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Abstract
Multiple Instance Regression (MIR) and Learning from Label Proportions (LLP) are learning
frameworks arising in many applications, where the training data is partitioned into disjoint sets
or bags, and only an aggregate label i.e., bag-label for each bag is available to the learner. In the
case of MIR, the bag-label is the label of an undisclosed instance from the bag, while in LLP, the
bag-label is the mean of the bag’s labels. In this paper, we study for various loss functions in MIR
and LLP, what is the optimal way to partition the dataset into bags such that the utility for down-
stream tasks like linear regression is maximized. We theoretically provide utility guarantees, and
show that in each case, the optimal bagging strategy (approximately) reduces to finding an optimal
clustering of the feature vectors or the labels with respect to natural objectives such as k-means.
We also show that our bagging mechanisms can be made label-differentially private, incurring an
additional utility error. We then generalize our results to the setting of Generalized Linear Models
(GLMs). Finally, we experimentally validate our theoretical results.

1. Introduction

In traditional supervised learning, the training dataset is a collection of labeled instances of the
form px, yq, where x P Rd is an instance or feature-vector with label y. In many applications
however, due to lack of instrumentation or annotators [10, 13], or privacy constraints [26], instance-
wise labels may not be available. Instead, the dataset is partitioned into disjoint sets or bags of
instances, and for each bag only one bag-label is available to the learner. The bag-label is derived
from the undisclosed instance-labels present in the bag via some aggregation function depending
on the scenario. The goal is to train a model predicting the labels of individual instances. We call
this paradigm as learning from aggregate labels, which directly generalizes traditional supervised
learning, the latter being the special case of unit-sized bags. The two formalizations of our focus
are (i) multiple instance regression (MIR) where the bag-label is one of the instance-labels of the
bag, and the instance whose label is chosen as the bag-label is not revealed, and (ii) learning from
label proportions (LLP) in which the bag-label is the average of the bag’s instance-labels. In MIR
as well as in LLP, our work considers real-valued instance-labels with regression as the underlying
instance-level task.
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Due to increasing concerns over data privacy, recent regulations on sharing user-level signals
across platforms have resulted in aggregation of data, resulting in LLP and MIR formulations for
predictive model training on revenue critical advertising datasets (e.g. Apple SKAN and Chrome
Privacy Sandbox, see [22]). In many situations, the learner can be an untrusted party, and we wish
to protect the privacy of individual instance labels from the learner (and any downstream observer
of the learners output), while still allowing the learner to train useful models. We assume the
existence of a trusted aggregator that has access to all the data, including feature vectors and labels.
The aggregator partitions the instances into bags, and along with the bags also releases aggregate
labels of each bag (i.e., the bag-label) to the learner. If a bag is of large size, revealing only the
aggregate bag-label provides a layer of privacy protection of the labels, while on the other hand,
larger bags in the training data lead to a loss in the quality (utility) of the trained model. Apart from
the inherent privacy that MIR and LLP offer, the aggregator can further perturb the labels to obtain
formal privacy guarantees in the sense of label differential privacy, a popular notion of privacy that
measures and prevents the leakage of label information.

In many applications, obtaining labeled data is very costly, but unlabeled data is relatively easy
to acquire. This is especially relevant as training data is getting increasingly complex, and skilled
human annotators are required for data-labeling, leading to semi-supervised learning settings [35].
In such situations, the paradigm of learning from aggregate labels, especially MIR, can be very
useful. Given a large amount of unlabeled data, and a limited labeling budget (say m), one could
partition the data into m bags, and query an annotator for the label of one of the instances in each
bag. This setting naturally lends itself to the MIR formulation that we study. We call this process
of partitioning unlabeled data into bags as label-agnostic bagging. One might also be interested
in the bagging of labeled data, for eg., due to privacy concerns as discussed earlier, which we call
label-dependent bagging.

For various loss functions in MIR and LLP, we consider the task of optimal bag construction
for both the label-agnostic and label-dependent settings. More specifically, we study the following
question; what is the optimal strategy for the aggregator to partition the data into bags, such that the
utility of downstream tasks such as linear regression is maximized.

Outline In Section 2, we formally define the problem, and state our main results. We start with
the task of linear regression, and define utility to be the closeness of the trained model to the target
model (in the realizable setting). In the MIR setting (for the case of instance-level loss, where
each instance is assigned their bag label), we show that the optimal bagging strategy corresponds to
finding an optimal k-means clustering over the labels. In the LLP setting (for the case of bag-level
loss, between the bag-label and average prediction of the bag), we prove that the optimal bagging
strategy is label-agnostic, and involves minimizing the condition number of the covariance of the
centroids of each bag. For MIR we also consider aggregate-level loss (between the bag-label and
prediction of the bag centroid). Here, the utility bound involves both the k-means objective of
instance-MIR, and the condition number objective of bag-LLP. In Section 2.4, we also quantify
the additional loss in utility incurred due to differential-privacy guarantees, in each of the previous
scenarios. In Appendix B, we provide an overview of the analysis for the instance-MIR utility
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bound, and an upper bound for the condition number objective (which is common to both bag-LLP
and aggregate-MIR) based on a random bagging approach. The rest of the proofs are moved to
Appendix C . We then study the proposed bagging mechanisms through extensive experimentation
in Appendix D, and show that k-means clustering over the instances is an effective label-agnostic
bagging heuristic for each of the cases we study. We analyse trends obtained by varying various
parameters such as the minimum bag size, number of bags, and privacy budget. In Appendix G,
we generalize the previous results to GLM’s, which includes popular paradigms such as logistic
regression. We discuss the most relevant previous work in Appendix A .

2. Our Results

The training dataset consists of n samples P Rd denoted by n ˆ d matrix X , of rank d, with the
corresponding labels denoted by n ˆ 1 matrix Y . X is partitioned into m non-overlapping bags
B “ tB1, . . . , Bmu, each of size at least k, for some fixed k* (Hence, n ě mk). We consider the
task of linear regression, and adopt a standard way to model it, where label yi “ xTi θ

˚ ` γi , γi „

N p0, σ2q, for a fixed underlying model θ˚. We denote the expected value of the label of xi by ỹi,
i.e., ỹi :“ xTi θ

˚. An aggregator partitions X into bags, and along with the feature-vectors in each
bag also releases aggregate bag-labels of each bag to the learner. The learner’s task is to find an
estimator θ̂, that is as close as possible to the underlying θ˚. The problem of bag construction is for
the aggregator to find an optimal bagging configuration such that a given loss function is minimized,
while satisfying the minimum bag size constraint |Bl| ě k,@l P rms. Bl denotes the set of samples
in bag l, and yl denotes the aggregate response in bag l. In the case of MIR, we consider the popular
case where the aggregate yl is a uniformly random label, and for LLP yl is the mean of the labels.
Note that this minimum size constraint for the bags is essential to define a meaningful problem,
otherwise the optimal bagging would be the trivial strategy of putting each point in a separate bag.

2.1. MIR, Instance-level loss

Definition 1 (Instance-level loss) An estimator θ̂ minimizes instance-level loss, if

θ̂ :“ argmin
θ

1

n

m
ÿ

l“1

ÿ

iPBl

`pyl, fθpxiqq , (1)

where ` is the squared loss.

In the case of instance-level loss, we basically assign the aggregate label of the bag to each point in
the bag. The result below provides an upper bound on the utility. All expectations henceforth are
conditioned on a fixed X , unless otherwise stated.

Theorem 2 For θ̂ as in (1), for a given bagging B,

E
”

||θ̂ ´ θ˚||22

ı

ď C1

¨

˚

˝

C2 ´

m
ÿ

`“1

´

ř

iPB`
ỹi

¯2

|B`|

˛

‹

‚

, (2)

*. We do not use k as the number of clusters or bags, as is common in the use of k-means clustering.
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where constants C1, C2 are independent of B.

In Appendix C we show that finding the optimal k-means clustering of the (expected) labels ỹ

exactly minimizes
řm
`“1

´

ř

iPB`
ỹi

¯2

|B`|
. Hence, minimizing (2) over the set of all baggings amounts

to the following optimization problem.

min
BPB

m
ÿ

l“1

ÿ

ỹiPBl

pỹi ´ µlq
2

subject to |Bl| “ k @l P rms (3)

where µl is the mean of the labels inBl, and B denotes the set of all baggings of the n samples. Note
that the optimization involves use of ỹ which is unavailable, but one can instead use y as a proxy,
leading to a small additional utility error of

`

1´ 1
k

˘

σ2 (Appendix C). The 1d clustering problem
above can be solved exactly in polynomial time, and turns out to result in a bagging that just sorts
the labels in order, and partitions contiguous segments into bags (Appendix C). In Appendix E, we
also justify that k-means clustering of the instances X is a good proxy for the k-means clustering
of the labels y, leading to a label-agnostic bagging.

2.2. LLP, Bag-level loss

Definition 3 (Bag-level loss) An estimator θ̂ minimizes bag-level loss, if

θ̂ :“ argmin
θ

1

m

m
ÿ

l“1

`

ˆ

yl,

ř

iPBl
fθpxiq

|Bl|

˙

. (4)

The loss is between the bag-label and mean of the instance level predictions of the bag instances.
Below, we provide an upper bound on the utility for equal sized bags (we also show a corresponding
result without the equality constraint in Appendix C).

Theorem 4 For θ̂ as in (4), for a given bagging B such that |Bl| “ k,@l P rms,

E
”

}θ̂ ´ θ˚}22

ı

ď σ2m

k

ˆ

λmaxpfpXqq

λminpfpXqq

˙2

, (5)

where λmax{λmin denote the maximum/minimum eigenvalues of a matrix, and fpXq “ gpXqgpXqT ,

for gpXq “
„ˆ

ř

iPB1
xi

|B1|

˙

, . . . ,
´
ř

iPBm
xi

|Bm|

¯



.

Essentially, fpXq is the (sample) covariance matrix of each bag-centroid. The optimal bagging
strategy involves minimizing the condition number (ratio of the maximum and minimum eigen-
value) of fpXq. In Appendix E, we justify that finding an optimal k-means clustering of the in-
stances X is a good proxy for minimizing the condition number. In addition, in Appendix B.2.1,
we show that even random bagging gives us a reasonable upper bound. Note that the optimal bag-
ging strategy here does not involve knowledge of the labels, leading to equally good utility for
label-agnostic and label-dependent bagging.
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2.3. MIR, Aggregate-level loss

Definition 5 (Aggregate-level loss) An estimator θ̂ minimizes aggregate-level loss, if

θ̂ :“ argmin
θ

1

m

m
ÿ

l“1

`

ˆ

yl, fθ

ˆ

ř

iPBl
xi

|Bl|

˙˙

(6)

The loss is between the bag-label and prediction of the centroid of the bag instances. Below, we
provide an upper bound on the utility for equal sized bags (we also show a corresponding result
without the equality constraint in Appendix C.

