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Abstract
This paper proposes a new variant of Frank-Wolfe (FW), called kFW. Standard FW suffers from
slow convergence: iterates often zig-zag as update directions oscillate around extreme points of the
constraint set. The new variant, kFW, overcomes this problem by using two stronger subproblem
oracles in each iteration. The first is a k linear optimization oracle (kLOO) that computes the k best
update directions (rather than just one). The second is a k direction search (kDS) that minimizes the
objective over a constraint set represented by the k best update directions and the previous iterate.
When the problem solution admits a sparse representation, both oracles are easy to compute, and
kFW converges quickly for smooth convex objectives and several interesting constraint sets: kFW

achieves finite
4L3

fD
4

γδ2 convergence on polytopes and group norm balls, and linear convergence on
spectrahedra and nuclear norm balls. Numerical experiments validate the effectiveness of kFW and
demonstrate an order-of-magnitude speedup over existing approaches.

1. Introduction

We consider the following optimization problem with decision variable x:

minimize f(x) : = g(Ax) + 〈c, x〉
subject to x ∈ Ω.

(1)

The constraint set Ω ⊂ E is a convex and compact subset of a finite dimensional Euclidean space E
and has diameter D1. The mapA : E→ F is linear, where F is another finite dimensional Euclidean
space. We equip both spaces E and F with real inner products denoted as 〈·, ·〉. The vector c is in E.
The function g : F→ R is convex and Lg-smooth2. The smoothness of g implies f is Lf -smooth
for some Lf > 0. For ease of exposition, we assume Problem (1) admits a unique solution.3

Applications. The optimization problem (1) appears in a wide variety of applications, such as
sparse vector recovery [5], group-sparse vector recovery [36], combinatorial problems [27], submod-
ular optimization [2, 37], and low rank matrix recovery problems [26, 34].

1. The diameter of Ω is defined as supx,y∈Ω ‖x− y‖, where ‖ · ‖ is the norm inducded by the inner product.
2. That is, the gradient of g is Lg-Lipschitz continuous with respect to the norm ‖ · ‖.
3. The main result Theorem 2 remains valid for multiple optimal solution setting after minor adjustments, see Section D.

Note that from [10, Corollary 3.5], the solution is indeed unique for almost all c.
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Frank-Wolfe and two subproblems. In many modern high-dimensional applications, Euclidean
projection onto the set Ω is challenging. Hence the well-known projected gradient (PG) method
and its acceleration version (APG) are not well suited for (1). Instead, researchers have turned to
projection-free methods, such as the Frank-Wolfe algorithm (FW) [15] shown in Algorithm 1, also
known as the conditional gradient method [31, Section 6]. The linear optimization oracle can be
computed efficiently for many interesting constraint sets Ω even when projection is prohibitively
expensive. These sets include the probability simplex, the `1 norm ball, and many more polytopes
arising from combinatorial optimization, the spectrahedron SPn = {X ∈ Sn+ | tr(X) = 1}, and
the unit nuclear norm ball B‖·‖nuc = {X | ‖X‖nuc ≤ 1}. We refer the reader to [25, 29] for further
examples. Line search is easy to implement using a closed formula for quadratic f , or bisection.

Algorithm 1 Frank-Wolfe with line search
Input: initialization x0 ∈ E
for t = 1, 2, . . . , do

Linear optimization oracle (LOO): Compute vt ∈ arg minv∈E〈v,∇f(x)〉.
Line search: solve η̂ = arg minη∈[0,1] f(ηxt + (1− η)vt) and set xt+1 = η̂xt + (1− η̂)vt.

end for

Slow convergence of FW and the Zigzag. However, FW is known to be slow in both theory and
practice, reaching an accuracy of O(1

t ) after t iterations. This slow convergence is often described
pictorially by the Zigzag phenomenon depicted in Figure 1(a)subfigure. The Zigzag phenomenon
occurs when the optimal solution x? of (1) lies on the boundary of Ω and is a convex combination
of r? many extreme points v?1, . . . , v

?
r? ∈ Ω: x? =

∑r?
i=1 λ

?
i v
?
i , λ?i > 0, and

∑k
i=1 λ

?
i = 1 (In

Figure 1(a)subfigure, r? = 2). When Ω is a polytope, the LOO will alternate between the extreme
points v?i s and the line search updates the estimate of λ?i slowly as the iterate approaches to x?. A
similar Zigzag occurs for other sets such as the spectrahedron and nuclear norm ball. A long line
of work has explored methods to reduce the complexity of FW using LOO and line search alone
[16, 18, 19, 22, 28, 29].

