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Abstract
It is well-known that Federated Learning (FL) is vulnerable to manipulated updates from clients.
In this work we study the impact of data heterogeneity on clients’ incentives to manipulate their
updates. We formulate a game in which clients may upscale their gradient updates in order to “steer”
the server model to their advantage. We develop a payment rule that disincentivizes sending large
gradient updates, and steers the clients towards truthfully reporting their gradients. We also derive
explicit bounds on the clients’ payments and the convergence rate of the global model, which allows
us to study the trade-off between heterogeneity, payments and convergence.
Keywords: Federated Learning, Heterogeneity, Game Theory, Incentive Design

1. Introduction

Federated learning (FL) [22] enables the efficient training of machine learning models on large
datasets, distributed among multiple stakeholders, via gradient updates shared with a central server.
FL has the potential to provide state-of-the-art models in multiple domains where high-quality
training data is scarce and distributed, for example healthcare, finance and agriculture [15].

Unfortunately, the distributed nature of standard FL protocols makes them susceptible to clients
misreporting their gradient updates. Indeed, prior work has shown that a small fraction of malicious
participants can damage the learned model with seemingly benign updates [2, 3]. Furthermore, it is
known that the presence of market competition [10], privacy concerns [26] and high data gathering
costs [17] may incentivize clients to share updates that are harmful for the global model. These issues
bring the practical merit of federated learning in the presence of misaligned incentives into question.

In this paper, we argue that incentives for update manipulation may appear even between clients
who are solely interested in their own accuracy, as long as they have different data distributions. Since
data heterogeneity is ubiquitous in common federated learning scenarios [15, 22], this implies that
clients could be incentivized to manipulate their updates in realistic scenarios and even without the
presence of explicitly conflicting goals, such as those arising from competition and privacy concerns.
To incentivize clients to share truthful gradient updates we propose a budget-balanced payment
scheme, such that (1) truthful reporting results in utility that is ε-close to optimal for a client i given
everyone else is sending truthful updates, and (2) the best response of client i when everyone else is
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sending truthful updates is ε-close to truthful. We provide an explicit convergence rate for the global
objective function and bound the total payments for each client. Finally, we look at the impact of
different types of data heterogeneity on clients’ payments and the convergence rate.

2. Related work

Robustness in federated learning. Several works consider Byzantine-robust distributed learning
and show that malicious workers can prevent any protocol from converging at optimal rates [2, 3, 29].
Prior work has also explored the robustness of FL to noise and bias towards subgroups, e.g. [1, 11].
We refer to [25] for a recent survey. Our work takes a different approach towards securing FL from
harmful updates, as we model the clients as rational and seek to ensure that honest reporting is
maximally beneficial for them.

Incentives in collaborative learning. A major research direction is that of studying whether clients
have an incentive to join the FL protocol, relative to participation costs (e.g. compute resources
and data collection costs). We refer to [27, 30] for recent surveys. Among works that consider
incentives for manipulating updates, [17] focus on free-riding, [13] study defection, [4] look at agents
who wish to keep their data collection low, while [14] try to incentivize diverse data contributions.
Moreover, [10] and [26] consider manipulating updates due to incentives stemming from competition
and privacy, respectively. Another behavior driven by the heterogeneity of client data is studied by
[8, 9], who model FL as a coalitional game, where players need to decide how to cluster in groups to
improve their performance. In contrast, we study non-cooperative games and consider actions that
alter the client updates and hence may be harmful to the central model. In our setting the clients are
solely interested in their own accuracy and utility, but may still have conflicting incentives due to
data heterogeneity.

Heterogeneity in FL. The impact of data heterogeneity on the quality of the learned model is of
central interest in the FL literature. Some works study how to train a central model and also provide
personalization for each individual client, in order to maximize the accuracy for each client [20–23].
Others focus on the impact of heterogeneity on model convergence and on providing algorithms
that provide more accurate centralized models in a heterogeneous environment [16, 18, 19, 24, 28].
These works tackle issues from data heterogeneity from the server’s perspective, while we take a
mechanism-design point of view and focus on the clients’ behavior. Prior work [6] has also explored
how to adapt to heterogeneity from a client’s perspective—how to optimally weight local and server
updates, however, we study how clients might manipulate their messages to the server, thus damaging
the global training process, and try to mitigate this potential manipulation.

3. Setting and Preliminaries

In this section we introduce our heterogeneous FL setup. Then we motivate and formally define a
game that describes the interaction between self-interested clients.

3.1. FL setup and protocol

Learning setup. We consider a setting with N clients that seek to obtain an accurate model by
exchanging messages (gradient updates) with a central server, which orchestrates the FL protocol.
All clients work with a shared loss function f(θ; z) that is differentiable in θ for every z. Each client
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i has her own distribution Di over the data z ∈ Z .1 Each client is interested in minimizing the
expected loss with respect to their own distribution, so the objective function of client i is Fi(θ) =
Ez∼Di [f(θ; z)]. The server’s objective is to minimize the average loss of all clients, i.e. F (θ) =
1
N

∑N
i=1 Fi(θ). Throughout the paper we assume that for each client i ∈ [N ] their objective Fi(θ) is

L-Lipschitz, H-smooth and m-strongly convex on a compact set Θ ⊂ Rd. We assume that ∇Fi(θ) =