Theorem 6 For θ̂ in (6), given a bagging B such that |Bl| “ k,@l P rms,

E
”

}θ̂ ´ θ˚}22

ı

ď C1

ˆ

λmaxpfpXqq

λminpfpXqq

˙2
˜

C2 `

m
ÿ

l“1

ÿ

ỹiPBl

pỹi ´ µlq
2

¸

(7)

where constants C1, C2 are independent of B.

As in the case of bag-LLP, minimizing the first term in (7) corresponds to minimizing the condi-
tion number of fpXq, and minimizing the second term corresponds to finding the optimal k-means
clustering of ỹ. In Appendix E, we justify that finding an optimal k-means clustering of the in-
stances X is an effective proxy for minimizing both the terms, providing a label-agnostic bagging.
In Appendix F, we give an label-dependent bagging method which combines k-means over the
labels, followed by random bagging step, that is also effective.

2.4. Privacy

In each of the previous scenarios, the aggregator can modify the bagging procedure to obtain formal
label-differential privacy guarantees [8], defined below.

Definition 7 (Label DP) A randomized algorithm A taking a dataset as an input is pε, δq-label-DP
if for two datasets D and D1 which differ only on the label of one instance, for any subset S of
outputs of A,

PrApDq P Ss ď eεPrApD1q P Ss ` δ.

To guarantee label-DP, it is necessary to assume a sensitivity bound on labels, which we achieve
by bounding the norm of the labels by a constant R. In the results below, we quantify the additional
loss in utility that is incurred due to private bagging, for instance-MIR and bag-LLP. We discuss the
corresponding result for aggregate-MIR in Appendix C, along with the proofs.

MIR, Instance-level loss

Theorem 8 There exists a bagging B with |Bl| “ k,@l P rms, satisfying pε, δq label-DP, such that
for θ̂ in (1), we have

E
”

||θ̂ ´ θ˚||22

ı

ď C1

ˆ

C2 `OPT ` n

ˆ

1´
1

k

˙

α2 `
dα2

k2

˙

,
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where α2 “
16R2 log

´

1.25
δ{2

¯

ε2
, OPT is the objective value of the optimal k-means clustering over ỹ,

and constants C1, C2 are independent of B.

In the label-agnostic setting, one would just need to add noise to the bag-labels. MIR outputs
one label at random, hence the sensitivity of the output is 2R. Due to privacy amplification via
subsampling [4], we add N

´

0, α
2

k2

¯

noise to the label value to ensure p ε2 ,
δ
2q label-DP, where α2 “

16R2 log
´

1.25
δ{2

¯

ε2
, leading to an additional error of dα2

k2
. In addition, since the objective here is a label-

dependent clustering, we must use a differentially private k-means algorithm, leading to additional
loss in utility. We show that the simple approach of adding N

`

0, α2
˘

noise to each label, and then
find an optimal clustering over the noise labels, leads to an additional error of n

`

1´ 1
k

˘

α2. In
Appendix C, we discuss how it is possible to achieve better utility, since the above method satisfies
the more stringent notion of local-DP, while we only need to satisfy the notion of central-DP.

LLP, Bag-level loss

Theorem 9 There exists a bagging B with |Bl| “ k,@l P rms, satisfying pε, δq label-DP, such that
for θ̂ in (4), we have

E
”

}θ̂ ´ θ˚}22

ı

“ OPT

ˆ

d

k
α2 ` σ2m

k

˙

,

where α2 “
4R2 logp 1.25δ q

ε2
, and OPT is the optimal value of

´

λmaxpfpXqq
λminpfpXqq

¯2
.

In this case, the optimal bagging strategy in independent of the labels. Hence, one just needs to add
noise to the bag-labels, and not add noise for a private clustering of the labels. LLP outputs the mean
of k labels, hence the sensitivity of the output is 2R

k . We add N
´

0, α
2

k2

¯

noise to the label value

to ensure pε, δq label-DP, leading to an additional error of α2m
k2

over the corresponding non-private
bagging mechanism.

3. Conclusion

In this paper, we study for various loss functions in MIR and LLP, what is the optimal way to
partition the dataset into bags such that the utility for downstream tasks like linear regression is
maximized. We theoretically provide utility guarantees, and show that in each case, the optimal
bagging strategy (approximately) reduces to finding an optimal k-means clustering of the feature
vectors or the labels. We also show that our bagging mechanisms can be made label-DP, incurring
an additional utility error. We finally generalize our results to the setting of GLMs.

There are several potential directions for future work. While we only considered linear models,
it would be interesting to analyse optimal bagging strategies in non-linear models, such as neural
networks. One could also consider other popular loss functions for MIR and LLP used in literature.
While our work only looked at upper bounds, having corresponding lower bounds would also be
interesting.
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Aggregating Data for Optimal and Private Learning:
Supplementary Materials

Outline Appendix A includes a detailed discussion of previous work. Appendix B contains the
utility analysis for all the settings. In Appendix C, we present supporting proofs along with some ad-
ditional results that were briefly mentioned in Appendix B. Experiments can be found in Appendix
D. Appendix E justifies that k-means of the instances X is an effective label-agnostic bagging
heuristic for each setting we consider (instance-MIR, bag-LLP, and aggregate MIR). In Appendix
F, we discuss the super-bags algorithm for Agg-MIR which is a combination of label k-means and
random bagging. In Appendix G, we generalize previous results to GLM’s.

Appendix A. Related Work

Learning from aggregated labels. Learning from label proportions (LLP), in which the bag-labels
are the average of the labels within the bag, started with the work of [12] and has been studied in the
context of privacy concerns [26], lack of supervision due to cost [10], or coarse instrumentation [13].
While previous works [19, 20, 23, 29, 30, 39] have developed specialized techniques for model
training on LLP training data, [40] defined it in the PAC framework, while [27, 28] have shown
worst case algorithmic and hardness bounds, and recently [6] gave PAC learning algorithms for
Gaussian feature vectors and random bags.
A related formulation is that of multiple instance regression (MIR), introduced in [24], where the
bag-label is one of the (real-valued) labels within the bag (in contrast to LLP in which it is their
average). For the most part, MIR has been studied in applied settings related to remote sensing and
image analysis. Popular baseline techniques apply instance-level regression by assigning the bag-
label to the average feature-vector in the bag, called aggregated-MIR, or assigning the bag-label
to each feature-vector in the bag, known as instance-MIR [25, 37], whereas several expectation-
maximization (EM) based methods have also been proposed [24, 33, 36–38]. Recent work of [9]
proved bag-to-instance generalization error bounds as well as hardness results for MIR, in the first
theoretical exploration of this problem.

Both the above problems, LLP and MIR, have gained renewed interest due to recent restrictions
on user data on advertising platforms leading to aggregate conversion labels in reporting systems
[1, 2, 22]. With the goal of preserving the utility of models trained on the aggregate labels, model
training techniques for either randomly sampled [7] or curated bags [11] have been proposed. More
recently, [18] showed that minimizing a natural instance-level loss for LLP yields the best utility
when the bags are created by optimizing k-means objective defined over the constituent labels of
the bags, for linear regression tasks. We note however, that such a treatment of the equally well
used bag-loss method [3] for LLP is lacking, while for MIR this topic of optimal bag creation has
not been studied.

Label Differential Privacy. Differential privacy (DP), by now a standard notion of privacy of
algorithmic mechanisms, was introduced by [14]. In the context of training datasets, the restricted
notion of label-differential privacy (label-DP) was provided by [8]. Recent works have provided

10
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label-DP mechanisms for classification [16] and regression [17] while [15] proposed clustering
based mechanisms.

Appendix B. Utility analysis

B.1. MIR, Instance-level loss

We denote the uniform distribution by Γ. Let y “ ry1, . . . , yms, where yl “ yΓpBlq. We define a
random attribution matrix for MIR, A P t0, 1unˆn, as follows.

Api,jq “

#

1 if i P Bl and yl “ yj

0 otherwise.
(8)

Note that ErAs “ S “ ST is given by

Spi,jq “

#

1
|Bl|

if i, j P Bl

0 otherwise.
(9)

The minimizer of (1) is then given by

θ̂ “ argmin
θ

1

n
}Ay ´Xθ}22 “ pX

TXq´1XTAy. (10)

We now give a proof sketch for Theorem 2, providing an upper bound for the error of θ̂ (some
details are omitted to Appendix B ). All the expectations henceforth are over the randomness in A
unless otherwise stated.
Proof (of Theorem 2) We begin with the following proposition, and use it to prove the main theorem

Proposition 10

E
”

||θ̂ ´ θ˚||22

ı

“ E
“

||pXTXq´1XT pA´ IqXθ˚||22
‰

` σ2 E
“

||pXTXq´1XTA||2F
‰

.

Proof (of Proposition 10) By rearranging the terms,

θ̂ ´ θ˚ “ pXTXq´1XTAy ´ θ˚

“ pXTXq´1XTAXθ˚ ´ θ˚ ` pXTXq´1XTAγ

“ pXTXq´1XT pA´ IqXθ˚ ` pXTXq´1XTAγ .

γ is independent of A with Erγs “ 0, ErγγT s “ σ2I and ErAs “ S. Using this we get,

E
”

||θ̂ ´ θ˚||2
ı

“ E
“

||pXTXq´1XT pA´ IqXθ˚||22
‰

` E
“

trppXTXq´1XTAγγTATXpXTXq´1q
‰

“ E
“

||pXTXq´1XT pA´ IqXθ˚||22
‰

` σ2 E
“

trppXTXq´1XTAATXpXTXq´1q
‰

“ E
“

||pXTXq´1XT pA´ IqXθ˚||22
‰

` σ2 E
“

||pXTXq´1XTA||2F
‰

11
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We now upper bound the error in Proposition 10. We simplify the first term.

E
“

||pXTXq´1XT pA´ IqXθ˚||22
‰

ď E
“

||pXTXq´1XT ||op||pA´ IqXθ
˚||22

‰

“ ||pXTXq´1XT ||2op E
“

||pA´ IqXθ˚||22
‰

We simplify the RHS above with the following proposition.

Proposition 11

E
“

||pA´ IqXθ˚||22
‰

“

¨

˚

˝

2||ỹ||22 ´ 2
m
ÿ

l“1

´

ř

iPBl
ỹi

¯2

|Bl|

˛

‹

‚

Proof

E
“

||pA´ IqXθ˚||22
‰

“ E
“

ppA´ IqXθ˚qT pA´ IqXθ˚
‰

“ E
”

θ˚TXTATAXθ˚
ı

´ E
”

θ˚TXT pA`AT qXθ˚
ı

` ||Xθ˚||22

“ E
“

||Aỹ||22
‰

´ θ˚TXT pS ` ST qXθ˚ ` ||Xθ˚||22

“ E
“

||AXθ˚||22
‰

´ 2θ˚TXTSXθ˚ ` ||ỹ||22

Putting the following two lemmas together, we conclude Proposition 11.