 

(a) Zig-Zag phenomenon of FW

 

(b) Optimization over conv(xt, v
?
1 , v

?
2)

Figure 1: The Zigzag phenomenon and optimization over conv(xt, v
?
1, v

?
2). Here, the solution x? is

a convex combination of v?1 and v?2 , and r? = 2. The grey arrows are the negative gradients
−∇f .

Our key insight: overcoming zigzags with kFW. Our first observation is that the sparsity r? is
expected to be small for most large scale applications mentioned. For example, the sparsity is the
number of nonzeros in sparse vector recovery, the number of nonzero groups in group-sparse vector
recovery, and the rank in low rank matrix recovery. Next, note that from the optimality condition
(also see Figure 1(b)subfigure), the gradient ∇f(x?) in this case has the smallest inner product
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with v?1, . . . , v
?
r? among all v ∈ Ω. Also, for small r?, we can solve minx∈conv(xt,v?1 ,...,v

?
r? ) f(x)

efficiently 4 to obtain the solution x?. Hence, our key insight to overcome the Zigzag is simply

Compute all extreme points v?i that minimize 〈∇f(x?), v〉
and solve the smaller problem minx∈conv(xt,v?1 ,...,v

?
r?

) f(x).

This insight leads us to define a new algorithmic ways to choose extreme points and define a
smaller convex search set, which we call kLOO and kDS. For polytope Ω, they are defined as

• k linear optimization oracle (kLOO): for any y ∈ Rn, compute the k extreme points v1, . . . , vk
(k best directions) with the smallest k inner products 〈v, y〉 among all extreme points v of Ω.

• k direction search (kDS): givenw, v1, . . . , vk ∈ Ω, output xkDS = arg minx∈conv(w,v1,...,vk) f(x).
In connection with FW, kLOO and kDS can be considered stronger subproblem oracles compared to
LOO and line search respectively. Combining the two subproblem oracles, we arrive at a new variant
of the Frank-Wolfe algorithm: kFW, presented in Algorithm 2. In Section 2, we show that the two
subproblems can actually be efficiently solved over many polytopes (for small k). Moreover, we
redefine kLOO and kDS to incorporate the situation where k best extreme points are not well-defined
for sets such as group norm ball, spectrahedron, and nuclear norm ball, yet sparsity structure still
persists. Finally, we note that with our terminology, 1FW is the same as FW. Hence our main results,
Theorem 2, give new insight into the fast convergence of FW when r? = 1.

Algorithm 2 kFW
Input: initialization x0 ∈ Ω, and an integer k > 0
for t = 1, 2, . . . , do

Compute kLOO with input∇f(xt)
Compute kDS with input consisting of xt and the output of kLOO, and output xt+1 = xkDS

end for

Computational efficiency of kFW. Here we summarize the computational efficiency of kFW in
terms of its per iteration cost, iteration complexity, and storage:

• Per iteration cost: For many important cases displayed in Section 2, kFW admits efficient
subproblem oracles.

• Iteration complexity: kFW achieves the sameO(1/t) convergence rate of FW. Under additional
regularity conditions, it achieves nonexponential finite convergence over the polytope and
group norm ball and linear convergence over the spectrahedron and nuclear norm ball, as
shown in Theorem 2. These results are beyond the reach of many FW variants [16, 19, 22, 29].

• Storage: The storage required by kFW is O(kn), needed to store the k best directions
computed in each step, while the pairwise step, away step, and fully corrective step based FW
[29] require O(min(tn, n2)) storage to accumulate vectors of dimension n.

A comparison of kFW with FW, away-step FW [22], and Fully corrective FW (FCFW) [25, Algorithm
4] is shown in Table 2 in Section A.1 in the appendix.

Paper Organization. In Section 2, we explain how to solve the two subproblems over a polytope
Ω, and how to extend the idea to group norm ball, spectrahedron, and nuclear norm ball. In Section
3, we describe a few analytical conditions, and then present the faster convergence guarantees of
kFW under these conditions for the polytope, unit group norm ball, spechedron, and unit nuclear
norm ball. We demonstrate the effectiveness of kFW numerically in Section 4.