Ez∼Di [∇f(θ; z)] and that the gradients have bounded variance Ez∼Di

[
∥∇f(θ; z)−∇Fi(θ)∥22

]
≤

σ2 for all θ ∈ Θ. Let R = supθ,θ′ ∥θ − θ′∥ be the largest distance between any two points in Θ.2

FL protocol. We consider the standard FedSGD protocol, where the server asks the clients to send
stochastic gradients at the current model, with respect to their own distribution. Client i computes
a stochastic gradient gi(θ) := ∇f(θ; z) by sampling from their distribution z ∼ Di, such that
Ez∼Di [gi(θ)] = Ez∼Di [∇f(θ; z)] = ∇Fi(θ). Let ei(θ) = gi(θ)−∇Fi(θ) be the gradient noise, so

that E
[
∥ei(θ)∥2

]
= Var [gi(θ)]. The server then updates the central model by averaging the updates

and taking an SGD step, i.e. θt+1 = ΠΘ

(
θt − γt

1
N

∑N
i=1 gi(θt)

)
, where γt is the learning rate at

step t and ΠΘ is a projection back onto Θ.

3.2. Heterogeneity assumptions

To enable the convergence analysis we evoke an assumption reminiscent to the bounded first-
order heterogeneity assumption from the FL literature on the convergence rates of local and mini-
batch SGD [16, 18, 19, 24, 28]. Assumption 1 restricts the size of the gradient ∇Fi of client i’s
objective Fi relative to the gradient ∇F of the aggregate objective F . While standard first-order
assumptions previously used in [16, 18, 19, 24, 28] (for formal statements see Assumption 14 and 15
in Appendix B) usually require the gradients of the objectives to be close in some vector norm, we
only require them to be close in magnitude.

Assumption 1 (Bounded Gradient Difference) For every client i and every θ ∈ Θ, we have∣∣∣∥∇Fi(θ)∥2 − ∥∇F (θ)∥2
∣∣∣ ≤ ζ2. Moreover, as a consequence

∣∣∣∥∇Fi(θ)∥2 − ∥∇Fj(θ)∥2
∣∣∣ ≤ 2ζ2.

Next, Assumption 2 below controls the difference between the variance of stochastic gradients.
This allows us to study scenarios, where the objectives are sufficiently similar, but the variance of
some client i (relative to others) might induce an incentive to misreport.

Assumption 2 (Bounded Variance Difference) For any pair of clients i, j ∈ [N ] and any θ ∈ Θ,
we have |Var [gi(θ)]−Var [gj(θ)]| ≤ ρ2.

3.3. Game-theoretic framework

In this subsection we first provide an example scenario illustrating why clients may be able to increase
their utility by upscaling their updates. Then, we introduce our game setup which captures these
interactions.

1. As is standard in the stochastic optimization analysis of FL, we do not assume any parametric form of the distributions,
but instead formulate assumptions on the objective functions and (stochastic) gradients that arise from each distribution.

2. Because Θ is compact, it is bounded, and so the supremum is finite.
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Motivating example. At each round of the FL protocol, the server effectively tries to estimate the
mean of the gradients of all participants. Since the server just averages the received updates, the
players can easily “shift” the global mean towards their local mean by upscaling their message.

To see why, consider the following simple example. Assume that N clients seek to estimate
their respective means µ1, . . . , µN ∈ R, where without loss of generality µ1 > µ2 > . . . > µN .
Each client has an independent sample xi ∼ N (µi, σ

2), and sends a message mi (supposedly their
sample xi) to the server. Then the server computes an aggregate µ =

∑N
i=1mi/N and broadcasts it

to all clients. Each client i would like to receive an estimate of their local mean with minimal mean
squared error E[(µ− µi)

2].

Proposition 3 Let µ = 1
N

∑N
i=1 µi and assume that µ1(µ1−µ) > σ2/N and that everyone but the

first client truthfully reports their sample. If the first client truthfully reports their sample x1, then
E [µ] = µ and V ar(µ) = σ2/N , and so E

[
(µ− µ1)

2
]
= (µ− µ1)

2 + σ2/N .
However, if the first client misreports cxi, where c > 1 is some appropriate constant, the client

can reduce their MSE compared to the truthful message by (µ1(µ1−µ)−σ2/N)2

µ2
1+σ2 .

Hence, in this setting the first player is incentivized to increase their reported sample in order to
reduce their error. The assumed inequality µ1(µ1 − µ) > σ2/N holds whenever the heterogeneity of
the data distributions (µ− µ1) is large with respect to the variance σ2/N of the aggregated message
and the larger this gap, the larger the benefits of misreporting. Intuitively, truthful reporting results a
server result close to µ, which is far from the target means of the “extremal” clients whose µi is far
from µ. Hence, these clients can bias the aggregated mean in their favor by altering their update.