Lemma 12 E
“

||AXθ˚||22
‰

“ ||ỹ||22.
Proof (of Lemma 12) LetBpiq be the bag containing xi. Note thatAXθ˚ “

“

ỹΓpBp1qq, . . . , ỹΓpBpnqq

‰T

θ˚TXTATAXθ˚ “
i“n
ÿ

i“1

ỹ2
ΓpBpiqq

Then we have

E

«

i“n
ÿ

i“1

ỹ2
ΓpBpiqq

ff

“

i“n
ÿ

i“1

¨

˝

ÿ

jPBpiq

pỹjq
2

|pBpiqq|

˛

‚

“

l“m
ÿ

l“1

|Bl|

¨

˝

ÿ

jPBpiq

pỹjq
2

|Bl|

˛

‚

“

n
ÿ

i“1

pỹiq
2

Lemma 13 θ˚TXTSXθ˚ “
řm
l“1

´

ř

iPBl
ỹi

¯2

|Bl|
.

12
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Proof (of Lemma 13). Note that S “MTM , where M P Rmˆn is defined as:

Mpi,jq “

#

1{
a

|Bi| if xj P Bi
0 otherwise.

Thus, θ˚TXTSXθ˚ “ θ˚TXTMTMXθ˚ “ ||Mỹ||22.

||Mỹ||22 “
m
ÿ

l“1

˜

ÿ

xiPBl

1
a

|Bl|
ỹi

¸2

“

m
ÿ

l“1

1

|Bl|

˜

ÿ

xiPBl

ỹi

¸2

The following proposition analyses the second term in Proposition 10, and together with Proposition
11 concludes the proof of Theorem 2.

Proposition 14

E
“

||pXTXq´1XTA||2F
‰

ď d||pXTXq´1XT ||2op

B.2. LLP, Bag-level loss

We define a bagging matrix S P t0, 1umˆn that encodes the assignment of instances to bags.

Spl,iq “

#

1
|Bl|

if i P Bl,

0 otherwise.
(11)

The minimizer of the bag-level loss in matrix form is

θ̂ “ argmin
θ

1

m
}Sy ´ SXθ}22. (12)

Theorem 4 provides an upper bound on the error for equal sized bags, showing that

E
”

}θ̂ ´ θ˚}22

ı

ď σ2m

k

ˆ

λmaxppSXq
TSXq

λminppSXqTSXq

˙2

.

We want to develop a bagging algorithm that minimizes the condition number of the covariance
of the bag-centroids. Since bounding the condition number as a whole is challenging, we instead
find an upper bound for λmax (Lemma 15) and a lower bound λmin of pSXqTSX . Aggregating
feature vectors reduces the eigenvalues of the covariance matrix. We propose the following random
bagging algorithm (Algorithm 1), which provides a lower bound for the λminppSXqTSXq.

13
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B.2.1. A RANDOM BAGGING APPROACH

Our bagging algorithm considers a fixed random partitioning strategy where the instances are di-
vided into super-bags, each containing 2k instances. From each super bag, one k-sized bag is inde-
pendently sampled, resulting in a collection ofm{2 bags. We then analyze the minimum eigenvalue
of the covariance matrix for this subset of bags. Since covariance matrices are PSD, the minimum
eigenvalue of this subset of bags is a lower bound for any collection of m bags formed from the
same instances, as adding more covariances will not reduce the minimum eigenvalue.

Lemma 15 λmax
`

pSXqTSX
˘

ď λmaxpX
TXq.

Let Xl represent the feature matrices of Bl for l P rms.

λmin
`

pSXqTSX
˘

“
1

k2
λmin

˜

m
ÿ

l“1

XT
l Xl

¸

Input: : Instances X , fixed bag size k.
Steps:

1. Randomly partition X into m1 2k-sized super-bags, where m1 “ n{2k.

X “
m1
ď

l“1

Xl and Xl

č

Xl1 “ φ for all l ‰ l1

2. For l “ 1, . . . ,m1, a k-sized bag B1l is sampled u.a.r from Xl.

3. Output B1 where B1 “ tB1lulPrm1s

Figure 1: Random bagging algorithm for bag-LLP

The feature matrix for bag B1l sampled using Algorithm 1 can be represented by X 1l for all
l P rm1s.

1

k2
λmin

˜

m
ÿ

l“1

XT
l Xl

¸

ě
1

k2
λmin

˜

m
ÿ

l“1

X 1l
T
X 1l

¸

(13)

Let µmin “ λmin

´

řm1

l“1 E
”

X 1l
TX 1l

ı¯

{k2. We expand X 1l
TX 1l and find µmin:

µmin “
1

k2
λmin

¨

˝

m1
ÿ

l“1

E

»

–

ÿ

xi,xjPB1l

xix
T
j

fi

fl

˛

‚

“
1

k2
λmin

¨

˝

m1
ÿ

l“1

E

»

–

ÿ

xiPB1l

xix
T
i

fi

fl` E

«

ÿ

i‰j

xix
T
j

ff

˛

‚

14
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In Algorithm 1, xi P Xl get sampled in B1l with probability 1{2. Similarly, the probability of
sampling the ordered pair pxi, xjq is 22k´2Ck´2{

2kCk “ pk ´ 1q{p2k ´ 1q. Let x̂ “
ř

xiPXl xi.

µmin

“
λmin
k2

¨

˝

m1
ÿ

l“1

ÿ

xiPXl

1

2
xix

T
i `

ÿ

pxi,xjqPXl

k ´ 1

2k ´ 1
xix

T
j

˛

‚

“
λmin
k2

˜

m1
ÿ

l“1

1

2

ˆ

1´
k ´ 1

2k ´ 1

˙

ÿ

xiPXl

xix
T
i `

k ´ 1

2p2k ´ 1q
x̂x̂T

¸

“
λmin
k2

˜

m1
ÿ

l“1

ˆ

k

2p2k ´ 1q

˙

ÿ

xiPXl

xix
T
i `

k ´ 1

2p2k ´ 1q
x̂x̂T

¸

“
λmin

2k2p2k ´ 1q

˜

kXTX ` pk ´ 1q
m1
ÿ

l“1

x̂x̂T

¸

Since the second term is a summation of p.s.d matrices, we get µmin ą λminpX
TXq{4k2. We

assume }x}22 ď β for all x P X .

Lemma 16 λmaxpX
1
l
TX 1lq ď kβ.

Applying Matrix Chernoff (Corollary 5.2 [34]), we get

P

«

1

k2
λmin

˜

m
ÿ

l“1

X 1l
T
X 1l

¸

ď p1´ δqµmin

ff

ď d ¨

„

e´δ

p1´ δq1´δ

µmin{kβ

Using Equation 13 we get

P
„

λmin
`

pSXqTSX
˘

ą p1´ δq
λminpX

TXq

4k2



ě 1´ d ¨

„

e´δ

p1´ δq1´δ

µmin{kβ

Using Lemma 15 and Equation (14), we get

E
”

}θ̂ ´ θ˚}22

ı

ď
16σ2nk2

p1´ δq2

ˆ

λmaxpX
TXq

λminpXTXq

˙2

. (14)

w.p. greater than 1´ d ¨
”

e´δ

p1´δq1´δ

ıµmin{kβ
.

B.3. MIR, Aggregate-level loss

We define a random attribution matrix A P t0, 1umˆn as follows, to indicate the bag-label of each
bag.

Apl,iq “

#

1 if yi “ ΓpBlq,

0 otherwise.
(15)

15
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We denote ErAs “ S. This turns out to be the same S as (11), and represents the instances in
each bag. The minimizer of the bag-level loss is

θ̂ “ argmin
θ

1

m
}Ay ´ SXθ}22. (16)

Theorem 6 provides an upper bound on the error for equal sized bags, showing that

E
”

}θ̂ ´ θ˚}22

ı

ď C1

ˆ

λmaxppSXq
TSXq

λminppSXqTSXq

˙2
˜

C2 `

m
ÿ

l“1

ÿ

ỹiPBl

pỹi ´ µlq
2

¸

.

Appendix C. MISSING PROOFS

In this section, we present the missing proofs from the paper, along with some additional results
that were briefly mentioned in the main paper.

C.1. Additional results from Section 2.1

Lemma 17 shows that finding the optimal k-means clustering of the (expected) labels ỹ exactly

maximizes
řm
`“1

´

ř

iPB`
ỹi

¯2

|B`|
. Lemma 18 shows that clustering over y “ ỹ ` γ as a proxy for

clustering over ỹ leads to an additional utility error of
`

1´ 1
k

˘

σ2n. Lemma 19 shows that the 1d

clustering problem above turns out to result in a bagging that just sorts the labels in order, and
partitions contiguous segments into bags.

Lemma 17 Maximizing
řm
`“1

´

ř

iPB`
ỹi

¯2

|B`|
corresponds to finding the optimal k-means clustering

over ỹ.

Proof The k-means objective for a bagging B over ỹ is

m
ÿ

l“1

ÿ

iPBl

pỹi ´ µlq
2 ,

16
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where µl “ 1
|Bl|

ř

iPBl
ỹi is the mean of the entries of ỹ in bag l. We expand on the objective below.

m
ÿ

l“1

ÿ

iPBl

pỹi ´ µlq
2
“

m
ÿ

l“1

ÿ

iPBl

pỹ2
i ` µ

2
l ´ 2ỹiµlq

“

m
ÿ

l“1

˜

ÿ

iPBl

ỹ2
i `

ÿ

iPBl

µ2
l ´ 2

ÿ

iPBl

ỹiµl

¸

“

m
ÿ

l“1

˜

ÿ

iPBl

ỹ2
i ` |Bl|µ

2
l ´ 2|Bl|µ

2
l

¸

“

n
ÿ

i“1

ỹ2
i ´

m
ÿ

l“1

`

|Bl|µ
2
l

˘

“ ||ỹ||22 ´
m
ÿ

`“1

´

ř

iPB`
ỹi

¯2

|B`|

||ỹ||22 is constant, hence minimizing
řm
l“1

ř

iPBl
pỹi ´ µlq

2 is equivalent to maximizing
řm
`“1

´

ř

iPB`
ỹi

¯2

|B`|
.

Lemma 18 Given yi “ ỹi ` γi, where γi „ N p0, σ2q. Then, given a clustering B over y,

Erk-meanspBpyqqs “ Erk-meanspBpỹqqs ` pn´mqσ2

where where k-meanspSpXqq is the k-means clustering objective of S on X . For equal sized bags
of size k,

Erk-meanspBpyqqs “ Erk-meanspBpỹqqs ` n
ˆ

1´
1

k

˙

σ2.