4. Here conv(v?1 , . . . , v
?
r?) is the convex hull of v1, . . . , vr? .

3



k-FW

2. Stronger subproblem oracles for polytopes and beyond
2.1. Stronger subproblem oracles for polytopes
Solving kLOO. Computing a LOO can be NP-hard for some constraint sets Ω: for example, the
0 - 1 knapsack problem can be formulated as linear optimization over an appropriate polytope. Hence
we should not expect that we can compute a kLOO efficiently without further assumptions on the
polytope Ω ⊂ Rn. Since many polytopes come from problems in combintorics, for these polytopes,
computing a kLOO is equivalent to computing the k best solutions to a problem in the combinatorics
literature, and polynomial time algorithms are available for many polytopes [14, 23, 30, 33]. We
present the time complexity of computing kLOO for many interesting problems in Table 3 in the
appendix. Moreover, we note that examples of efficient kLOO, time complexity no more than k
times of LOO, are abundant: the probability simplex, the `1 norm ball, the spanning tree polytope
[12], the Birkhoff polytope, [33], and the flow polytope of a directed acyclic graph [13] all admit
efficient kLOO. More details of each example and its application are in Section A.4 in the appendix.

k direction search. The k direction search problem optimizes the objective f(x) over x ∈
conv(w, v1, . . . , vk) = {

∑k
i=1 λivi + ηw | (η, λ) ∈ ∆k+1}. We parametrize this set by (η, λ) ∈

∆k+1 and employ the accelerated projected gradient method (APG) to solve

min
(η,λ)∈∆k+1

f

(
k∑
i=1

λivi + ηw

)
. (2)

The constraint set here is a k + 1 dimensional probability simplex; projection onto this set requires
time O(k log k) [6]. Hence for small k, we can solve (2) efficiently. We recover the output xk−DS =∑k

i=1 λ
?
i vi + η?w of kDS from the optimal solution (η?, λ?) of (2).

2.2. Stronger subproblem oracle for nonpolytope Ω

Due to space limit, we explain kLOO and kDS for (i) group norm ball, (ii) nuclear norm ball, and
(iii) spectrahedron in Section A.2 and A.3 respectively in the appendix. A summary of kLOO and
kDS for these sets appears in Table 4 and 5 in the appendix respectively. The kFW algorithm for unit
group norm ball, spectrahedron, and unit nuclear norm ball is presented as Algorithm 2 as well.

3. Theoretical guarantees
In this section, we first present a few definitions and conditions required to state our results: sparsity
measure, strict complementarity, and quadratic growth. Due to space limit, we only presents
conditions concerning polytope. Strict complementarity is necessary for robustness of the sparsity
(Example B.1) and actually implies quadratic growth (Theorem 4). More details are in the appendix.
Definition 1 The sparsity measure, strict complementarity, and quadratic growth are defined as:

• Sparsity measure r?: the number of extreme points of the smallest face F(x?) containing x?.
• Strict complementarity (SC) and its measure δ: Problem (1) admits SC if it has a unique

solution x? ∈ ∂Ω and−∇f(x?) ∈ relint(NΩ(x?))
5 The complementarity measure δ is the gap

between the inner products of x? and the elements of the complementary setFc(x?), the convex
hull of all vertices not in F(x?): δ = min{〈u,∇f(x?)〉 − 〈x?,∇f(x?)〉 | u ∈ Fc(x?) ⊂ Ω}.

• Quadratic growth (QG): Problem (1) admits QG with parameter γ > 0 if it has a unique
solution x? and for all x ∈ Ω, f(x)− f(x?) ≥ γ‖x− x?‖2.

5. Here ∂Ω is the topological boundary of Ω under standard topology of E. The set NΩ(x?) is the normal cone of Ω at
x?, i.e. NΩ(x?) = {y | 〈y, x〉 ≤ 〈y, x?〉, ∀x ∈ Ω}, and relint(·) is the relative interior.
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Our following theorem states that kFW never requires more iterations than FW and terminates
in finite time for polytope and group norm ball, while converges linearly for nuclear norm ball
and spectrahedron because any neighborhood of X? contains infinitely many matrices with rank r?.
Proofs are deferred to Section B.4.

