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Abstract

As datasets and models become increasingly large, distributed training has become
a necessary component to allow deep neural networks to train in reasonable amounts of
time. However, distributed training can have substantial communication overhead that
hinders its scalability. One strategy for reducing this overhead is to perform multiple
unsynchronized SGD steps independently on each worker between synchronization steps, a
technique known as local SGD. We conduct a comprehensive empirical study of local SGD
and related methods on a large scale image classification task. We find that performing
local SGD entails navigating a tradeoff: lower communication costs (and thereby faster
training) are accompanied by lower accuracy. This finding is a departure from the smaller-
scale experiments in prior work, suggesting that local SGD encounters challenges at scale.

1. Introduction

As datasets and models continue to grow in size, it has become a common practice to train
deep neural networks in a distributed manner across multiple hardware workers (Goyal
et al., 2017; Shallue et al., 2018) using some variant of minibatch stochastic gradient descent
(Bottou, 2010; Dekel et al., 2012). In distributed scenarios, the communication overhead
necessary to synchronize gradients between workers can quickly dominate the time neces-
sary to compute the model updates, hindering the scalability of this approach. Moreover,
because of the serial nature of neural network training, all the nodes must wait until the
synchronization completes, and performance is therefore dependent on the slowest node
(Dutta et al., 2018; Ferdinand et al., 2020). These issues have motivated the development
of optimization algorithms that reduce the amount of communication between workers. A
simple yet practical example is local SGD (closely related to federated averaging (McMahan
et al., 2017)) where, instead of synchronizing the gradients at every iteration, each worker
performs multiple SGD steps locally and then averages the model weights across all workers
(Zhang et al., 2016). While local SGD does speed up training, the resulting models are often
less accurate compared to a synchronous minibatch SGD baseline (Lin et al., 2018).
Post-local SGD is a variant of local SGD introduced by Lin et al. (2018) with the goal
of remedying these problems. Post-local SGD divides training into two phases. In the first
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Figure 1: Breakdown of the average wall-clock time per iteration during the training process.

Results are reported for various number of workers (K) and number of local steps (H).
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phase, workers perform synchronous minibatch SGD; in the second, they switch to local
SGD. Lin et al. claim that this approach generalizes better on large batch training than
both local SGD and minibatch SGD while reducing communication for the second phase
of training. The majority of the analysis of local SGD and post-local SGD reported in
Lin et al. (2018) is on CIFAR-10 (Krizhevsky et al., 2009). It is not clear whether similar
trends hold when training with larger models and/or larger datasets that may be more
representative of typical distributed training workloads. Motivated by these results and
the potential of post-local SGD to reduce the communication overhead and, thereby, the
training times of large-scale, distributed training jobs, we perform an thorough analysis of
local SGD and post-local SGD on the ImageNet-1k classification task (Russakovsky et al.,
2015), a de facto benchmark for large-scale vision classification problems. We go beyond
the analysis of Lin et al. (2018), studying how the choice of learning rate schedule and the
point at which to switch phases affect the generalization accuracy of models trained with
post-local SGD. We find that post-local SGD at ImageNet-scale is a double-edged sword:
decreases in communication costs (by increasing the number of local steps) are accompanied
by decreases in accuracy.

2. Trade-Offs of Local SGD and Post-local SGD

While Local SGD undoubtedly reduces communication and thus overall runtime, the spe-
cific speedup varies from task to task. We deem it important to quantify the potential
speedup that we can achieve by reducing the communication. Consequently, we illustrate
the scalability challenges of minibatch SGD in distributed settings and show that Local
SGD and post-local SGD achieve substantially better performance by reducing communi-
cation. We evaluate our experiments on the computer vision task of image classification on
ImageNet-1k (Russakovsky et al., 2015), details about the experimental setup and imple-
mentation details are listed under Appendix C. We consider Local SGD where the model is
averaged every H steps from the beginning of training and post-local SGD with a switching
point at the first learning rate decay (epoch 30) as suggested in Lin et al. (2018).

Local SGD reduces communication overhead. The main performance cost of scal-
ing minibatch SGD to a distributed setting is the communication overhead to synchronize
gradients before updating model weights at every iteration. If this overhead is comparable
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Figure 2: Training Accuracy as a function of Figure 3: Validation Accuracy as a function
the number of workers for local SGD (left) of the number of workers for local SGD (left)
and post-local SGD (right). Separate curves and post-local SGD (right). Separate curves
refer to experiments with the same number refer to experiments with the same number
of local steps H between model averages. of local steps H between model averages.

to the other parts of training, the training process will be significantly slowed, leading to
reduced performance. Figure 1 presents a breakdown of the running times of different parts
of the training loop. For a single node, i.e., 8 GPUs, the communication time is quite
low, indicating that intra-node communication is negligible with respect to other parts of
training. However, for multi-node minibatch SGD (H = 1 and K > 8 in the figure), the
communication time dominates the other steps as the number of workers K increases. On
the other hand, for Local SGD (H > 1 in the figure) as we increase the number of local
steps H the communication overhead is amortized over several iterations.