17
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Proof

Erk-meanspBpyqqs ´ Erk-meanspBpỹqqs “ E

«

m
ÿ

l“1

ÿ

iPBl

pyi ´ µlq
2

ff

´ E

«

m
ÿ

l“1

ÿ

iPBl

pỹi ´ µlq
2

ff

“ E

«

m
ÿ

l“1

ÿ

iPBl

pyi ´ µlq
2 ´

m
ÿ

l“1

ÿ

iPBl

pỹi ´ µlq
2

ff

“ E

«

m
ÿ

l“1

ÿ

iPBl

`

pyi ´ µlq
2 ´ pỹi ´ µ̃lq

2
˘

ff

“ E

«

m
ÿ

l“1

ÿ

iPBl

ppyi ´ ỹi ` µ̃l ´ µlqpyi ´ µl ` ỹi ´ µ̃lqq

ff

“ E

«

m
ÿ

l“1

ÿ

iPBl

ˆˆ

γi ´

ř

iPBl
γi

|Bl|

˙ˆ

2yi ´ 2µl ` γi ´

ř

iPBl
γi

|Bl|

˙˙

ff

“

m
ÿ

l“1

ÿ

iPBl

˜

E
“

γ2
i

‰

`

ř

iPBl
E
“

γ2
i

‰

|Bl|2
´ 2

E
“

γ2
i

‰

|Bl|

¸

“

m
ÿ

l“1

ÿ

iPBl

E
“

γ2
i

‰

ˆ

1´
1

|Bl|

˙

“ σ2
m
ÿ

l“1

p|Bl| ´ 1q

“ σ2 pn´mq

Lemma 19 Sort ỹi in non-increasing order as ỹp1q, . . . , ỹpnq. There exists an optimal k-means
clustering B˚ such that ỹpiq, ỹpjq P B˚l ùñ ỹpkq P B

˚
l ,@k P ti, i` 1, . . . , ju.

Proof Follows from Lemma 2.3 in [18].

C.2. Additional Proofs from Section B.1

Proof (of Lemma 14). We use the following inequality:

||AB||2F ď min
`

||A||2op||B||
2
F , ||B||

2
op||A||

2
F

˘

.

E
“

||pXTXq´1XTA||2F
‰

ď min
`

E
“

||pXTXq´1XT ||2op||A||
2
F

‰

,E
“

||pXTXq´1XT ||2F ||A||
2
op

‰˘

We assumed rankpXq “ d, hence ||pXTXq´1XT ||F ď
?
d||pXTXq´1XT ||op .

E
“

||pXTXq´1XTA||2F
‰

ď min
`

E
“

||pXTXq´1XT ||2op||A||
2
F

‰

,E
“

d||pXTXq´1XT ||2op||A||
2
op

‰˘

“ ||pXTXq´1XT ||2op min
`

E
“

||A||2F
‰

, dE
“

||A||2op
‰˘

18
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We have E
“

||A||2F
‰

“ n and E
“

||A||2op
‰

“ 1. Also, we are in the setting where n ą d to have a
well defined regressor. Therefore, we obtain

E
“

||pXTXq´1XTA||2F
‰

ď d||pXTXq´1XT ||2op

C.3. LLP, Bag-loss

Theorem [full version of Theorem 4]
For θ̂ as in (4), for a given bagging B with bagging matrix S, we have

E
”

}θ̂ ´ θ˚}22

ı

ď σ2

ˆ

λmaxppSXq
TSXq

λminppSXqTSXq

˙2
˜

m
ÿ

l“1

1

|Bl|

¸

For equal sized bags of size k, this simplifies to

E
”

}θ̂ ´ θ˚}22

ı

ď σ2m

k

ˆ

λmaxppSXq
TSXq´1

λminppSXqTSXq´1

˙2

.

Proof We start by proving the following lemma

Lemma 20

E
”

}θ̂ ´ θ˚}22

ı

“σ2}ppSXqTSXq´1pSXqT pSST q1{2}2F . (17)

Proof The minimizer of the bag-level loss in matrix form is

θ̂ “ argmin
θ

1

m
}Sy ´ SXθ}22

“ pXTSTSXq´1XTSTSy.

By rearranging the terms, we have

θ̂ ´ θ˚ “ ppSXqTSXq´1XTSTSy ´ θ˚

“ ppSXqTSXq´1XTSTSXθ˚ ´ θ˚

` ppSXqTSXq´1XTSTSγ

“ ppSXqTSXq´1XTSTSγ

Since γ is independent of Xl, with Erγs “ 0, and ErγγT s “ σ2I, we have

E
”

}θ̂ ´ θ˚}22

ı

“ σ2trpppSXqTSXq´1pSXqTSST pSXqppSXqTSXq´1q

By definition, SST “ Diagpt 1
|B1|

, 1
|B2|

, . . . , 1
|Bm|

uq and the expression simplifies to give:

E
”

}θ̂ ´ θ˚}22

ı

“ σ2}ppSXqTSXq´1pSXqT pSST q1{2}2F

19
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Now we upper bound the RHS.

E
”

}θ̂ ´ θ˚}22

ı

“ σ2}ppSXqTSXq´1pSXqT pSST q1{2}2F

ď σ2}ppSXqTSXq´1pSXqT }2op}pSS
T q1{2}2F

“ σ2}ppSXqTSXq´1pSXqT }2op

˜

m
ÿ

l“1

1

|Bl|

¸

ď σ2}ppSXqTSXq´1}2op}pSXq
T }2op

˜

m
ÿ

l“1

1

|Bl|

¸

ď σ2

ˆ

λmaxppSXq
TSXq

λminppSXqTSXq

˙2
˜

m
ÿ

l“1

1

|Bl|

¸

C.4. MIR, Aggregate-loss

Theorem [full version of Theorem 6]For θ̂ in (6), given a bagging B with bagging matrix S,

E
”

}θ̂ ´ θ˚}22

ı

ď }ppSXqTSXq´1pSXqT }2op

˜

m
ÿ

l“1

˜

ř

iPBl
ỹ2
i

|Bl|

¸

´

m
ÿ

l“1

ˆ

ř

iPBl
ỹi

|Bl|

˙2

` σ2n

¸

For equal sized bags, this simplifies to

E
”

}θ̂ ´ θ˚}22

ı

ď
1

k
}ppSXqTSXq´1pSXqT }2op

˜

m
ÿ

l“1

ÿ

ỹiPBl

pỹi ´ µlq
2 ` σ2nk

¸

,

Proof

θ̂ “ argmin
θ

1

m
}Ay ´ SXθ}22

“ pXTSTSXq´1XTSTAy.

By rearranging the terms, we have

θ̂ ´ θ˚ “ ppSXqTSXq´1XTSTAy ´ θ˚

“ ppSXqTSXq´1XTSTAXθ˚ ´ θ˚ ` ppSXqTSXq´1XTSTAγ

γ is independent of X with Erγs “ 0 and ErγγT s “ σ2I. Also, ErAs “ S, and γ,A are indepen-
dent. Hence,

E
”

}θ̂ ´ θ˚}22

ı

“ E
“

}ppSXqTSXq´1pSXqTAXθ˚ ´ ppSXqTSXq´1pSXqTSXθ˚ ` ppSXqTSXq´1XTSTAγ}22
‰

ď }ppSXqTSXq´1pSXqT }2op Er}pAXθ˚ ´ SXθ˚q `Aγ}22s
ď }ppSXqTSXq´1pSXqT }2op

`

Er}AXθ˚ ´ SXθ˚}22s ` Er}Aγ}22s
˘

ď }ppSXqTSXq´1pSXqT }2op
`

Er}Aỹ ´ Sỹ}22s ` Er}Aγ}22s
˘
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We now analyse Er}Aỹ ´ Sỹ}22s in the lemma below.

Lemma 21

Er}Aỹ ´ Sỹ}22s “
m
ÿ

l“1

˜

ř

iPBl
ỹ2
i

|Bl|

¸

´

m
ÿ

l“1

ˆ

ř

iPBl
ỹi

|Bl|

˙2

Proof

Er}Aỹ ´ Sỹ}22s “ ErpAỹ ´ SỹqT pAỹ ´ Sỹqs
“ Er||Aỹ||2 ` ||Sỹ||2 ´ 2ỹTSTAỹs

“ Er||Aỹ||2s ` Er||Sỹ||2s ´ 2ErỹTSTAỹs
“ Er||Aỹ||2s ` Er||Sỹ||2s ´ 2ErỹTSTSys
“ Er||Aỹ||2s ` Er||Sỹ||2s ´ 2Er||Sỹ||2s
“ Er||Aỹ||2s ´ Er||Sỹ||2s
“ Er||Aỹ||2s ´ ||Sỹ||2

We now analyse Er||Aỹ||2s

Aỹ “
“

ỹΓpB1q, . . . , ỹΓpBmq

‰T

ùñ ỹTATAỹ “
l“m
ÿ

l“1

ỹ2
ΓpBlq

Then we have

E
“

ỹTATAỹ
‰

“ E

«

l“m
ÿ

l“1

ỹ2
ΓpBlq

ff

“

m
ÿ

l“1

˜

ř

iPBl
ỹ2
i

|Bl|

¸

For equal size bags it simplifies to ||ỹ||2

k . We now analyse Term 2 ||Sỹ||2

Sỹ “

„

ř

iPB1
ỹi

|B1|
, . . . ,

ř

iPBm
ỹi

|Bm|

T

ùñ ỹTSTSỹ “
m
ÿ

l“1

ˆ

ř

iPBl
ỹi

|Bl|

˙2

For equal size bags this simplifies to
řm
l“1

ˆ

ř

iPBl
ỹi

k

˙2

.

It is easy to see that Er}Aγ}22s “ nσ2. Combining this with the above lemma, we are done.
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C.5. Privacy

In this section, we quantify the additional loss in utility incurred due to label-DP guarantees, for
each setting we consider (instance-MIR, bag-LLP, and aggregate MIR). We give full versions of the
theorems stated in Section 2.4, along with the proofs.

C.5.1. MIR, INSTANCE-LEVEL

Theorem [full version of Theorem 8]There exists a bagging B with |Bl| “ k,@l P rms, satisfying
pε, δq label-DP, such that for θ̂ in (1), we have

E
”

||θ̂ ´ θ˚||22

ı

ď ||pXTXq´1XT ||2op

ˆ

2

ˆ

OPT ` n

ˆ

1´
1

k

˙

α2

˙

` d

ˆ

σ2 `
α2

k2

˙˙

,

where α2 “
16R2 log

´

1.25
δ{2

¯

ε2
, and OPT is the objective value of the optimal k-means clustering over

ỹ.

Proof The error due to privacy can be decomposed into two parts.
We need to add noise to the bag-labels before releasing them. MIR outputs one label at random,

hence the sensitivity of the output is 2R. Due to privacy amplification via subsampling [4, 31], and
the fact that ε ăă n in our setting, we add N

´

0, α
2

k2

¯

noise to the bag-label value to ensure
`

ε
2 ,

δ
2

˘

label-DP, where α2 “
16R2 log

´

1.25
δ{2

¯

ε2
. Note that we assume addition of N

`

0, σ2
˘

noise to each

ỹi. Adding N
´

0, α
2

k2

¯

to each bag-label is equivalent to adding N
´

0, α
2

k2

¯

to each label yi, hence

leading to a total noise ofN
´

0, σ2 ` α2

k2

¯

to each ỹi, leading to an additional error of dα
2

k2
over the

intital dσ2.
In addition, since the objective here is a label-dependent clustering, we must use a differentially

private k-means algorithm, leading to additional loss in utility. Adding N
`

0, α2
˘

noise to each
label, and then find an optimal clustering over the noise labels, satisfies

`

ε
2 ,

δ
2

˘

label-DP by post-
processing. If OPT is the objective value of the optimal k-means clustering over ỹ, this private
clustering method will lead to an additional error of

`

1´ 1
k

˘

α2, due to Lemma 18.
Now, we have two queries, each of which are

`

ε
2 ,

δ
2

˘

label-DP, ensuring pε, δq label-DP in total
due to composition.