Theorem 2 Suppose f is Lf -smooth and convex and Ω is convex compact with diameter D. Then

for any k ≥ 1 and for all t ≥ 1, the iterate xt in kFW (Algorithm 2) satisfies f(xt)−f(x?) ≤
2LfD

2

t .
Moreover, suppose Problem (1) satisfies strict complementarity and quadratic growth, and k ≥ r?. If
the constraint set Ω is a polytope or a unit group norm ball, then the gap δ > 0 and kFW finds x? in
at most T + 1 iterations, where T is

T =
4L3

fD
4

γδ2 . (3)

If the constraint set is the spechedron or the unit nuclear norm ball, the gap δ > 0 and kFW satisfies

that for any t ≥ T1 : =
72L3

f

γδ2 , f(Xt+1)− f(X?) ≤
(

1−min
{

γ
4Lf

, δ
12Lf

})
(f(Xt)− f(X?)) .

4. Numerics

We compare our method kFW with FW, away-step FW (awayFW) [22], pairwise FW (pairFW)[29],
DICG [19], and blockFW [1] for the Lasso, support vector machine (SVM), group Lasso, and matrix
completion problems on synthetic data. Details about experimental settings appear in the Appendix
E. All algorithms terminate when the relative change of the objective is less than 10−6 or after 1000
iterations. As shown in Figure 2, kFW converges in many fewer iterations than other methods. Table
1 shows that kFW also converges faster in wall-clock time, with one exception (blockFW in matrix
completion). Note that blockFW is sensitive to the step size while kFW has no step size to tune.

Figure 2: kFW vs. FW and its variants (more numerics can be found in Appendix E).

Table 1: Computation time (seconds): the algorithms terminate when the relative change of the
objective < 10−6 or after 1000 iterations. Sign “ -” means the algorithm is not suited to the
problem.

FW awayFW pairFW DICG blockFW kFW
Lasso >14 7 6 10 - 0.5
SVM 6 4.5 2.9 2.5 - 0.6
Group Lasso 17 6 1.8 - - 0.3
Matrix completion >180 - - - 1.8 4.8
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5. Conclusion and discussion

This paper presented a new variant of FW, kFW, that takes advantage of sparse structure in problem
solutions to offer much faster convergence than other variants of FW, both in theory and in practice.
kFW avoids the Zigzag phenomenon by optimizing over a convex combination of the previous iterate
and k extreme points of the constraint set, rather than one, at each iteration. The method relies on
the ability to efficiently compute these k extreme points (kLOO) and to compute the update (kDS),
which we demonstrate for a variety of interesting problems. We expect the core ideas that undergird
kFW can be generalized to a wide variety of atomic sets in addition to those considered in this paper.
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Appendix A. Table and Procedures for Section 2

A.1. Comparison of iteration complexity with FW variants for polytope Ω

Here we present a table for comparing kFW with FW, away-step FW [22], and Fully corrective FW
(FCFW) [25, Algorithm 4].

Table 2: Comparison of kFW, FW, FW with away step, and FCFW for Problem (1), smooth convex
optimization over a constraint set Ω in a n-dimensional Euclidean space. We display the
per iteration computation (per iter. comp.), storage, faster rate (compared to O(1

t ) rate)
under the condition on Ω, extra conditions on Problem (1) to achieve the faster rate (Ex.
Cond.), and the reference providing the proof of the rate. Even without the extra conditions
listed in the table, all algorithms admit a O(1

t ) convergence rate (see [25] and Theorem 2).
Here t ∧ n = min(t, n). Definitions of the sparsity measure r?, strict complementarity (str.
comp. ), and quadratic growth (q.g.) can be found in Section 3.

Algorithm Per iter. comp. Storage Rate and Ω Shape Ex. Cond. Reference

FW LOO, 1DS O(n)

finite polytope, group str. comp.,
Theorem 2

norm ball q.g., and
linear spectrahedron r? = 1

Theorem 2
B‖·‖nuc

Away-step LOO, 1DS,
O(n(t ∧ n)) linear polytope q.g. [29]FW and t ∧ n inner

products

FCFW
LOO, and O(n(t ∧ n)) linear polytope q.g [29]
(t ∧ n)DS

kFW O(kn)

finite polytope, group str. comp.,
Theorem 2

kLOO, and norm ball q.g., and
kDS linear spectrahedron k ≥ r? Theorem 2

B‖·‖nuc

A.2. kLOO and kDS for Nuclear norm ball

We now define kLOO and kDS for the unit nuclear norm ball B‖·‖nuc = {X ∈ Rn1×n2 | ‖X‖nuc ≤
1}, where ‖X‖nuc =