The heterogeneous FL game. Given that FL clients can direct the server model in their interest
via upscaling their update, we consider a game in which the clients seek to improve their own
loss function by manipulating the messages they send to the server. Specifically, each client sends
message mi

t = aitgi(θt), where
∣∣ait∣∣ ≥ 1. The rest of the process remains unchanged, with the server

computing m̄t =
1
N

∑N
i=1m

i
t and θt+1 = ΠΘ (θt − γtm̄t), and communicating θt+1 to all clients at

each round. As is standard in game theory, we assume that the clients are rational, i.e. they would
like to select actions ait that increase their utility. We let the utility Ui of player i to be Ui = Ri − pi,
where Ri is the reward the client gets from the end model, and pi is the total payment the client
makes to the server for participating in the FL protocol. In the canonical case, we consider the reward
of client i to be Ri(θ) = −Fi(θ) (see Theorem 6), that is, the negative of the expected loss of the end
model on the client’s distribution. Then, we also show how to extend our analysis to more general
reward functions in Corollary 7.

Desiderata. We seek to design a payment mechanism, or payment rule, such that the clients are
incentivized to send meaningful updates, in order for the final model to achieve small loss on the
global objective F (θ). In particular, we would like our payment mechanism to satisfy two properties:
(1) be ε-approximately incentive compatible, meaning that whenever all clients j ̸= i are reporting
truthfully, then truthful reporting is ε-close to the optimal utility for client i as well (see Definition 4);
and (2) the best response strategy of client i when everyone else is reporting truthfully is ε-close to
truthful reporting (see Definition 5). Below we formally define these two desirable properties for a
federated learning protocol.3

3. The curious reader might want to compare the usual definition of Bayesian Incentive Compatibility from mechanism
design in Appendix C with the one in this section.
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Definition 4 (Bayesian Incentive Compatibility) A federated learning protocol M is ε-Bayesian
Incentive Compatible (BIC) if:

E [Ui (M, {11, . . . ,1i, . . . ,1N})] ≥ E [Ui (M, {11, . . . ,ai, . . . ,1N})]− ε,

where 1i = (1, . . . , 1) ∈ RT denotes fully truthful participation by client i, 1j denotes truthful
participation by client j ̸= i, ai =

{
ait
}T
t=1

is some arbitrary strategy of client i, and Ui(M,v) is
the utility of client i from M when clients are using the strategy profile v. Note that expectation is
taken over the randomness in the clients’ distributions, and any randomness (possibly none) in the
protocol.

Definition 5 (Approximately truthful reporting) A strategy ait of client i is approximately truthful
if it satisfies E

[∥∥aitgi(θt)− gi(θt)
∥∥2] ≤ ε2. Moreover, in our analysis we require that the best

response of client i to truthful participation by clients j ̸= i is approximately truthful.

4. Theoretical Results

In this section, we study a payment scheme which we prove is both ε-BIC and incentivizes approxi-
mately truthfull reporting. We also provide explicit bounds on the penalties a client may pay and on
the achieved rates of convergence of the global model.

At each step the server “charges” client i the payment:

pit(mt) = Ct

∥∥mi
t

∥∥2 − 1

N − 1

∑
j ̸=i

∥∥∥mj
t

∥∥∥2
 , (1)

where Ct is some client-independent constant (see the individual results below for definition). The
total payment for each client is then pi =

∑T
i=1 p

i
t(mt). Note that this payment rule is budget-

balanced, that is at each step the server neither makes nor loses money because
∑N

i=1 p
i
t(mt) = 0.

4.1. Approximately truthful reporting

First we show that the payment scheme is both ε-BIC and incentivizes approximately truthful
reporting.

Theorem 6 (Properties of the payment scheme) Suppose that for all clients i the objective func-
tion Fi is L-Lipschitz, H-smooth and m-strongly-convex. Also assume that the gradient noise
ei(θ) = gi(θ)−∇Fi(θ) is D-Lipschitz with probability 1. Set Ct =

√
2CtγtL
Nε , where Ct =

∏T
l=t+1 cl

and cl = 2
(
1− 2γlm+ γ2l (H

2 +D2)
)
. Then Payment Rule (1) is O(ε)-BIC (as ε → 0) and

the best response strategy ait of client i to truthful participation from everyone else satisfies
E
[∥∥aitgi(θt)− gi(θt)

∥∥2] ≤ ε2 for all t.

We also note that a similar result holds for any reward function which is Lipschitz in θ. Two
relevant examples of such reward functions are (1) when a group of clients S1 seeks to decrease their
average loss, i.e. Ri = −

∑
i∈S1

Fi(θT ) (reminiscent of [8, 9]), and (2) when a client benefits if a
group of other clients S2 does poorly, i.e. Ri =

∑
i∈S2

Fi(θT ) (similar to [10]).
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Corollary 7 (General Lipschitz reward) In the setting of Theorem 6 suppose that each client i
has an L′-Lipschitz reward function Ri : Θ → R≥0, so that |Ri(θ)−Ri(θ

′)| ≤ L′|θ − θ′|. Then the
payment from Theorem 6 with Ct =

√
2CtγtL′

Nε is O(ε)-BIC (as ε → 0) and the best response strategy

ait of client i to truthful participation from everyone else satisfies E
[∥∥aitgi(θt)− gi(θt)

∥∥2] ≤ ε2 for
all t. Note that setting Ri = −Fi recovers the original result.

Intuitively, the two results demonstrate that if all other players j ̸= i are truthful, then it is in the
interest of player i to be (approximately) truthful as well, and this will yield close to optimal utility.

4.2. Payments and convergence

Finally, we provide explicit upper bounds on the total penalty paid by each player, as well as on
the convergence speed for the loss function of each client, whenever the clients are approximately
truthful. These bounds allow us to discuss the interplay between learning quality and penalties, as
well as their dependence on the parameters of the FL protocol.