Private clustering Note that it is possible to further reduce the error n
`

1´ 1
k

˘

α2 due to private
clustering. Note that the above method for private clustering satisfies the more stringent notion of
local-DP [5], while we only need to satisfy the standard notion of central-DP. Hence, while it is easy
to analyse, we can potentially find a much more accurate private clustering mechanism, suitably
modifying existing algorithms in the rich literature on differentially-private k-means clustering [21,
32], for the special case of a single dimension.

22



AGGREGATING DATA FOR OPTIMAL AND PRIVATE LEARNING

C.5.2. LLP, BAG-LEVEL

Theorem [full version of Theorem 9]There exists a bagging B with |Bl| “ k,@l P rms, satisfying
pε, δq label-DP, such that for θ̂ in (4), we have

E
”

}θ̂ ´ θ˚}22

ı

“ OPT

ˆ

σ2 `
α2

k

˙

m

k
,

where α2 “
4R2 logp 1.25δ q

ε2
, and OPT is the optimal value of

´

λmaxpfpXqq
λminpfpXqq

¯2
.

Proof In this case, the optimal bagging strategy in independent of the labels. Hence, we just need
to add noise to the bag-labels before releasing them, and not add noise for a private clustering of
the labels. Each bag label here is the mean of k labels, hence the sensitivity of the output is 2R

k . We

add N
´

0, α
2

k2

¯

noise to the label value to ensure pε, δq label-DP, where α2 “
4R2 logp 1.25δ q

ε2
. This is

equivalent to addingN
´

0, α
2

k

¯

noise to each of the k labels, and then averaging them. Note that we

assume addition of N
`

0, σ2
˘

noise to each ỹi. Adding N
´

0, α
2

k

¯

to each label yi, leads to a total

noise of N
´

0, σ2 ` α2

k

¯

to each ỹi, leading to an additional error of α
2

k
m
k over the intital σ2m

k .

C.5.3. MIR, AGGREGATE-LEVEL

Theorem 6 shows that, for θ̂ in (6), given a bagging B, with equal sized bags, we have

E
”

}θ̂ ´ θ˚}22

ı

ď
1

k
}ppSXqTSXq´1pSXqT }2op

˜

m
ÿ

l“1

ÿ

ỹiPBl

pỹi ´ µlq
2 ` σ2nk

¸

,

If we want a private bagging B, the error due to privacy can be decomposed into two parts. We
need to add noise to the bag-labels before releasing them. As in the case of instance-MIR, we add

N
´

0, α
2

k2

¯

noise to the bag-labels value to ensure pε, δq label-DP, where α2 “
4R2 logp 1.25δ q

ε2
, leading

to an additional error of nkα
2

k2
over the intital nkσ2.

Now, there are two terms that contribute to the clustering error, term 1
`

}ppSXqTSXq´1pSXqT }2op
˘

,

and term 2
´

řm
l“1

ř

ỹiPBl
pỹi ´ µlq

2
¯

. Term 1 is involved in bag-LLP, and minimizes the condition
number of the bag-centroids. Term 2 is also involved in instance-MIR, and minimizes a label-
dependent k-means clustering objective. If we minimize Term 1, the optimal bagging strategy in
independent of the labels. Hence, we just need to add noise to the bag-labels before releasing them,
and not add noise for a private clustering of the labels. However, in this case, the value of Term 2
could be suboptimal.

If we minimize Term 2, we must use a differentially private k-means algorithm, leading to
additional loss in utility. Adding N

`

0, α2
˘

noise to each label, and then find an optimal clustering
over the noise labels, satisfies pε, δq label-DP. As in the case of instance MIR, this private clustering
method will lead to an additional error of n

`

1´ 1
k

˘

α2. Note that since we now have two private
queries, we would have to split the privacy budget amongst them. However, minimizing term 2
might lead to a suboptimal value of Term 1.

23



AGGREGATING DATA FOR OPTIMAL AND PRIVATE LEARNING

Appendix D. EXPERIMENTS

We conduct experiments on synthetically generated data. The synthetic dataset is of the form
pX P Rnˆd, y P Rnq and is generated by first sampling a random ground truth model θ˚ from
the standard d-dimensional Gaussian distribution, sampling each of the rows ofX iid from the stan-
dard d-dimensional Gaussian distribution and then setting y “ Xθ˚ ` γ where each coordinate of
γ is iid drawn from Np0, σ2q where σ is 0.5. We set n to be 50, 000 and d as 32. We also vary k,
and use k “ 10, 50.

We implement 3 bagging mechanisms on each of instance-MIR, aggregate-MIR, and bag-LLP,
namely (1) Instance k-means, (2) Label k-means, and (3) Random bagging. In Table 1, we present
the mean and standard deviation of the error, calculated over 15 runs for each experiment. As
expected, for bag-LLP, instance k-means performs better than random bagging, which in turn per-
forms better than label k-means. For aggregate-MIR, instance k-means consistently performs the
best, which is expected, while random bagging overall performs slightly better than label k-means.
However, for instance-MIR, all the 3 mechanisms show similar performance.

We also consider the private version of instance-MIR in Table 2. We set δ “ 10´5, and vary ε.
For each mechanism, we see that accuracy drops with a decrease in ε. However, the drop is sharper
for label k-means, which is expected, since unlike feature k-means, it is label-dependent, incurring
an extra utility error. We also note that that drop in accuracy is sharper for a smaller bag size; this is
again expected since the error due to privacy scales with 1

k .

D.1. Instance k-means

We justify that k-means of the instances X is an effective label-agnostic bagging heuristic for each
setting we consider, and provide more details in Appendix E .

Instance-MIR Note that in our setting of linear regression, ỹ “ θ˚. In other words, ỹ is just
the projection of X along the axis normal to the hyperplane determined by θ˚. Hence, finding an
optimal k-means clustering of ỹ is equivalent to minimizing the k-means objective of projections
along this axis. However, if the labels are not given, this axis is unknown, since θ˚ is unknown.
Hence, in order to do a label-agnostic bagging, one must minimize some objective that simultane-
ously reduces the k-means objective along every direction. In Appendix E , we justify that k-means
of the instances X is a good heuristic for the same.

Bag-LLP We want to maximize λminppSXq
TSXq, where pSXqTSX is the sample covariance

matrix of the centroids of each bag. λmin of a covariance matrix measures the variance along the
corresponding eigenvector (which is also the direction of least variance). In Appendix E , we show
that maximizing the variance of bag-centroids along a direction is equivalent to finding an optimal
k-means on X projected on that direction. In order to maximize λminppSXq

TSXq, we maximize
variance in every direction. Equivalently, we want to reduce the k-means objective along every
direction. In Appendix E , we justify that k-means of the instances X is a good heuristic for the
same.
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k Bagging Method }θ̂ ´ θ˚}22

LLP Bag Loss

10
Instance k-means 0.0082˘ 0.002

Label k-means 0.0458˘ 0.012

Random 0.0099˘ 0.002

50
Instance k-means 0.0392˘ 0.008

Label k-means 0.0629˘ 0.008

Random 0.0423˘ 0.009

MIR Instance Loss

10
Instance k-means 0.0088˘ 0.002

Label k-means 0.0072˘ 0.002

Random 0.0085˘ 0.002

50
Instance k-means 0.0388˘ 0.006

Label k-means 0.0404˘ 0.007

Random 0.0419˘ 0.006

MIR Aggregate Loss

10
Instance k-means 0.0102˘ 0.002

Label k-means 0.0453˘ 0.008

Random 0.0221˘ 0.004

50
Instance k-means 0.0437˘ 0.008

Label k-means 0.0601˘ 0.008

Random 0.0619˘ 0.012

Table 1: Non-Private Bagging

k Bagging Method ε }θ̂ ´ θ˚}22

MIR Instance Loss

10

Instance k-means
0.5 0.0621˘ 0.009

1.0 0.0537˘ 0.009

2.0 0.0390˘ 0.008

Label k-means
0.5 0.0505˘ 0.005

1.0 0.0362˘ 0.006

2.0 0.0189˘ 0.004

50

Instance k-means
0.5 0.0656˘ 0.012

1.0 0.0595˘ 0.012

2.0 0.0521˘ 0.009

Label k-means
0.5 0.0559˘ 0.008

1.0 0.0480˘ 0.005

2.0 0.0431˘ 0.006

Table 2: Private Bagging

Aggregate-MIR Note that in order to minimize the error bound, we must simultaneously mini-
mize the condition number of pSXqTSX, and the k-means objective over the labels ỹ. Earlier, we
justified that k-means of the instances X is a good heuristic for both objectives.

Next, we consider non-isotropic distributions. We generate datasets in the following way:

• Isotropic: We independently sample a setX containing n d-dimensional points fromN p0, Iq.

• Non-isotropic (Independent): We sample d independent values tλ1, ¨ ¨ ¨ , λdu from a uniform
distribution Up0.1, 10q to be the eigenvalues of the Σ, which is diagonal matrix.

• Non-isotropic (Non-independent): We sample each entry of a Cholesky matrix M of size
d ˆ d from N p0, 1q. We then compute the covariance matrix MTM and apply a linear
transformation to feature vectors x sampled from N p0, Iq using M . The resulting set of
vectors is non-isotropic with correlated features.