∑min(n1,n2)
i=1 σi(X), the sum of singular values.

kLOO. Given an input matrix Y ∈ Rn1×n2 , define the k best directions of the linearized objective
minV ∈Ω(α)〈V, Y 〉 to be the pairs (u1, v1), . . . , (uk, vk), the top k left and right orthonormal singular
vectors of Y . Collect the output as U = [u1, . . . , uk] ∈ Rn1×k and V = [v1, . . . , vk] ∈ Rn2×k.

kDS. Take as inputs W ∈ B‖·‖nuc and (U, V ) ∈ Rn1×k × Rn2×k with orthonormal columns.
Inspired by [24], we consider the spectral convex combinations of W and uiv>i instead of just convex
combination:

X = ηW + USV > where η ≥ 0, η + ‖S‖nuc ≤ 1.
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Next, we minimize the objective f(X) parametrized by (η, S) ∈ R1+k2
to obtain XkDS:

minimize f(ηW + USV >) subject to η + ‖S‖nuc ≤ 1, η ≥ 0.

Again, we use APG to solve this problem. Projection requires singular value decomposition of a k2

matrix, which is tolerable for small k. (See Section A.8 for details.)

A.3. kLOO and kDS for Spectrahedron

Recall a matrix A ∈ Sn is positive semidefinite if all its eigenvalues are nonnegative. We denote a
positive semidefinite matrix as A � 0 or A ∈ Sn+. We write the eigenvalues of a symmetric matrix
A ∈ Sn as λ1(A) ≥ · · · ≥ λn(A).

We now define kLOO and kDS for the spectrahedron SPn = {X ∈ Sn | X � 0, tr(X) = 1}.

kLOO. Given a input matrix Y ∈ Sn, define the k best directions of the linearized objective
minV ∈SPn〈V, Y 〉 as the bottom k eigenvectors of Y , the eigenvectors corresponding to the k smallest
eigenvalues. Call these vectors v1, . . . , vn and collect the output as V = [v1, . . . , vk] ∈ Rn×k.

kDS. Take as inputs W ∈ SPn and V = [v1, . . . , vk] ∈ Rn×r with orthonormal columns. Instead
of convex combinations of W and viv>i , we consider a spectral variant inspired by [24]:

X = ηW + V SV > where η ≥ 0, S ∈ Sk+, η + tr(S) = 1.

We minimize the objective f(X) over this constraint set to obtain the solution XkDS to kDS:

minimize f(ηW + V SV >) subject to η ≥ 0, S ∈ Sk+, and η + tr(S) = 1.

Again, we use APG to solve this problem. Projection onto the constraint set requires eigenvalue
decomposition (EVD) of a k2 matrix, which is tolerable for small k. (See Section A.8 in the
appendix.)

A.4. kLOO of combinatorical optimization

In this section, we present Table 3 of the computational complexity of finding the k best solution for
combinatorical optimizations. In our setting, the k best solution corresponds to the k best directions
of kLOO. We then point out those kLOO that can be efficiently computed.

Efficient kLOO. Though kLOO can be computed in polynomial times, it is unfortunately that for
some polytopes, the time required to compute a kLOO grows superlinearly in k even if assuming
k ≤ n. Hence we restrict our attention to special structured polytopes for which the time complexity
of kLOO is no more than k times the complexity of LOO.

Our primary example is the probability simplex ∆n = conv({ei}ni=1) in Rn. Since the vertices
of ∆n are the coordinate vectors ei, i = 1, . . . , n, the inner product of vertex ei with a vector y ∈ Rn
is 〈y, ei〉 = yi. Hence in this case, kLOO with input y ∈ Rn simply outputs the coordinate vectors
corresponding to the smallest k values of y. Using a binary heap of k nodes, we can scan through the
entries of y and update the heap to keep the k smallest entries seen so far and their indices. Since each
heap update takes time O(log k), the time to compute kLOO is O(n log k). A more sophisticated
procedure called quickselect improves the time to O(n+ k) [32], [14, Section 2.1]. Let us now list
other examples admitting efficient kLOO:

10
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• The `1 norm ball {x ∈ Rn |
∑n

i=1 |xi| ≤ α} admits a kLOO with time complexity O(n+ k)
by simply considering finding the k largest elements among 2n elements.

• The spanning tree polytope of an undirected graph G(V,E) in R|E| admits a kLOO with time
complexity O(m log n+ k2), where m = |E| and n = |V | [12].

