculated in almost linear time n1+o(1).

• If dL(X)
dYR

has 1/poly(n) approximation error, then the approximation error on dL(X)
dXR

is still
1/ poly(n).
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Proof By the chain rule, we have

dL(X)

dXR
=

dL(X)

dYR

dYR
dXR

=
dL(X)

dYR
(I +

dH(XR)

dXR
)

=
dL(X)

dYR
+

dL(X)

dYR

dH(XR)

dXR
(32)

where the 1st step is from the chain rule, the 2nd step comes from basic calculus, the 3rd step is
because of basic algebra.

By the assumption, we already have dL(X)
dYR

, and dL(X)
dYR

dH(XR)
dXR

can be computed in almost linear
time n1+o(1).

The addition operation between dL(X)
dYR

and dL(X)
dYR

dH(XR)
dXR

takes n · d time.

Therefore, the overall running time for dL(X)
dXR

is n1+o(1).
Then, we consider the approximation error.
By Eq. (32) and basic linear algebra, the approximation error will not be magnified by more

than (n ·dpoly(n)+1). Since (n ·dpoly(n)+1)(1/ poly(n)) = poly(n), the approximation error
on dL(X)

dXR
can be bounded by 1/ poly(n).

M.3. Analysis for the entire model with the residual connection

In the previous section, we have shown that, with the addition of the residual connection on a single
component, the gradient computation time can still be done in almost linear time. We will apply
this finding to the entire model.

We begin by single layer proof.

Lemma 86 (Fast gradient computation for single-layer transformer with residual connection)
If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let X ∈ Rn×d be defined as Definition 2.

• Suppose we have a single-layer transformer (see Definition 3).

• Let the residual connection be defined as Definition 83 and 84.

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the single-layer transformer with the
residual connection can be bounded by 1/poly(n). Namely, our algorithm output g̃r1 satisfies

∥g̃r1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)
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Proof
We use Ti to represent Ti(X) for simplicity. By the definition of Ti (see also Definition 6), we

have the following equations

T0 = g0(X)

Follow Definition 83 and 84, we have

Z1 = T0 + Attn1(T0)

and

T1 = Z1 + g1(Z1)

Then we calculate the gradient by the following steps:

• Step 1: Calculate dL(X)
dT1

. By the definition of L(X) (see also Definition 5), we have dL(X)
dT1

can be computed in n · d time.

• Step 2: Calculate dL(X)
dZ1

. By Lemma 72, the assumption in Lemma 85 is satisfied. There-

fore, we have dL(X)
dZ1

can be computed in almost linear time n1+o(1).

• Step 3: Calculate dL(X)
dT0

. By Lemma 61, the assumption in Lemma 85 is satisfied. Hence,
dL(X)
dT0

can be computed in almost linear time. By Lemma 61, the approximation error is
1/ poly(n).

• Step 4: Calculate dL(X)
dX . By Lemma 72, dL(X)

dX can be computed in n1+o(1). The approxi-
mation error is (n · d)(1/ poly(n)) = (1/ poly(n)).

To sum up, we can show that the overall running time for dL(X)
dX is n1+o(1) and the approximation

error is 1/ poly(n).
Let g̃r1 be the output of Step 4. Then we are done.

We now prove for multi-layer.

Lemma 87 (Fast gradient computation for multi-layer transformer with residual connection)
If we have the below conditions,

• Let L(X) be defined as Definition 5.

• Let X ∈ Rn×d be defined as Definition 2.

• Let the residual connection be defined as Definition 83 and 84.

• Suppose we have a m-layer transformer (see Definition 3).

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.
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• Part 2: error bound. The approximation error of the m-layer transformer with the residual
connection can be bounded by 1/ poly(n). Namely, our algorithm output g̃r satisfies

∥g̃r −
dL(X)

dX
∥∞ ≤ 1/poly(n)

Proof We use math induction in this proof.
Step 1: Proof of a single-layer transformer.
Firstly, by Lemma 86, we have the statement holds for a single-layer transformer.
Step 2: Assumption for k-layer transformer.
Secondly, we assume for any k, for k-layer transformer model, we have

• Part 1: running time. Our algorithm can approximate dL(X)
dX in O(n1+o(1)) time.