Once we have sampled feature vectors of the form X P Rnˆd, we sample a random groud truth
model θ˚ from the standard d-dimensional Gaussian distribution. This true model is then used to
generate the true labels ỹ. We add noise to ỹ to generate y. We set y “ Xθ˚ ` γ where each
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Data k σ Bagging Method }θ̂ ´ θ˚}22

Isotropic

10

0.5

Instance k-means 0.010693 ˘ 0.00167

Label k-means 0.044320 ˘ 0.00720

Label k-means super-bags 0.040845 ˘ 0.01104

Random 0.022352 ˘ 0.00447

2

Instance k-means 0.037875 ˘ 0.00494

Label k-means 0.056199 ˘ 0.01042

Label k-means super-bags 0.059399 ˘ 0.01304

Random 0.053995 ˘ 0.01119

50

0.5

Instance k-means 0.046242 ˘ 0.00773

Label k-means 0.064936 ˘ 0.01016

Label k-means super-bags 0.058051 ˘ 0.00631

Random 0.057210 ˘ 0.00981

2

Instance k-means 0.056337 ˘ 0.01002

Label k-means 0.065491 ˘ 0.00853

Label k-means super-bags 0.061981 ˘ 0.00991

Random 0.065836 ˘ 0.01079

Non-isotropic
(Independent)

10

0.5

Instance k-means 0.014946 ˘ 0.00421

Label k-means 0.040369 ˘ 0.00990

Label k-means super-bags 0.042778 ˘ 0.00804

Random 0.020230 ˘ 0.00506

Scaled Instance k-means 0.012608 ˘ 0.00354

2

Instance k-means 0.039141 ˘ 0.00884

Label k-means 0.048532 ˘ 0.01083

Label k-means super-bags 0.052560 ˘ 0.01105

Random 0.058208 ˘ 0.00860

Scaled Instance k-means 0.042403 ˘ 0.00573

50

0.5

Instance k-means 0.041916 ˘ 0.00736

Label k-means 0.062490 ˘ 0.00929

Label k-means super-bags 0.060436 ˘ 0.01054

Random 0.055356 ˘ 0.01085

Scaled Instance k-means 0.047906 ˘ 0.00964

2

Instance k-means 0.059583 ˘ 0.00788

Label k-means 0.062350 ˘ 0.01028

Label k-means super-bags 0.062662 ˘ 0.01306

Random 0.065602 ˘ 0.00934

Scaled Instance k-means 0.059133 ˘ 0.01235

Non-isotropic
(Non-independent)

10

0.5

Instance k-means 0.031268 ˘ 0.00649

Label k-means 0.052303 ˘ 0.01065

Label k-means super-bags 0.049302 ˘ 0.00531

Random 0.034642 ˘ 0.01052

Scaled Instance k-means 0.022451 ˘ 0.00636

2

Instance k-means 0.043493 ˘ 0.00732

Label k-means 0.054761 ˘ 0.01151

Label k-means super-bags 0.056316 ˘ 0.01127

Random 0.055723 ˘ 0.01053

Scaled Instance k-means 0.039650 ˘ 0.00781

50

0.5

Instance k-means 0.052643 ˘ 0.01071

Label k-means 0.060606 ˘ 0.00677

Label k-means super-bags 0.059758 ˘ 0.00977

Random 0.057136 ˘ 0.00876

Scaled Instance k-means 0.046376 ˘ 0.00642

2

Instance k-means 0.058460 ˘ 0.01074

Label k-means 0.060828 ˘ 0.00811

Label k-means super-bags 0.065220 ˘ 0.00745

Random 0.067064 ˘ 0.01064

Scaled Instance k-means 0.059597 ˘ 0.00908

Table 3: Aggregate-MIR
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Data k σ Bagging Method }θ̂ ´ θ˚}22

Isotropic

10

0.5

Instance k-means 0.007562 ˘ 0.00137

Label k-means 0.043625 ˘ 0.00722

Label k-means super-bags 0.044586 ˘ 0.00906

Random 0.009745 ˘ 0.00206

2

Instance k-means 0.014722 ˘ 0.00329

Label k-means 0.056195 ˘ 0.01101

Label k-means super-bags 0.056651 ˘ 0.01085

Random 0.026405 ˘ 0.00502

50

0.5

Instance k-means 0.037432 ˘ 0.00721

Label k-means 0.063826 ˘ 0.00800

Label k-means super-bags 0.058686 ˘ 0.01111

Random 0.046269 ˘ 0.00830

2

Instance k-means 0.040709 ˘ 0.00964

Label k-means 0.063859 ˘ 0.00486

Label k-means super-bags 0.058983 ˘ 0.00880

Random 0.049042 ˘ 0.00872

Non-isotropic
(Independent)

10

0.5

Instance k-means 0.009739 ˘ 0.00201

Label k-means 0.042496 ˘ 0.00626

Label k-means super-bags 0.044571 ˘ 0.00929

Random 0.010518 ˘ 0.00339

Scaled Instance k-means 0.008552 ˘ 0.00191

2

Instance k-means 0.018930 ˘ 0.00425

Label k-means 0.049482 ˘ 0.01074

Label k-means super-bags 0.055759 ˘ 0.01066

Random 0.030314 ˘ 0.00652

Scaled Instance k-means 0.014849 ˘ 0.00286

50

0.5

Instance k-means 0.036923 ˘ 0.00536

Label k-means 0.059834 ˘ 0.00598

Label k-means super-bags 0.062452 ˘ 0.01025

Random 0.039461 ˘ 0.00760

Scaled Instance k-means 0.038586 ˘ 0.00784

2

Instance k-means 0.043048 ˘ 0.01045

Label k-means 0.058143 ˘ 0.01113

Label k-means super-bags 0.059907 ˘ 0.00812

Random 0.054860 ˘ 0.00659

Scaled Instance k-means 0.045390 ˘ 0.00617

Non-isotropic
(Non-independent)

10

0.5

Instance k-means 0.032367 ˘ 0.00835

Label k-means 0.052438 ˘ 0.00936

Label k-means super-bags 0.050445 ˘ 0.01255

Random 0.024585 ˘ 0.00755

Scaled Instance k-means 0.024811 ˘ 0.00498

2

Instance k-means 0.033099 ˘ 0.01050

Label k-means 0.057081 ˘ 0.00955

Label k-means super-bags 0.057327 ˘ 0.01297

Random 0.032676 ˘ 0.00675

Scaled Instance k-means 0.029420 ˘ 0.00755

50

0.5

Instance k-means 0.051425 ˘ 0.00895

Label k-means 0.061918 ˘ 0.00820

Label k-means super-bags 0.058320 ˘ 0.01040

Random 0.048222 ˘ 0.01074

Scaled Instance k-means 0.049910 ˘ 0.00773

2

Instance k-means 0.051430 ˘ 0.00661

Label k-means 0.065289 ˘ 0.01090

Label k-means super-bags 0.069147 ˘ 0.01071

Random 0.059075 ˘ 0.00885

Scaled Instance k-means 0.047859 ˘ 0.00678

Table 4: Bag-LLP
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}θ̂ ´ θ˚}22
Data k σ Bagging Method

Isotropic

10

0.5
Instance k-means 0.008894 ˘ 0.00168

Label k-means 0.007597 ˘ 0.00197

Random 0.007997 ˘ 0.00174

2
Instance k-means 0.019629 ˘ 0.00410

Label k-means 0.010983 ˘ 0.00239

Random 0.010078 ˘ 0.00190

50

0.5
Instance k-means 0.039916 ˘ 0.00828

Label k-means 0.040155 ˘ 0.00986

Random 0.044420 ˘ 0.00472

2
Instance k-means 0.049003 ˘ 0.01167

Label k-means 0.040044 ˘ 0.00608

Random 0.040281 ˘ 0.00600

Non-isotropic
(Independent)

10

0.5

Instance k-means 0.008672 ˘ 0.00215

Label k-means 0.007790 ˘ 0.00158

Random 0.008808 ˘ 0.00174

Scaled Instance k-means 0.009683 ˘ 0.00102

2

Instance k-means 0.018395 ˘ 0.00421

Label k-means 0.012217 ˘ 0.00205

Random 0.011335 ˘ 0.00198

Scaled Instance k-means 0.022363 ˘ 0.00499

50

0.5

Instance k-means 0.042065 ˘ 0.00686

Label k-means 0.041108 ˘ 0.00867

Random 0.038124 ˘ 0.00552

Scaled Instance k-means 0.037391 ˘ 0.00674

2

Instance k-means 0.043934 ˘ 0.00901

Label k-means 0.041059 ˘ 0.00527

Random 0.044340 ˘ 0.00826

Scaled Instance k-means 0.047298 ˘ 0.00768

Non-isotropic
(Non-independent)

10

0.5

Instance k-means 0.023122 ˘ 0.00747

Label k-means 0.023248 ˘ 0.00916

Random 0.022115 ˘ 0.00565

Scaled Instance k-means 0.019744 ˘ 0.00628

2

Instance k-means 0.035530 ˘ 0.01027

Label k-means 0.027272 ˘ 0.00708

Random 0.026394 ˘ 0.00626

Scaled Instance k-means 0.034814 ˘ 0.00768

50

0.5

Instance k-means 0.049454 ˘ 0.00978

Label k-means 0.048404 ˘ 0.00920

Random 0.048654 ˘ 0.01101

Scaled Instance k-means 0.051057 ˘ 0.00644

2

Instance k-means 0.049799 ˘ 0.00843

Label k-means 0.045538 ˘ 0.00981

Random 0.047661 ˘ 0.00710

Scaled Instance k-means 0.048617 ˘ 0.00801

Table 5: Instance-MIR
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coordinate of γ is iid drawn from Np0, σ2q where σ is 0.5. We set n to be 50, 000 and d as 32. We
also vary k, and use k “ 10, 50. The result dataset is of the form pX P Rnˆd, y P Rnq

We implement 4 bagging mechanisms on each of instance-MIR, aggregate-MIR, and bag-LLP,
namely (1) Instance k-means, (2) Label k-means, (3) Random bagging, and (4) Scaled Instance
k-means, that scales the dataset X as Σ´

1
2X to be isotropic, and then finds an optimal k-means

clustering on the scaled dataset. In the tables, we present the mean and standard deviation of the
error, calculated over 15 runs for each experiment. As expected, in most cases for bag-LLP (Table
4) and aggregate-MIR (Table 3), scaled instance k-means performs better than instance k-means,
which in turn performs better than random bagging, which in turn performs better than label k-
means. However, for instance-MIR (Table 5), all the mechanisms show similar performance, with
label k-means showing better performance in many cases.

Appendix E. Instance k-means

We justify that k-means of the instances X is an effective label-agnostic bagging heuristic for each
setting we consider (instance-MIR, bag-LLP, and aggregate MIR).

E.1. MIR, Instance-level

Note that in our setting of linear regression, ỹ “ Xθ˚. In other words, ỹ is just the projection of
X along the axis normal to the hyperplane determined by θ˚. Hence, finding an optimal k-means
clustering of ỹ is equivalent to minimizing the k-means objective of the projection of X along this
axis. However, if the labels are not given, this axis is unknown, since θ˚ is unknown. Hence, in
order to do a label-agnostic bagging, one must minimize some objective that simultaneously reduces
the k-means objective along every direction. We now justify that k-means of the instances X is a
good heuristic for the same. First, we show that for a given clustering, the k-means objective of a
dataset is the sum of k-means objective of the dataset projected along each coordinate.

Lemma 22 Consider an orthogonal basis z1, . . . zd. Fix a clustering S. We can show the following

k-meanspSpXqq “
d
ÿ

j“1

k-meanspSpXzj qq,

where k-meanspSpXqq is the k-means clustering objective of S on X , and Xz is the projection of
X along z.
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Proof Let X “ tX1, . . . , Xnu.

k-meanspSpXqq “
m
ÿ

l“1

ÿ

XiPSl

||Xi ´ µl||
2
2

“

m
ÿ

l“1

ÿ

XiPSl

||Xi||
2
2 ` ||µl||

2
2 ´ 2XT

i µl

“

m
ÿ

l“1

ÿ

XiPSl

d
ÿ

j“1

´

Xzj
2
i
` µ2

lzj
´ 2Xzj

Tµlzj

¯

“

d
ÿ

j“1

m
ÿ

l“1

ÿ

XiPSl

´

Xzj
T ´ µlzj

¯2

“

d
ÿ

j“1

k-meanspSpXzj qq

Given an arbitrary clustering C over X drawn from an isotropic distribution D, in expectation
the k-means clustering objective over X will split equally into d components along each axis (due
to symmetry), i.e.,

Erk-meanspCpXziqqs “
1

d
E rk-meanspCpXqqs ,@i,

where the expectation is over X drawn from D. Hence, for isotropic distribution D, we would
expect that the k-means clustering objective along each direction to be roughly equal. Hence, we
would also expect that setting S to be the optimal k-means clustering over X would simultaneously
keep the k-means clustering objective low along each direction.