Proposition 8 (Bound on individual payments) Suppose all participants are approximately truth-
ful at each time step, i.e, E

[∥∥aitgi(θt)− gi(θt)
∥∥2] ≤ ε2. Then the total payment is bounded by∑T

t=1 p
i
t(mt) ≤

√
2LG
N

[
ε2 + 2ε (HR+ σ) + 2ζ2 + ρ2

]
, where G =

∑T
t=1 γt

√
Ct.

Theorem 9 (Convergence rate) Suppose all players are approximately truthful at each time step,
i.e. E

[∥∥aitgi(θt)− gi(θt)
∥∥2] ≤ ε2. Assume that there exist scalars M ≥ 0 and MV ≥ 0, such that

E
[
∥ei(θt)∥2

]
≤ M+MV ∥∇Fi(θt)∥2 for every t. Next, fix an integer constant η = 4H(MV +N)

mN and

set the learning rate to be γt =
4

m(η+t) . Given that P [∃t ≤ T : ΠΘ (θt − γtm̄t) ̸= θt − γtm̄t] =

O
(

1
NT

)
, then we have E [F (θT )− F (θ∗)] ≤ 16H(ε2+M+MV ζ2)

3Nm2(η+T )
+O

(
1

NT

)
+O

(
1
T 2

)
.

Discussion. The following two scenarios explore the effect of higher levels of heterogeneity on the
expected payment of each player and the convergence rate of the federal learning algorithm. In par-
ticular, we seek to understand what is the trade-off between heterogeneity and payments/convergence
rate. Both of these directly rely on Theorems 6 and 9.

Example 1 (Constant heterogeneity bounds) Suppose ζ and ρ are both constants chosen before
the learning process is ever run. Then the total payment made by each player is at most O

(
1
N

)
and

the convergence rate becomes O
(

1
NT

)
. Hence, both the expected payments and the convergence rate

decrease linearly in N , while preserving the ε-BIC property and the approximate truthful reporting
property.

Example 2 (Scaling the heterogeneity bounds for large N ) Notice that even if the heterogeneity
bounds increase with the number of clients, our results still give reasonable bounds on the individual
payments and the convergence rate. Suppose ζ and ρ are both of order O

(
4
√
N
)

. Then the total

payment made by each player is at most O
(

1√
N

)
and the convergence rate becomes O

(
1√
NT

)
.

Hence, as we increase the number of participants N we can simultaneously (1) increase the threshold
for heterogeneity; and (2) reduce the maximal individual payment, while (3) preserving convergence.
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Appendix A. Theoretical Refresher

Definition 10 (Lipschitzness) A function f : X ⊆ Rn → Rm is L-Lipschitz if

∥f(x)− f(y)∥m ≤ L ∥x− y∥n

for all x, y ∈ X .

Definition 11 (Smoothness) Let f : X ⊆ Rd → R be a differentiable function. Then f is H-smooth
if

∥∇f(x)−∇f(y)∥ ≤ H ∥x− y∥ ,

for all x, y ∈ X . In other words, f is H-smooth if its gradient ∇f is H-Lipschitz. Moreover, this
condition is equivalent to

|f(x)− f(y)− ⟨∇f(y), x− y⟩| ≤ H

2
∥x− y∥2 .

Definition 12 (Strong convexity) Let f : X ⊆ Rd → R be a differentiable function. Then f is
m-strongly-convex if

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ m

2
∥x− y∥2 .

Proposition 13 Let f : X ⊆ Rd → R be a differentiable function that is both H-smooth and
m-strongly-convex, then

m

2
∥x− y∥2 ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ ≤ H

2
∥x− y∥2 ,

In other words, the error between f and its linear approximation is bounded by quadratics from both
above and below.

Appendix B. Similar heterogeneity assumptions from previous works

Assumption 14 (Bounded First-Order Heterogeneity, [19, 28]) For any client i and any θ ∈ Θ
we have:

sup
θ∈Θ,i∈[N ]

∥∇Fi(θ)−∇F (θ)∥22 ≤ ζ2.

Assumption 15 (Relaxed First-Order Heterogeneity, [16]) There exist constants G ≥ 0 and
D ≥ 1, such that for every θ ∈ Θ the following holds:

1

N

N∑
i=1

∥∇Fi(θ)∥2 ≤ G2 +D2 ∥∇F (θ)∥2 .

Remark 16 If Assumption 15 holds with D = 0 and θ∗ ∈ argmin
θ∈Θ

F (θ), then we recover another

assumption used in the literature—Bounded First-Order Heterogeneity at Optima [12, 19, 28].

10
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Appendix C. Note on Incentive Compatibility

The usual definition of Bayesian Incentive Compatibility from Mechanism Design is the following.
Suppose that each player i has a true type ti ∈ Ti, and a utility function ui(t, o) that takes as input a
type t and an outcome o, and outputs a value. Let o(ti, t−i) be the outcome of the mechanism M on
input (ti, t−i). Let pi(ti, t−i) be the payment of player i according to M .

Definition 17 (Bayesian Incentive Compatibility) A mechanism M is Bayesian Incentive Com-
patible (BIC) if:

E [ui(ti, o(ti, t−i))− pi(ti, t−i)] ≥ E
[
ui(ti, o(t

′
i, t−i))− pi(t

′
i, t−i)

]
,

where t′i ∈ Ti is any type for player i, and expectation is taken with respect to the randomness in the
types of everyone but player i.