• The Birkhoff polytope, the convex hull of permutation matrices in Rn×n, admits a kLOO with
time complexity O(kn3) [33]

• The flow polytope of a directed acyclic graph G(V,E) in R|E| admits a kLOO with time
complexity O(m+ n log n+ kmin(n, k)1/2), where m = |E| and n = |V | [13].

Optimization over the probability simplex is useful for fitting support vector machines [7, Problem
(24)]. The `1 norm ball plays a key role in sparse signal recovery [5]. The flow polytope appears in
applications in video-image co-localization [27].

Table 3: The time complexity of kLOO for different combinatorical problems. The matroid M =
(E, I) consists of the ground set E with n elements and the set of bases I. The polytope
is the convex hull of all bases in [0, 1]n. The quantity α is the complexity of checking
independence of a set. Here r(M) is the rank of the matroid M . The s − t cut is for a
directed graph with n nodes, m edges, a source node s, and a sink node t. For each s− t
cut, a partition S, Sc of the vertex set with s ∈ S and t ∈ Sc, we define its cut point as a
vector in [−1, 1]m that has entry 1 for an edge from S to Sc, and an entry −1 for an edge
from Sc to S. The s− t cut polytope is the convex hull of all cut points in [−1, 1]m. The
path polytope consider all simple path from s to t for a directed acyclic graph with n nodes
and m edges. The polytope is then the convex hull of all simple path point in [0, 1]m. For
an undirected graph with n nodes and m edges, the spanning tree polytope is the convex
hull of all spanning tree in [0, 1]m.

Polytope name LOO complexity kLOO complexity
Probability simplex O(n) O(n+ k) [32]

Polytope of bases of a matroid M O(n log n, nα) O(n log n+ knr(M)α) [23]
The Birkhoff polytope O(n3) O(kn3) [33]

s− t Cut Polytope (Directed Graph) O(nm log n) KO(n4) [23]
s− t path Polytope(DAG) O(m+ n log n) O(m+ n log n+ kn) [13]

Spanning tree Polytope O(m+ n log n) O(m log n+ kmin(n, k)1/2) [12]

A.5. Tables for kLOO and kDS

This section presents Table 4 and 5 of kLOO and kDS.

11
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Table 4: kLOO examples: The input is a vector y for the polytope and unit group norm ball, and a
matrix Y for the spechedron and unit nuclear norm ball.

Name k best direction and output kLOO cost

Polytope k extreme points vis with k smallest See Table 3
〈v, y〉 among all extreme points v

Unit group k groups v1, . . . , vk ∈ G of O((
∑k

i=1 |vi|) + k log k)
norm ball the largest `2 norm of y
Spectral simplex bottom k eigenvector vis of Y , Computing

output V = [v1, . . . , vk] bottom k eigenvectors
Unit nuclear top k left, right singular vectors (ui, vi) of Y , Computing
norm Ball output U = [u1, . . . , uk], V = [v1, . . . , vk]. top k singular vectors

Table 5: k direction search examples. We present the parametrization of the vector x or matrix X in
the second column. The kDS optimization problem is to minimize f(x) or f(X) over the
parametrization. The input is a vector w or a matrix W in Ω and another of the form output
by kLOO.

Name Parametrization Parameter Parameter Main cost of
of x or X variable constraint (p.r.) proj to p.r.

Polytope ηw +
∑k

i=1 λivi (η, λ) ∈ Rk+1 (η, λ) ∈ ∆k+1 O(k log(k))

Unit Group ηw + λv1,...,vk (η, λv1,...,vk) ∈ R1+
∑k

i=1 |vi| η + ‖λv1,...,vk‖G ≤ 1 O(k log(k))+

norm ball O(
∑k

i=1 |vi|)
Spectrahedron ηW + V SV > (η, S) ∈ R× Sk η ≥ 0, S � 0 a full EVD

η + tr(S) = 1 of a k2 matrix
Unit nuclear ηW + USV > (η, S) ∈ R1+k2

η ≥ 0, η + ‖S‖nuc ≤ 1 a full SVD of
norm Ball a k2 matrix

A.6. Projection Step in APG for kDS of group norm ball

Here we described the projection procedure in kDS for group norm ball when the base norm is `2
norm. Suppose we want to solve the projection problem:

minimize ‖(η0, λ
v1,...,vk
0 )− (η, λv1,...,vk)‖2 subject to η + ‖λv1,...,vk‖G ≤ 1, η ≥ 0. (4)

We denote the optimal solution as η?, (λv1,...,vk
0 )?.