However, the above reasoning holds only for an isotropic distribution. For a non-isotropic distri-
bution, directions with large variance will dominate the k-means objective, and therefore directions
with small variance might then have a relatively large k-means objective. For an isotropic distri-
bution, we avoid the above problem of directions with large variance dominating. However, note
that even for a non-isotropic distribution, Σ´

1
2X is isotropic, where Σ is the covariance matrix of

the distribution. Essentially, we stretch each direction so that each direction has the same variance.
We can now find an optimal k-means clustering over Σ´

1
2X . We will then avoid the problem of

directions in X with large variance dominating, while also keeping the k-means objective along
each direction low. A random bagging approach would also avoid the problem of directions with
large variance dominating for a non-isotropic distribution. However, the k-means objective in every
direction will be that of a random clustering, which is sub-optimal.

E.2. LLP, Bag-level

Given a bagging with bagging matrix S, SX is the matrix representing the dataset consisting of the
centroids of each bag. We want to maximize λminppSXq

TSXq, where pSXqTSX is the sample
covariance matrix of SX . λmin is the variance along the direction of the corresponding eigen vector

30



AGGREGATING DATA FOR OPTIMAL AND PRIVATE LEARNING

(which is also the direction of least variance of dataset SX). We now show that finding a bagging
S maximizing the variance of SX along a direction is equivalent to finding an optimal k-means
clustering of X projected on that direction.

Lemma 23 Consider a direction z, and a centred dataset X . Given a bagging S over X with m
bags of equal size k,

VarzpSXq “
1

k2
pVarpXzq ´ k-meanspSpXzqqq ,

Proof Say the points are X1, . . . , Xn, and the projections along z are x1, . . . , xn. Let µ “ 0 be the
mean of X , and µl be the mean of Bl. The variance of the SX along z is

VarpSXzq “

m
ÿ

l“1

pµlz ´ µzq
2

“

m
ÿ

`“1

ˆ

ř

iPB`
xi

k

˙2

“
1

k2

˜

n
ÿ

i“1

x2
i ´

m
ÿ

`“1

ÿ

iPB`

pxi ´ µlzq
2

¸

“
1

k2
pVarpXzq ´ k-meanspSpXzqqq

Earlier, we showed that for a given clustering, the k-means objective of a dataset is the sum
of k-means objective of the dataset projected along each coordinate. We want to find S such that
k-meanspSpXzminqq is small along zmin, where zmin is the direction of least variance of SX . But,
since we do not know zmin, we find S such that k-meanspSpXzqq is small along every direction z.
In the previous section, we give instance k-means heuristics for this.

E.3. MIR, Aggregate-level

Note that in order to minimize the error bound, we must simultaneously minimize the condition
number of pSXqTSX, and the k-means objective over the labels ỹ. Earlier, we justified that k-
means of the instances X is a good heuristic for both objectives.

Appendix F. Random Bagging Algorithm for Aggregate-MIR

We propose a random bagging algorithm similar to the one for Bag-LLP (Algorithm 1) for Agg-
MIR. The upper bound for Agg-MIR (Theorem 6) is product of the label k-means objective and
the condition number. We propose the following algorithm which takes both these objectives into
account.
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Input: : Instances X , fixed bag size k, true labels ỹ.
Steps:

1. Sort points X in increasing order of ỹ.

2. Partition sorted points into m1 contiguous super-bags of sizes 2k, where m1 “ n{2k.

X “
m1
ď

l“1

Xl and Xl

č

Xl1 “ φ for all l ‰ l1

3. For l “ 1, . . . ,m1, a k-sized bag B1l is sampled u.a.r from Xl.

4. Output B1 where B1 “ tB1lulPrm1s

Figure 2: Random bagging algorithm for Agg-MIR

We can analyze the condition number by establishing a lower bound on the minimum eigenvalue
of the covariance matrix for the aggregated feature vectors. In Section B.2.1, we derive this bound
for any fixed partitioning of instances into super-bags, and the same bound holds for Algorithm 2.

Following the analysis in Section B.2.1, we get,

P
„

λmin
`

pSXqTSX
˘

ą p1´ δq
λminpX

TXq

4k2



ě 1´ d ¨

„

e´δ

p1´ δq1´δ

µmin{kβ

Let Bl denote a super-bag of size 2k for l P rm1s. We arbitrarily sample k instances to create
a bag Bp1ql and the remaining instances form another bag Bp2ql . We know Bl “ B

p1q
l

Ť

B
p2q
l and

B
p1q
l

Ş

B
p2q
l “ φ. Also, |Bp1ql | “ |B

p2q
l | “ k.

Theorem 24 For super-bags B1l as defined in Algorithm 2 with arbitrary non-overlapping parti-
tions Bp1ql and Bp2ql , we have

m1
ÿ

l“1

k-means-clusterptỹiuiPB1lq ě
m1
ÿ

l“1

k-means-clusterptỹiuiPBp1ql
q ` k-means-clusterptỹiuiPBp1ql

q

(18)

where, k-means-cluster(C) is the k-means clustering loss for cluster C. This expands to give the
following:

m1
ÿ

l“1

ÿ

iPB1l

pỹi ´ µ
1
lq

2 ě

m1
ÿ

l“1

`

ÿ

jPB
p1q
l

pỹi ´ µ
p1q
l q

2 `
ÿ

jPB
p2q
l

pỹi ´ µ
p2q
l q

2
˘

(19)

where, µ denotes the respective cluster means.

Proof
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We write the k-means loss for B1l . Let µ1l “
ř

jPB1l
ỹi{2k.

ÿ

iPB1l

pỹi ´ µ
1
lq

2

“
ÿ

iPB1l

ỹ2
i ´ 2ỹiµ

1
l ` µ

12
l

“ p
ÿ

iPB1l

ỹ2
i q ´

p
ř

iPB1l
ỹiq

2

k
`
p
ř

iPB1l
ỹiq

2

2k

“ p
ÿ

iPB1l

ỹ2
i q ` p

1

4k
´

1

k
qp
ÿ

iPB1l

ỹiq
2

“ p
ÿ

iPB1l

ỹ2
i q ´

1

2k
p
ÿ

iPB1l

ỹiq
2

Next, we write the k-means loss for Bp1ql . Let µp1ql “
ř

jPB
p1q
l

ỹi{k.

ÿ

jPB
p1q
l

pỹi ´ µ
p1q
l q

2

“
ÿ

jPB
p1q
l

ỹ2
i ´ 2ỹiµ

p1q
l ` µ

p1q
l

2

“ p
ÿ

jPB
p1q
l

ỹ2
i q ´

2p
ř

jPB
p1q
l

ỹiq
2

k
`

p
ř

jPB
p1q
l

ỹiq
2

k

“ p
ÿ

jPB
p1q
l

ỹ2
i q ´

1

k
p
ÿ

jPB
p1q
l

ỹiq
2

Similarly, for Bp2ql , we get

ÿ

jPB
p2q
l

pỹi ´ µ
p2q
l q

2 “ p
ÿ

jPB
p2q
l

ỹ2
i q ´

1

k
p
ÿ

jPB
p1q
l

ỹiq
2
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We define ∆l “
ř

iPB1l
pỹi ´ µ

1
lq

2 ´
ř

jPB
p1q
l

pỹi ´ µ
p1q
l q

2 ´
ř

jPB
p2q
l

pỹi ´ µ
p2q
l q

2.

∆l “
´1

2k
p
ÿ

iPB1l

ỹiq
2 `

1

k

“

p
ÿ

jPB
p1q
l

ỹiq
2 ` p

ÿ

jPB
p2q
l

ỹiq
2 ` 2

ÿ

iPB
p1q
l

ÿ

jPB
p2q
l

ỹiỹj ´ 2
ÿ

iPB
p1q
l

ÿ

jPB
p2q
l

ỹiỹj
‰

“
´1

2k
p
ÿ

iPB1l

ỹiq
2 `

1

k

“

p
ÿ

jPB1l

ỹiq
2 ´ 2

ÿ

iPB
p1q
l

ÿ

jPB
p2q
l

ỹiỹj
‰

“
1

2k
p
ÿ

iPB1l

ỹiq
2 `

´2

k
p
ÿ

iPB
p1q
l

ÿ

jPB
p2q
l

ỹiỹjq

“
1

2k

“

p
ÿ

iPB1l

ỹiq
2 ´ 4p

ÿ

iPB
p1q
l

ÿ

jPB
p2q
l

ỹiỹjq
‰

“
1

2k

“

p
ÿ

jPB
p1q
l

ỹiq ´ p
ÿ

jPB
p2q
l

ỹiq
‰2

ě 0

For any super-bag B1l for l P rm1s, ∆l ą 0. We can now sum over all bags to get the total loss
observed after bagging ∆ “

řm1

l“1 ∆ ě 0.
This implies that the loss incurred by applying the k-means objective is higher when the in-

stances are clustered into super-bags of sizes 2k, compared to our random bagging approach, which
creates two non-overlapping bags of sizes k from the super-bags.

Appendix G. Analysis for GLMs

We generalize the previous results for linear regression to the setting of Generalized Linear Model’s
(GLMs), which includes popular paradigms such as logistic regression. We study both instance-
level and aggregate-level losses for MIR under the GLM framework. For instance-MIR, we derive
an upper bound that leads to label k-means clustering as the optimal bagging strategy. This result
holds across all distributions within the exponential family. For aggregate-MIR, our objective sug-
gests minimizing the range between the maximum and minimum expected instance labels within
a bag, implying that features with similar expected labels should be grouped together, yielding a
clustering-based outcome. This result holds for exponential distributions which have a monotonic
first derivative. The detailed analysis is provided below.

G.1. MIR

We now generalize our derivation to the class of generalized linear models (GLMs). The instance-
level labels yi are conditionally independent given xi in GLMs, and are drawn from a specific distri-
bution within the exponential family. The corresponding log-likelihood function can be expressed
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as:

log ppyi | ηi, φq “
yiηi ´ bpηiq

aipφq
` cpyi, φq , (20)

where ηi is a location variable and φ is the scaling variable. The functions ai, b, and c are provided.
We can take aipφq “ φ{wi, where wi is a constant prior information. We analyse canonical GLMs,
in which ηi “ xTi θ

˚ for an unknown model θ˚. Some properties of GLMs are µ “ Ery|xs “
b1pxT θ˚q and V arpy|xq “ apφqb2pxT θ˚q. We consider L to the negative log likelihood and we
can ignore the term cpyi, φq as it does not depend on θ. Our objective is to find a bagging strategy
which closes the gap between the true model θ˚ and θ̂. For GLMs we achieve this by minimizing
the gradient of the loss at θ˚.