Moreover, we can relax the condition to have an approximately BIC mechanism up to an additive
constant, denoted ε-BIC:

E [ui(ti, o(ti, t−i))− pi(ti, t−i)] ≥ E
[
ui(ti, o(ti, t−i))− pi(t

′
i, t−i)

]
− ε.

Appendix D. Proof of Proposition 3

One can easily check that if the first player is truthful, then the MSE is as stated. Now, consider the
case where the first client can lie by selecting a constant c > 1. In particular, if we select a constant c
such that

1 < c <
2µ1(µ1 − µ)N + µ2

1 − σ2

µ2
1 + σ2

,

then the we have E [µ] = c−1
N µ1 + µ and V ar(µ) = σ2

N + c2−1
N2 σ2. Then the MSE for the first player

is

E
[
(µ− µ1)

2
]
=

(
µ+

c−N − 1

N
µ1

)2

+
σ2

N
+

c2 − 1

N2
σ2

= (µ− µ1)
2 + 2

c− 1

N
µ1(µ− µ1) +

(c− 1)2

N2
µ2
1 +

c2 − 1

N2
σ2 +

σ2

N

= (µ− µ1)
2 +

σ2

N
+

c− 1

N2

(
2µ1 (µ− µ1)N + (c− 1)µ2

1 + (c+ 1)σ2
)

= (µ− µ1)
2 +

σ2

N
+

c− 1

N2

(
c
(
µ2
1 + σ2

)
− 2µ1 (µ1 − µ)N − µ2

1 + σ2
)
.

Note that the last term is a quadratic in c and hence is minimized at

c =
µ2
1 + µ1(µ1 − µ)

µ2
1 + σ2

> 1.

Note that c > 1 is guaranteed by the assumed inequality µ1(µ1 − µ) > σ2/N . In this case, the MSE
of the client is

E
[
(µ̄− µ1)

2
]
= (µ− µ1)

2 +
σ2

N
− (σ2/N − µ1(µ1 − µ))2

µ2
1 + σ2

,

which completes our proof.

11
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Appendix E. Proof of Theorem 6

Claim 18 (Per-turn bound on trajectory difference) Fix a client i. Let θ = {θt}T+1
t=1 and θ′ =

{θ′t}T+1
t=1 , be two trajectories obtained from two distinct strategy profiles {ait}Tt=1 and {āit}Tt=1 of

client i, while everyone else is doing the same in both scenarios. Then at time t+ 1:

E
[∥∥θt+1 − θ′t+1

∥∥2] ≤ ctE
[∥∥θt − θ′t

∥∥2]+ 2γ2t
N2

(ait − āit)
2E
[∥∥gi(θ′t)∥∥2] ,

where ct = 2

(
1− 2γtmAt

N
+

γ2tA
2
t (H

2 +D2)

N2

)
and At =

N∑
j=1

ajt .

Proof Observe the following sequence

E
[∥∥θt+1 − θ′t+1

∥∥2] = E
[∥∥ΠΘ (θt − γtm̄t)−ΠΘ

(
θ′t − γtm̄

′
t

)∥∥2]
≤ E

[∥∥(θt − θ′t)− γt(m̄t − m̄′
t)
∥∥2]

= E

∥∥∥∥∥∥(θt − θ′t)−
γt
N

N∑
j=1

(
ajtgj(θt)− ājtgj(θ

′
t)
)∥∥∥∥∥∥

2
= E

∥∥∥∥∥∥(ā
i
t − ait)γt
N

gi(θ
′
t) + (θt − θ′t)−

γt
N

N∑
j=1

ajt
(
gj(θt)− gj(θ

′
t)
)∥∥∥∥∥∥

2
≤ 2E

[∥∥∥∥(āit − ait)γt
N

gi(θ
′
t)

∥∥∥∥2
]

+ 2E

∥∥∥∥∥∥(θt − θ′t)−
γt
N

N∑
j=1

ajt
(
gj(θt)− gj(θ

′
t)
)∥∥∥∥∥∥

2
≤ 2E

∥∥∥∥∥∥(θt − θ′t)−
γt
N

N∑
j=1

ajt
(
gj(θt)− gj(θ

′
t)
)∥∥∥∥∥∥

2
+

2γ2t (a
i
t − āit)

2E
[
∥gi(θ′t)∥

2
]

N2

= 2E
[∥∥θt − θ′t

∥∥2]+ 2E

∥∥∥∥∥∥γtN
N∑
j=1

ajt
(
gj(θt)− gj(θ

′
t)
)∥∥∥∥∥∥

2
− 4E

γt
N

N∑
j=1

ajt
〈
θt − θ′t, gj(θt)− gj(θ

′
t)
〉

+
2γ2t (a

i
t − āit)

2E
[
∥gi(θ′t)∥

2
]

N2

12
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≤ 2E
[∥∥θt − θ′t

∥∥2]+ 2γ2tA
2
t (H

2 +D2)

N2
E
[∥∥θt − θ′t

∥∥2]
− 4γtmAt

N
E
[∥∥θt − θ′t

∥∥2]+ 2γ2t (a
i
t − āit)

2E
[
∥gi(θ′t)∥

2
]

N2

= 2

(
1− 2γtmAt

N
+

γ2tA
2
t (H

2 +D2)

N2

)
E
[∥∥θt − θ′t

∥∥2]
+

2γ2t
N2

(ait − āit)
2E
[∥∥gi(θ′t)∥∥2]

The first line follow because the projection operator is non-expansive. The next three lines are
rearrangement. The fifth line uses the inequality (x+ y)2 ≤ 2x2 + 2y2.4 On line eight (second to
last inequality), the second term follows from H-smoothness of Fi and D-Lipschitzness of ei, while
the third term follows from the m-strong-convexity of Fi.