The measured benefits of reducing communication during the training process suggest
that local SGD presents an opportunity to substantially reduce training times. As such,
we now analyze the effect on generalization of these techniques to understand whether this
performance comes at a cost. We explore the scalability of both local SGD and post-local
SGD (switching at epoch 30 unless otherwise noted) as we increase the total number of
workers (i.e., GPUs) and as we increase the number of local steps between model averaging.
We show that for ResNet-50 and ResNet-101 on ImageNet-1k, both local SGD and post-local
SGD struggle to scale in any of these axes without causing a nontrivial drop in validation
performance.

Increasing the number of workers. Our first analysis focuses on the trade-off be-
tween increasing the number of workers and the effects on generalization as measured by
decrease in validation accuracy. We find that increasing workers has a negative effect on
accuracy for both local and post-local SGD, consistently leading to worse training and
validation results. Figures 2 and 3 show the accuracy for ResNet-50 on the ImageNet-1k
training and validation sets as the number of workers increases. In the figures, mSGD cor-
responds to the minibatch SGD baseline. Neither local SGD and post-local SGD maintain
accuracy as the number of workers increases, specially in terms on validation accuracy. Al-
though post-local SGD experiences smaller absolute drops in accuracy compared to local
SGD, this comes at the expense of more communication and consequently more runtime.

Reducing synchronization frequency. As we saw from the earlier timing results,
reducing the frequency of synchronizations is the main mechanism that local SGD has for
reducing the communication overhead. Here, we investigate the effect of increasing the
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Figure 4: Training Accuracy as a function of Figure 5: Validation Accuracy as a function
the number of local model updates for local of the number of local model updates for local
SGD (left) and post-local SGD (right). SGD (left) and post-local SGD (right).

number of local steps between model averaging synchronizations, identifying a very similar
trade-off to increasing the number of workers. Figures 2 and 3 show training and validation
accuracy for varying numbers of local steps H for both local and post-local SGD. As the
number of local steps grows larger, training and validation accuracy monotonically decrease.
We observe this phenomena for both local and post-local SGD.

Towards a unified trade-off. We showed that increasing the number of workers K
or local steps H led to lower accuracy. Interestingly, neither of these factors was clearly
dominant and the absolute drop in training and validation accuracy is similar as we increase
either of them. We show that this phenomenon can be better viewed in terms of a different
statistic: total number of local model updates between synchronizations, i.e., the product
K x H. Figures 4 and 5 show accuracy as a function of the product K x H. When
viewed this way, we can observe that the trade-off curves for different numbers of workers
and frequencies line up for both training and validation. This suggests that the main
factor influencing final model quality is the total number of local model updates between
synchronizations. Consequently, in order to maintain model accuracy, an increase in the
number of local steps should be matched with a proportional decrease in the number of
workers and wvice versa.

The post-local switching point poses another trade-off. Post-local SGD divides
training into two phases. In the first phase, workers perform synchronous minibatch SGD;
in the second, they switch to local SGD. However the iteration at which to switch is another
hyperparameter that affects both the amount of communication; here, we study whether
it also affects final accuracy. Up to this point, all the reported experiments switched to
local SGD at epoch 30 out of 90. This is when the first learning rate decay happens
with a step-wise learning rate schedule with decays at epochs 30, 60 and 80. This is the
recommended switching point from the analysis of Lin et al. (2018). However, switching
earlier can reduce the amount of communication and conversely, we might be able to recover
some of the lost model accuracy by switching at a later point. To study this phenomena, we
selected switching points at epochs where the learning rate decreases (30, 60 and 80) and
intermediate epochs (15, 45, 75, and 85). Figure 6 depicts these results for both ResNet-50
and ResNet-101 for various numbers of local steps. Both networks present similar patterns
for the chosen values of switching points. Notably, the learning rate decay points seem to
have a significant effect into the final performance for this task. Threrefore, we find that
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Figure 6: Validation accuracy for post-local Figure 7: Validation accuracy for post-local
SGD as a function of the epoch when the SGD as a function of the epoch when the
switch to local SGD is done. Results are for switch to local SGD is done. A 90 epoch half
K = 64 workers and various H. cosine LR schedule is used for training.

the switching point presents a trade-off between training time and final accuracy, with later
switching points improving accuracy at the cost of additional communication.