• Part 2: error bound. The approximation error of the k-layer transformer can be bounded
by 1/poly(n). Namely, our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

Step 3: Proof of (k + 1)-layer transformer.
Thirdly, we consider the (k + 1)-layer transformer model.
Let Fk denote a k-layer transformer with the residual connection.
Then, the entire model can be written as

(Fk ◦ g0)(X)

By the definition of Ti, we have

T0 = g0(X)

Then, by definition of Zi (see also Definition 83), we have

Z1 = T0 + Attn1(T0)

By Definition 84, we have

T1 = Z1 + g1(Z1)

Without loss of generality, we assume that the additional transformer layer is added at the be-
ginning of the model. Then, the (k + 1)-layer transformer model has the following structure:

Fk+1(X) = Fk(T1)

By the assumption for k-layer transformer, we have dL(X)
dT1

can be computed in almost linear
time n1+o(1) and the approximation error can be bounded by 1/poly(n).

We apply similar proof of Lemma 86, then we can show that, we can compute dL(X)
dX in almost

linear time n1+o(1) and the approximation error can be bounded by 1/poly(n).
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Appendix N. Multi-head Attention

Following the notation used in Section E.1, we use h to denote the number of heads, and dh = d/h
to denote the dimension of each head.

Definition 88 (Multi-head attention) If we have the below conditions,

• Let h denote the number of heads.

• Let d denote the hidden dimension. Let dh = d/h denote the dimension of each attention
head.

• Let Q,K, V ∈ Rn×d be defined as Definition 2.

• Let f(X) be defined as Definition 22.

• Let s(X) be defined as Definition 24.

The multi-head attention can be formalized as follows:

• Step 1. Split the hidden dimension d of Q,K, V ∈ Rn×d into h parts. Then, for each l ∈ [h],
we have Ql,Kl, Vl ∈ Rn×dh .

• Step 2. For each l ∈ [h], calculate the attention matrix fl := Softmax(QlK
⊤
l /dh) ∈ Rn×n,

and calculate the corresponding attention result sl := flVl ∈ Rn×dh .

• Step 3. Concatenate sl ∈ Rn×dh together, then we have the final multi-head attention output
s ∈ Rn×d.

Then, we dive into the analysis of the gradient computation process over the attention mecha-
nism with multi-head attention.

Lemma 89 (Analysis of the multi-head attention) If we have the below conditions,

• Let Attn(X) be defined as Definition 2.

• Let multi-head attention mechanism be defined as Definition 88.

• Let Ym, Xm ∈ Rn×d denote the output and input of the multi-head attention, respectively.

Then, we can show that,

• dL(X)
dXm

can be calculated in almost linear time n1+o(1).

• If dL(X)
dYm

has 1/poly(n) approximation error, then the approximation error on dL(X)
dXm

is still
1/ poly(n).

Proof
Following the notations used in Definition 88, for l ∈ [h], we use sl ∈ Rn×dh to denote the

output by each attention head. And we use s ∈ Rn×d to denote the concatenated version of the
output of the multi-head attention.
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By the chain rule and the definition of L(X) (see also Definition 5), we have

dL(X)

dXm
=

dL(X)

dYm
· dYm

ds

ds

dXm

=
dL(X)

dYm
· dYm

ds

h∑
l=1

dsl
dXm

where the 1st step is from the chain rule, the 2nd step comes from s ∈ Rn×d is the concatenated
version of sl ∈ Rn×dh .

We calculate the gradient in the following steps:

• Step 1: Calculate dL(X)
dYm

. By the definition of L(X) (Definition 5), we have that dL(X)
dYm

can
be calculated in n · d time.

• Step 2: Calculate dL(X)
dYm

· dYm
ds . Since we already have dL(X)

dYm
, by Lemma 72, we have

dL(X)
dYm

· dYm
ds can be computed in almost linear time n1+o(1).

• Step 3: Calculate dL(X)
dYm

· dYm
ds

∑h
l=1

dsl
dXm

. For each l ∈ [h], by Lemma 61, dL(X)
dYm

· dYm
ds ·

dsl
dXm

can be computed in n1+o(1). Since the number of heads h can be viewed as a constant here,
it takes n1+o(1) time to compute the gradients on h heads.

Therefore, the overall running time for dL(X)
dXm

is n1+o(1).
Then, we consider the error bound.
By assumption, there is 1/poly(n) approximation error on dL(X)

dYm
. For each l ∈ [h], the approx-

imation error will not be magnified by more than n2 · d · dh · poly(n) on dL(X)
dYm

· dYm
ds ·

dsl
dXm

.

Then, since there is total h heads, the approximation error on dL(X)
dXm

can be bound by

h · n2 · d · dh · poly(n) · (1/ poly(n)) = 1/poly(n)

Similar to the proof of Lemma 73 and 74, we apply Lemma 89 to deal with the multi-head
attention in each transformer layer. Then, we can show that dL(X)

dX can be computed in almost linear
time n1+o(1) and the approximation error can be bounded by 1/ poly(n).
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