Corollary 19 (Bound on trajectory difference) Suppose that θ = {θt}T+1
t=1 is obtained from fully

truthful participation from all clients. Then at time T + 1:

E
[∥∥θT+1 − θ′T+1

∥∥2] ≤ 2

N2

T∑
t=1

γ2t Ct(āit − 1)2E
[∥∥gi(θ′t)∥∥2] ,

where Ct =
T∏

l=t+1

cl and cl = 2
(
1− 2γlm+ γ2l (H

2 +D2)
)
.

Proof Apply Claim 18 and telescope. Because the reference strategy is all reporting truthfully, then
we have A = N in Claim 18.

Claim 20 (Bound on reward) Suppose that θ = {θt}T+1
t=1 is obtained from fully truthful participa-

tion from all clients. Then at time T + 1:

E
[∣∣Fi(θT+1)− Fi(θ

′
T+1)

∣∣] ≤ √
2L

N

T∑
t=1

γt
√
Ct
(
āit − 1

)√
E
[
∥gi(θ′t)∥

2
]
,

where Ct =
t∏

t′=1

ct′ and cl = 2
(
1− 2γlm+ γ2l (H

2 +D2)
)
.

Proof Observe:(
E
[∣∣Fi(θT+1)− Fi(θ

′
T+1)

∣∣])2 ≤ L2
(
E
[∥∥θT+1 − θ′T+1

∥∥])2
≤ L2E

[∥∥θT+1 − θ′T+1

∥∥2]
4. We do this roundabout bounding, so that all terms are squared norms. Also notice that (x + y)2 ≤ 2x2 + 2y2 is

equivalent to 0 ≤ (x− y)2, which is trivially true.

13
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≤ L2CTE
[∥∥θ1 − θ′1

∥∥2]+ 2L2

N2

T∑
t=1

γ2t Ct(āit − 1)2E
[∥∥gi(θ′t)∥∥2]

=
2L2

N2

T∑
t=1

γ2t Ct(āit − 1)2E
[∥∥gi(θ′t)∥∥2]

The first line follows from Fi(·) being L-Lipschitz. The second line follows from Cauchy-Schwartz.
The third line applies Corollary 19, and uses the assumption θ1 = θ′1. Finally, to get the desired
inequality we observe that

√
x+ y ≤

√
x+

√
y for non-negative x, y.

Claim 21 (Bound on payment) Suppose that θ and θ′ differ only at the gradient reported by client i
at time t, so āit > 1, and that θ is obtained from truthfulness. Then

E
[
pit(mt)− pit(m

′
t)
]
≤ −Ct(ā

i
t − 1)2E

[
∥gi(θt)∥2

]
.

Proof For what’s to follow keep in mind that āit ≥ 1 by assumption. Observe:

E
[
pit(mt)− pit(m

′
t)
]
= CtE

[
∥gi(θt)∥2

]
− CtE

 1

N − 1

∑
j ̸=i

∥gj(θt)∥2


− CtE
[∥∥āitgi(θt)∥∥2]+ CtE

 1

N − 1

∑
j ̸=i

∥gj(θt)∥2


= CtE
[
∥gi(θt)∥2

]
− CtE

[∥∥āitgi(θt)∥∥2]
= Ct(1− (āit)

2)E
[
∥gi(θt)∥2

]
≤ −Ct(ā

i
t − 1)2E

[
∥gi(θt)∥2

]
The last line follows from the assumption āit ≥ 1.

Proposition 22 (Bound on utility difference between trajectories) Suppose that θ and θ′ differ
only at the gradient reported by client i at time t, so āit > 1, and that θ is obtained from truthfulness.
Then

E
[
−Fi(θ

′
t+1)− pit(m

′
t)−

(
−Fi(θt+1)− pit(mt)

)]
≤

√
2CtγtL
N

(
āit − 1

)√
E
[
∥gi(θt)∥2

]
− Ct(ā

i
t − 1)2E

[
∥gi(θt)∥2

]
.

Moreover, for Ct =

√
2CtγtL
Nε

we have:

E
[
−Fi(θ

′
t+1)− pit(m

′
t)−

(
−Fi(θt+1)− pit(mt)

)]
≤

√
2CtγtLε
N

,

and the best strategy āit of client i is such that E
[∥∥āitgi(θt)− gi(θt)

∥∥2] ≤ ε2.

14
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Proof The first inequality is a direct combination of Claim 20 and Claim 21. Now we tackle the
second portion.