Post-local SGD behavior depends on the task scale. Lin et al. (2018) advertise
post-local SGD as a way to remedy the generalization gap present in large batch training
(Chen and Huo, 2016; Shallue et al., 2018). However, our observations do not align with
the generalization improvements identified by Lin et al. (2018) for ResNet-20 on CIFAR-10
for increasing values of K and H even when exploring different switching points. We have
thus identified an example where distributed optimization behaves differently for tasks of
different scales. We highlight the fact that the lost accuracy seems to be a direct result of
the optimization mechanics of local and post-local SGD since the minibatch baseline does
not experience this trade-off as the number of workers increases. In summary, our empirical
findings suggest that, in its current form, post-local SGD might not be able to close the
generalization gap of large batch training for tasks similar to the one explored in this work.

Post-local SGD depends on learning rate schedule. One unexplored aspect of
post-local SGD is how the switching time heuristic interacts with the choice of learning
rate schedule. Here, we investigate how the choice of learning rate schedule affects the
generalization results of post-local SGD. Recently, learning rate schedules other than step-
wise, such as cosine annealing, have gained popularity due to the competitive results they
provide without having to carefully specify the learning rate decay points (He et al., 2019;
Radosavovic et al., 2019) As an alternative to the step-wise schedule, we consider a half-
period cosine schedule which sets the learning rate to n; = no(1 + cos(m - t/(Tmax))/2, where
7o is the initial learning rate, ¢ is the current epoch, and T}, .« is the total number of epochs.
Figure 7 presents a trade-off analysis of the how the switching point affects the final training
accuracy of the model but now with a half cosine learning rate schedule. Unlike before, we
see a more monotonic trade-off between when the switch to local SGD is performed and the
final validation accuracy.

Local SGD as a regularizer. Up to this point, our analysis has focused on the
accuracy achieved by post-local SGD. However, the best validation accuracy of the model
might not be representative of how local SGD and post-local SGD affect the optimization of
the model over the course of training. Here, we study how the loss and the errors evolve over
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Figure 8: Training Loss (1% column), Training Error (2°¢ column) and Validation Error
(3* column) for post-local SGD experiments with different switching points 7" and number
of local steps H = 4. Top row corresponds to results with step wise learning rate schedule
with decays at 30, 60 and 80 epochs and bottom row corresponds to a half cosine schedule.

time for different switching points revealing that switching to local-SGD has a regularization
effect regardless of when it is performed.

Figure 8 displays the training loss, top-1 training error and top-1 validation error for
experiments with 64 workers and 4 local steps between model averages. We observe a
regularization effect when the switch to local SGD is performed for the post-local SGD
method: the training error is higher than the minibatch baseline while the validation error
is lower than the baseline. We observe that see that these patterns hold regardless of when
we perform the switch. More interestingly, after the switching point, the curves of the local
SGD and post-local SGD models closely follow the same trajectory both for training and
validation metrics. We hypothesize that the change is related to the scale of the learning
rate, which is higher for the half cosine schedule than the step-wise schedule for most
switching points.

3. Conclusion

In this work, we present a thorough analysis of local and post-local SGD at scale by evaluat-
ing them on the ImageNet-1k classification task. We identify several scalability limitations
that local and post-local SGD experience and analyze the trade-offs they present in terms
of final model accuracy. We find that the number of workers and the number of local
steps for local SGD present accuracy trade-offs, and we unify these hyperparameters into
a trade-off expressed in terms of number of local model updates between synchronizations.
We characterize the behavior of post-local SGD for different switching points along the
training process, revealing a similar trade-off between communication and model accuracy.
Furthermore, we identify that the choice of learning rate schedule has a large impact for
the resulting accuracy of post-local SGD. We find that switching to local SGD has a regu-
larization effect on optimization that is beneficial in the short term but detrimental to final
model accuracy.
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Appendix A. Additional Figures
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Figure 9: Change in Top-1 Validation Accuracy with respect to the Minibatch SGD baseline.
After the first LR decay at epoch 30, the step-wise schedule outperforms the half cosine
schedule. Results are for K = 64.

Appendix B. Background

Minibatch SGD. Neural networks are typical trained with an algorithm called minibatch
SGD. In minibatch SGD, the dataset D = {(z;,y;)}ien is divided into non-overlapping
subsets {{(ZmBti, YmB+i) }ieB} e N of size B known as minibatches. Gradient descent is
performed sequentially on these minibatches, passing through the entire dataset over the
course of an epoch. The dataset is often randomly shuffled before each epoch, meaning
the minibatch composition and order are different on each pass through the dataset. See
Algorithm 1 below for full details. In practice, neural networks are often trained in a
distributed data-parallel fashion across K workers (Li et al., 2020). Each worker maintains
a separate copy of the weights w®) and updates its weights based on a disjoint subset of
the dataset that is reshuffled at the beginning of every epoch. After the backward pass,
models then average the gradients before updating model weights.