G.1.1. ANALYSIS OF INSTANCE-LEVEL LOSS FOR MIR

Lemma 25 Suppose that the loss L is strongly convex with parameter µ and θ̂ “ arg minθ Lpθq.
Then, for any model θ˚, we have

}θ̂ ´ θ˚}2 ď
1

µ
}Lpθ˚q}2.

In addition, if L has a Lipschitz continuous gradient with parameter L, we have

1

L
}Lpθ˚q}2 ď }θ̂ ´ θ˚}2.

Let θ̂ be the minimizer of the instance-level loss:

θ̂ “ argmin
θ

1

n

m
ÿ

l“1

ÿ

iPBl

ylηi ´ bpηiq

aipφq
(21)

We find the optimal θ̂ by solving∇Lpθ̂q “ 0. We use Lemma 25 which states that }θ̂ ´ θ˚}2 is
lower bounded by }∇Lpθ˚q}2 for strongly convex functions.

We define a instance-level attribution matrix for MIR, A P t0, 1unˆn, which assigns the bag
label to each feature vector in the bag. The prime feature vector is chosen uniformly at random. Let
y “ ry1, . . . , yms, where yl “ ypΓpBlqq as previously defined.

Api,jq “

#

1 if i P Bl and yl “ ypxjq

0 otherwise.
(22)

We define S P r0, 1snˆn as the expectation of A:

Spi,jq “

#

1
|Bl|

if i, j P Bl

0 otherwise.
(23)

Theorem 26 If we consider canonical GLMs with ηi “ xTi θ
˚, then we have

E r}∇Lpθ˚q}2s ď mp}b1pXθ˚q}22 ` }Db
2pXθ˚q}1q ` }pS ´ Iqb

1pXθ˚q}22 ´ }Sb
1pXθ˚q}22 (24)

where, D “ Diagptaipφquq.
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Proof We begin by computing∇Lpθq and expressing it in the matrix format:

∇Lpθq “ 1

n

m
ÿ

l“1

ÿ

iPBl

pyl ´ b
1pxTi θqqxi
aipφq

“ XTD´1pAy ´ b1pXθqq

where, D :“ Diagptaipφquq.

E
“

}∇Lpθq}22|X
‰

“ E
“

}XTD´1pAy ´ b1pXθqq}22|X
‰

ď }XTD´1}2op E
“

}Ay ´ b1pXθq}22|X
‰

“ }XTD´1}2op E
“

pAy ´ b1pXθqqT pAy ´ b1pXθqq|X
‰

“ }XTD´1}2op E
“

pAyqT pAyq ´ b1pXθqTAy ´ pAyqT b1pXθq ` b1pXθqT b1pXθq|X
‰

“ }XTD´1}2op

`

E
“

pAyqT pAyq|X
‰

´ b1pXθqTSy ´ pSyqT b1pXθq ` b1pXθqT b1pXθq
˘

“ }XTD´1}2op

`

E
“

pAyqT pAyq|X
‰

´ b1pXθqTSy ´ pSyqT b1pXθq ` b1pXθqT b1pXθq

` pSb1pXθqqT pSb1pXθqq ´ pSb1pXθqqT pSb1pXθqq
˘

“ }XTD´1}2op

`

E
“

}Ay}22|X
‰

` }pS ´ Iqb1pXθq}22 ´ }Sb
1pXθq}22

˘

ď }XTD´1}2op

`

E
“

}A}2op}y}
2
2|X

‰

` }pS ´ Iqb1pXθq}22 ´ }Sb
1pXθq}22

˘

ď }XTD´1}2op

`

mp}b1pXθ˚q}22 ` }Db
2pXθ˚q}1q ` }pS ´ Iqb

1pXθq}22 ´ }Sb
1pXθq}22

˘

Note that the term }XTD´1}2op is constant and the first term mp}b1pXθ˚q}22`}Db
2pXθ˚q}1q is

independent of the bagging strategy, it can be disregarded. Thus, we focus on the remaining terms
to derive a clustering objective for event-level MIR. To proceed, we expand the matrix notation and
express these terms as a summation over instances. We define µl :“ µi

|Bl|
, where µi “ Eryi|xis “

b1pxTi θ
˚q.

min
pB1,...,BmqPB

}pS ´ Iqb1pXθq}22 ´ }Sb
1pXθq}22 “ min

pB1,...,BmqPB

m
ÿ

l“1

ÿ

iPBl

pµi ´ µlq
2 ´

m
ÿ

l“1

|Bl|µl

Minimizing the first term in the objective is similar to performing 1d k-means clustering and maxi-
mizing the second term forces the bags to be of larger sizes.

G.1.2. ANALYSIS OF AGGREGATE MIR LOSS

Let θ̂ be the minimizer of the aggregate MIR loss:

θ̂ “ argmin
θ

1

m

m
ÿ

l“1

yl
ř

iPBl
ηi
|Bl|

´ bp
ř

iPBl
ηi
|Bl|
q

alpφq
(25)

The steps involved in analysing this function are similar to the instance-loss function. We find
the optimal θ̂ by solving ∇Lpθ̂q “ 0 and then minimize }∇Lpθ˚q}2 to approximate }θ̂ ´ θ˚}2
(Lemma 25).
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Theorem 27 If we consider canonical GLMs with ηi “ xTi θ
˚, then we get

E r}∇Lpθ˚q}2s ď nλmaxpX
TXq

`

mp}b1pXθ˚q}22 ` }Db
2pXθ˚q}1q ` }Sb

1pXθq ´ b1pSXθq}22 ´ }Sb
1pXθq}22

˘

q

(26)

where, D “ Diagptaipφquq.

Proof We begin by computing∇Lpθq and expressing it in the matrix format:

∇Lpθq “ 1

n

m
ÿ

l“1

pyl ´ b
1p
ř

iPBl

xTi θ
|Bl|
qq
ř

iPBl

xTi θ
|Bl|

alpφq

“ pSXqTD´1pAy ´ b1pSXθqq

where, D :“ Diagptalpφquq.

E
“

}∇Lpθq}22|X
‰

“ E
“

}pSXqTD´1pAy ´ b1pSXθqq}22|X
‰

ď }pSXqTD´1}2op E
“

}Ay ´ b1pSXθq}22|X
‰

“ }pSXqTD´1}2op E
“

pAy ´ b1pSXθqqT pAy ´ b1pSXθqq|X
‰

“ }pSXqTD´1}2op E
“

pAyqT pAyq ´ b1pSXθqTAy ´ pAyqT b1pSXθq ` b1pSXθqT b1pSXθq|X
‰

“ }pSXqTD´1}2op

`

E
“

pAyqT pAyq|X
‰

´ b1pSXθqTSy ´ pSyqT b1pSXθq ` b1pSXθqT b1pSXθq
˘

“ }pSXqTD´1}2op

`

E
“

pAyqT pAyq|X
‰

´ b1pSXθqTSb1pXθq ´ pSb1pXθqqT b1pSXθq`

b1pSXθqT b1pSXθq ` pSb1pXθqqT pSb1pXθqq ´ pSb1pXθqqT pSb1pXθqq
˘

“ }pSXqTD´1}2op

`

E
“

}Ay}22|X
‰

` }Sb1pXθq ´ b1pSXθq}22 ´ }Sb
1pXθq}22

˘

ď }pSXqTD´1}2op

`

E
“

}A}2op}y}
2
2|X

‰

}Sb1pXθq ´ b1pSXθq}22 ´ }Sb
1pXθq}22

˘

ď }pSXqTD´1}2op

`

mp}b1pXθ˚q}22 ` }Db
2pXθ˚q}1q ` }Sb

1pXθq ´ b1pSXθq}22 ´ }Sb
1pXθq}22

˘

ď }D´1}2opλmaxpX
TXqmp}b1pXθ˚q}22 ` }Db

2pXθ˚q}1q`

}Sb1pXθq ´ b1pSXθq}22 ´ }Sb
1pXθq}22

We now show how the final objective in Equation 27 leads to a clustering objective. The key term
in this objective which depends on S is }Sb1pXθq ´ b1pSXθq}22. Our task is to determine the
optimal bagging matrix S that would minimize this term. To simplify this expression and develop
an interpretable algorithm, we assume that the function b1p.q is monotonic. Focusing on the case
where b1p.q is an increasing function, we know that b1pt1q ě b1pt2q ðñ t1 ě t2.

›

›

›
pSb1pXθq ´ b1pSXθq

›

›

›

2

2
“

m
ÿ

l“1

˜

ÿ

xPBl

b1pxT θ˚q

|Bl|
´ b1p

ÿ

xPBl

xT θ˚

|Bl|
q

¸2

Since b1 is an increasing function, the inequality b1pmaxx1PBl x
1T θ˚q ě b1pxT θ˚q holds true for all

x P Bl (and maxx1PBl x
1T θ˚ ě xT θ˚). Similarly, b1pxT θ˚q ě b1pminx1PBl x

1T θ˚q would hold true
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for all x P Bl xT θ˚ ě minx1PBlqWe now look at the first term:

b1pminx1PBl x
1T θ˚q

|Bl|
ď

ÿ

xPBl

b1pxT θ˚q

|Bl|
ď
b1p

ř

xPBl
maxx1PBl x

1T θ˚q

|Bl|

b1pmin
x1PBl

x1T θ˚q ď
ÿ

xPBl

b1pxT θ˚q

|Bl|
ď b1pmax

x1PBl
x1T θ˚q

We bound the second term:

b1p
ÿ

xPBl

minx1PBl x
1T θ˚

|Bl|
q ď b1p

ÿ

xPBl

xT θ˚

|Bl|
q ď b1p

ř

xPBl
maxx1 x

1Tθ˚

|Bl|
q

b1pmin
x1PBl

x1T θ˚q ď b1p
ÿ

xPBl

xT θ˚

|Bl|
q ď b1pmax

x1PBl
x1T θ˚q

It is easy to see that the difference }Sb1pXθq ´ b1pSXθq}22 has an upper bound:

m
ÿ

l“1

˜

ÿ

xPBl

b1pxT θ˚q

|Bl|
´ b1p

ÿ

xPBl

xT θ˚

|Bl|
q

¸2

ď

m
ÿ

l“1

ˆ

b1pmax
x1PBl

x1T θ˚q ´ b1pmin
x1PBl

x1T θ˚q

˙2

(27)

If n “ mk and we need to construct-equal sized bags having k instances each, then the min-
imization of Equation 27 can be achieved by sorting b1pxT θ˚q for all x P X , and dividing the
points into contiguous chunks of size k. This process resembles the 1d clustering objective with an
equal-size constraint.

The monotonicity condition holds true for majority of the distributions belonging to the expo-
nential family including normal, poisson, logistic and inverse gaussian.
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