First, we write:

E
[
−Fi(θ

′
t+1)− pit(m

′
t)−

(
−Fi(θt+1)− pit(mt)

)]
≤

√
2CtγtL
N

(
āit − 1

)√
E
[
∥gi(θt)∥2

]
− Ct(ā

i
t − 1)2E

[
∥gi(θt)∥2

]
Next, the right-hand side expression is a downwards-curved quadratic, and has roots

(
āit − 1

)√
E
[
∥gi(θ′t)∥

2
]
= 0

and (
āit − 1

)√
E
[
∥gi(θt)∥2

]
=

√
2CtγtL
NCt

.

Then if Ct =

√
2CtγtL
Nε

, for both roots we have
(
āit − 1

)√
E
[
∥gi(θt)∥2

]
≤ ε. Now observe that

the quadratic is positive only between the two roots, i.e. when 0 ≤
(
āit − 1

)√
E
[
∥gi(θt)∥2

]
≤ ε.

Therefore,

E
[
Fi(θ

′
t+1)− pit(m

′
t)−

(
Fi(θt+1)− pit(mt)

)]
≤

√
2CtγtL
N

(
āit − 1

)√
E
[
∥gi(θt)∥2

]
− Ct(ā

i
t − 1)2E

[
∥gi(θt)∥2

]
≤

√
2CtγtL
N

(
āit − 1

)√
E
[
∥gi(θt)∥2

]
≤

√
2CtγtLε
N

.

Claim 23 (Total bound on utility difference between trajectories) Suppose θ′ denotes some ar-
bitrary reporting strategy and θ denotes truthful reporting. That is we don’t require them to be the
same up to the last step. Then:

E

[
−Fi(θ

′
T+1)−

T∑
t=1

pit(m
′
t)−

(
−Fi(θT+1)−

T∑
t=1

pit(mt)

)]
≤

√
2L

N

(
T∑
t=1

γt
√
Ct

)
ε.

Proof Combine Claim 20 and Proposition 22.

15
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Appendix F. Proof of Proposition 8

We repeat the statement for completeness.

Claim 24 Suppose all participants are approximately truthful at each time step, i.e E
[∥∥aitgi(θt)− gi(θt)

∥∥2] ≤
ε2. Then the total payment is bounded by

T∑
t=1

pit(mt) ≤
√
2LG

N

[
ε2 + 2ε (HR+ σ) + 2ζ2 + ρ2

]
,

where G =
T∑
t=1

γt
√

Ct.

Proof First, we consider a single time step:5

pit(mt)

Ct
= E

∥∥āitgi(θt)∥∥2 − 1

N − 1

∑
j ̸=i

∥∥∥ājtgj(θt)∥∥∥2


= E
[∥∥āitei(θt)∥∥2]+ ∥∥āit∇Fi(θt)

∥∥2 − 1

N − 1

∑
j ̸=i

E
[∥∥∥ājtej(θt)∥∥∥2]+ ∥∥∥ājt∇Fj(θt)

∥∥∥2


≤ E
[((

āit
)2 − 1

)
∥gi(θt)∥2

]
+ 2ζ2 + ρ2

= E
[(
āit − 1

)2 ∥gi(θt)∥2]+ E
[
2
(
āit − 1

)
∥gi(θt)∥2

]
+ 2ζ2 + ρ2

≤ ε2 + 2ε

√
E
[
∥gi(θt)∥2

]
+ 2ζ2 + ρ2

≤ ε2 + 2ε

(
HR+

σ√
n

)
+ 2ζ2 + ρ2

The third line applies Assumption 1 and 2. The forth line is rearrangement, and the fifth applies the
assumption E

[∥∥aitgi(θt)− gi(θt)
∥∥2] ≤ ε2. Corollary 29 yields the last inequality.

Therefore, over all time steps we have:

T∑
t=1

pit(mt) ≤
√
2LG

N

[
ε2 + 2ε

(
HR+

σ√
n

)
+ 2ζ2 + ρ2

]
.

Appendix G. Proof of Theorem 9

What follows is the proof of Theorem 9, which establishes the convergence rate in the approximately
truthful setting. First, we mention two useful results due to [5] and [7], then we bound the variance
of the aggregate gradient at each step (Claim 27). The full proof is at the end.

5. We ignore the constant term for now.
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G.1. Results from the literature

Lemma 25 (Equation 4.23, Theorem 4.7 from [5]) Let F be a continuously differentiable func-
tion that is H-smooth and m-strongly-convex. Let g(θ) be a stochastic gradient of F at θ, such
that E [g(θ)] = ∇F (θ). Suppose there exist scalars M,MV ≥ 0, such that Var [g(θt)] ≤
M + MV ∥∇Fi(θt)∥2 for every t. If we run SGD with γt = γ

η+t , where γ > 1
m , η > 0 and

γ1 ≤ 1
H(MV +1) , then6

E [F (θt+1)− F (θ∗)] ≤ (1− γtm)E [F (θt)− F (θ∗)] +
γ2tHM

2
.

Lemma 26 (Lemma 1 from [7]) Suppose that {bn}n∈N is a sequence of real numbers such that
for n ≥ n0,

bn+1 ≤
(
1− c

n

)
bn +

c1
np+1

where c > p > 0, c1 > 0. Then

bn ≤ c1
c− p

1

np
+O

(
1

np+1
+

1

nc

)
.