Local SGD. In Local SGD, every H iterations, the workers synchronize their weights to
the mean of the weights stored on each worker. When H > 1, SGD is said to occur locally.
When H =1, SGD is said to occur synchronously and local SGD is identical to minibatch
SGD as long as the update rule is as specified in Algorithm 1. When additional state is
kept, such as momentum buffers, then Local SGD with H = 1 differs from minibatch SGD.
See Algorithm 2 below for full details.

Post-Local SGD. Post-local SGD involves performing synchronous SGD for the first
T steps of training and local SGD thereafter. The hyperparameters may differ between the
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Algorithm 1: Minibatch SGD with learning rate schedule (), batch size B, initial weights
wo, and loss £.
1: S+ [&] (iterations per epoch)
2: for each epoch e do
3:  Shuffle dataset D = {z;,y; }ien
for each iteration m in 1 to S do
t < eS + i (the current step of training)
04+ mB

wy < w1 — V()5 Ef; VA f(Totis Wt)s Yoti)

Algorithm 2: Local SGD with learning rate schedule «(t), batch size B, initial weights
wo, loss ¢, and R workers.

1: S« [2%] (iterations per epoch)

2: for each epoch e do

3:  Shuffle dataset D = {z;,y; }ien

4 for each iteration m in 1 to S do

5 t < eS + i (the current step of training)

6 o<+ mBH

7w e w® — () T8, VI (@oriiwr), Yors)
8 if t mod H =0 then

9

w® — LS 0® (synchronize)

synchronous and local phases. For example, the local phase may use a different learning
rate or batch size.

Appendix C. Experimental Setup

Here we describe the experimental setup for the all the results presented in the paper.

Dataset. We evaluate our experiments on the computer vision task of image clas-
sification on ImageNet (Deng et al., 2009; Russakovsky et al., 2015). This is a 1000-way
classification task with ~1.28 million training images and evaluated by top-1 error on 50,000
held out validation images. For the training examples, we follow the same channel normal-
ization and data augmentation scheme as in He et al. (2016b) and use the default training
and validation splits from Russakovsky et al. (2015). Given the distributed nature of our
experiments, we make sure that all experiments have access to the same amount of data. At
the beginning of every epoch, the training samples are randomly shuffled and split among
the workers.

Models. We use the ResNet-50 and ResNet-101 architectures (He et al., 2016a). We
initialize the weights as in He et al. (2015) and incorporate the modifications described in
Goyal et al. (2017) for initializing the fully connected layer and the last Batch Normalization
layer of the residual blocks. We use L2 weight decay with A\ = 1074,

Training. Following recommendations from Goyal et al. (2017), we scale the learning
rate linearly with the global batch size according to n = K B.0.1/256, where K is the
number of workers and B, is the per-worker batch size, which is set to 32. In addition,

10
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we apply a learning rate warm-up strategy that starts from 0.1 and linearly increases the
learning rate every iteration during the first five epochs of training so that the target
learning rate 7 is reached at the end of the fifth epoch. All experiments are trained with
Nesterov momentum (Nesterov, 2013) with f = 0.9 We also apply momentum correction
as described in Goyal et al. (2017) to stabilize training whenever the learning rate value
is modified. Unless mentioned otherwise, we use a step wise learning rate schedule that
decays the learning rate by a factor of 10 at the end of the 30", 60" and 80" epochs as in
He et al. (2016a). As with the step wise schedule, we modify the cosine schedule to have a
linear warmup updated every iteration over the first five epochs of training. Learning rate
is updated at the end of every epoch except for the warm-up phase at the beginning of
training when it’s modified at every iteration.

Local SGD. For Local SGD and Post-Local SGD methods, we average the model
weights of all the workers before computing the validation performance at the end of every
epoch. We consistently found that averaging the models before computing validation was
beneficial to generalization performance. This model average is performed outside of the
training process. For Post-Local SGD, before the switch to Local SGD is performed, we
average the gradients and not the model weights as in Lin et al. (2018). During the Post-
Local SGD regime the per-worker momentum buffers are kept local and not synchronized,
this is a common approach (Lian et al., 2017; Assran et al., 2019; Wang et al., 2020).

Platform Details. The methods are implemented using PyTorch 1.6 (Paszke et al.,
2019) and we use the ResNet implementations from torchvision 0.7 with CUDA 10.1 and
the NCCL communication library. Our experiments run on nodes with 8 32GB NVIDIA
V100 GPUs each and are connected using 10 GB/s Ethernet links.  We define a worker as
a process in a node that makes use of a GPU exclusively. Thus, for the rest of the paper
the number of workers is equivalent to the number of GPUs and, in our setup, equivalent
to eight times the number of nodes.
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