G.2. Proof

Claim 27 (Bound on the variance of the aggregated gradient) Suppose that there exist scalars
M,MV ≥ 0, such that for every t we have:

E
[
∥ei(θt)∥2

]
≤ M +MV ∥∇F (θt)∥2 .

If all participants are approximately truthful at each time step, i.e E
[∥∥aitgi(θt)− gi(θt)

∥∥2] ≤ ε2

for all clients i and all time steps t, then:

Var

[
1

N

n∑
i=1

aitgi(θt)

]
≤

2
(
ε2 +M + 2MV ζ

2
)

N
+

2MV

N
∥∇F (θt)∥2 .

Proof

Var

[
1

N

N∑
i=1

aitgi(θt)

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

aitgi(θt)

∥∥∥∥∥
2
−

∥∥∥∥∥E
[
1

N

N∑
i=1

aitgi(θt)

]∥∥∥∥∥
2

=
1

N2
E

∥∥∥∥∥
N∑
i=1

aitei(θt) +

N∑
i=1

ait∇Fi(θt)

∥∥∥∥∥
2
− 1

N2

∥∥∥∥∥
N∑
i=1

ait∇Fi(θt)

∥∥∥∥∥
2

=
1

N2

N∑
i=1

E
[∥∥aitei(θt)∥∥2]+ 1

N2

∥∥∥∥∥
N∑
i=1

ait∇Fi(θt)

∥∥∥∥∥
2

− 1

N2

∥∥∥∥∥
N∑
i=1

ait∇Fi(θt)

∥∥∥∥∥
2

6. In the original results, there is two additional variables µ and µG. Here we can set them to µG = µ = 1, so we choose
to simplify the write-up and ignore them.
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≤ 2ε2

N
+

2

N2

N∑
i=1

E
[
∥ei(θt)∥2

]
≤

2
(
ε2 +M

)
N

+
2MV

N2

N∑
i=1

∥∇Fi(θt)∥2

≤
2
(
ε2 +M +MV ζ

2
)

N
+

2MV

N
∥∇F (θt)∥2

Proof [Proof of Theorem 9] First, we condition on the event that there is no t ≤ T , such that
ΠΘ (θt − γtm̄t) ̸= θt − γtm̄t. Once we have Claim 27 under out belt, we invoke Lemma 25 with
M = 2(ε2+M+MV ζ2)

N , MV = 2MV
N , and γt =

γ
η+t =

4
m(η+t) , where η = 4H(2MV +N)

mN . This yields:

E [F (θt+1)− F (θ∗)] ≤
(
1− 4

η + t

)
E [F (θt)− F (θ∗)] +

16H(ε2 +M +MV ζ
2)

Nm2(η + t)2
.

Finally, we use Lemma 26 with p = 1, c = 4 and c1 =
16H(ε2+M+MV ζ2)

Nm2 , to get:

E [F (θt)− F (θ∗)] ≤ 16H(ε2 +M +MV ζ
2)

3Nm2(η + t)
+O

(
1

t2
+

1

t4

)
.

Now, if there is a t, such that ΠΘ (θt − γtm̄t) ̸= θt − γtm̄t, we can still bound E [F (θt)− F (θ∗)]
by a constant because Θ is bounded and F is L-Lipschitz. Recall that by assumption

P [∃t ≤ T : ΠΘ (θt − γtm̄t) ̸= θt − γtm̄t] = O

(
1

NT

)
.

Therefore, combining everything we get the bound:

E [F (θT )− F (θ∗)] ≤ 16H(ε2 +M +MV ζ
2)

3Nm2(η + t)
+O

(
1

NT

)
+O

(
1

T 2

)
.

Appendix H. Miscellaneous claims

Claim 28 Let F and g satisfy the same conditions as Fi and gi from Section 3.1. Let θ∗ ∈ Θ be a
minimizer of F . For any θ ∈ Θ we have

E
[
∥gi(θ)∥2

]
≤ 2H2R2 + 2 ∥∇Fi(θ

∗)∥2 + σ2.

Proof Let e(θ) = g(θ)−∇F (θ) be the gradient noise. Observe:

E
[
∥gi(θ)∥2

]
= E

[
∥∇Fi(θ) + ei(θ)∥2

]
= E

[
∥∇Fi(θ)∥2

]
+ 2E [⟨∇Fi(θ), ei(θ)⟩] + E

[
∥ei(θ)∥2

]
18
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= ∥∇Fi(θ)∥2 + E
[
∥ei(θ)∥2

]
≤ 2H2 ∥θ − θ∗∥2 + 2 ∥∇Fi(θ

∗)∥2 + σ2 ∵ Fi is H-smooth

≤ 2H2R2 + 2 ∥∇Fi(θ
∗)∥2 + σ2 ∵ R = sup

θ,θ′∈Θ

∥∥θ − θ′
∥∥

The third line uses the fact that E [ei(θ)] = 0 for any fixed θ ∈ Θ. The forth line observes that the

variance of ei(θ) is
1

n
of the variance of f(θ; z), and uses smoothness.

Corollary 29 For any client i and any θ ∈ Θ we have

E [∥gi(θ)∥] ≤
√
E
[
∥gi(θ)∥2

]
≤
√
H2R2 + σ2 ≤ HR+ σ.

Proof Notice that
√
· is concave and ∥gi(θ)∥2 is a non-negative random variable, so Jensen’s

inequality gives the desired.
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