Since λv1,...,vk is only supported on {vi}ki=1, we can consider it as a vector in Rv1+···+vk and
‖λv1,...,vk‖G =

∑k
i=1 ‖λ

v1,...,vk
vi ‖2. The procedure for projection is as follows:

1. First compute the (η?, a?) that solves

minimize ‖(η, a)− (η0, [‖λv1,...,vk
0,vi

‖]ki=1)‖2, subject to (η, a) ∈ Rk+1
+ , η +

k∑
i=1

ai ≤ 1.

12
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Here Rk+1 is the nonnegative orthant.

2. Next, for each vi, we compute (λv1,...,vk)?vi by solving

(λv1,...,vk)?vi = arg min
‖λv1,...,vk

vi
‖≤a?i

‖λv1,...,vk
0,vi

− λv1,...,vk
vi ‖2.

The first step requires a projection to the convex hull of simplex and 0 and can be done in time
O(k log k). The second step requires projection to `2 norm ball which is a simple scaling. The
correctness can be verified by decomposing each λv1,...,vk

vi = αiwi where αi ≥ 0 and wi has `2 norm
1. For general `p norm, one has to find a root of a monotone function can be solved by bisection [35].

A.7. Discussion on the norm of group norm ball

For Theorems 2, the results holds for any arbitrary norm. The positive gap in Lemma 3 also holds for
an arbitrary norm. However, the authors have not been able to verify whether strict complementarity
implies quadratic growth for norms other than the `2 norm.

A.8. Projection Step in APG for kDS of spechedron, and nuclear norm ball

We consider how to compute the projection step of kDS for the spectrahedron and nuclear norm ball.

Spectrahedron We want to find (η?, S?) that solves

minimize ‖(η, S)− (η0, S0)‖2, subject to S ∈ Sk+, η ≥ 0, tr(S) + η = 1.

The procedures are as follows:

1. Compute the eigenvalue decomposition of S0 = V Λ0V
>, where Λ0 ∈ Sk+ is a diagonal matrix

with diagonal λ0 = (λ1, . . . , λk).

2. Compute (η?,λ?) = arg min(η,λ)∈∆k+1 ‖(η0,λ0)− (η,λ)‖2.

3. Form S? = V diag(λ?)V >. Here diag(λ) forms a diagonal matrix with the vector λ on the
diagonal.

The main computational step is the eigenvalue decomposition which requires O(k3) time. The
correctness of the procedure can be verified as in [1, Lemma 3.1] and [17, Lemma 6].

Unit nuclear ball We want to find (η?, S?) that solves

minimize ‖(η, S)− (η0, S0)‖2, subject to η + ‖S‖nuc ≤ 1, η ≥ 0.

The procedures are as follows:

1. Compute the singular value decomposition of S0 = UΛ0V
>, where Λ0 ∈ Sk+ is a diagonal

matrix with diagonal λ0 = (λ1, . . . , λk).

2. Compute (η?,λ?) = arg min(η,λ)∈∆k+1 ‖(η0,λ0)− (η,λ)‖2.

3. Form S? = Udiag(λ?)V >. Here diag(λ) forms a diagonal matrix with the vector λ on the
diagonal.

The main computational step is the singular value decomposition which requires O(k3) time. The
correctness of the procedure can be verified as in [1, Lemma 3.1] and [17, Lemma 6].

13
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Appendix B. Examples, lemmas, tables, and Proofs for Section 3

B.1. Further discussion on strict complementarity

1. Traditionally, the boundary location condition x ∈ ∂Ω is not included in the definition of strict
complementarity. We include this condition for two reasons: first, the extra location condition
excludes the trivial case that the dual solution of (1) is 0, and x? in the interior of Ω, in which
case FW can be proved to converges linearly [18]; second, as we shall see in Example B.1,
such assumption ensures the robustness of the sparsity of x?.

2. Strict complementarity (without the boundary location condition) holds generically: more
precisely, it holds for almost all c in our optimization problem (1), minx∈Ω g(Ax) + 〈c, x〉,
[10, Corollary 3.5].

Example B.1 Consider the problem

min
x∈α∆n

1

2
‖x− e1 −

1

n
1‖2.

Here 1 is the all one vector and α > 0. If we set α = 1, then x? = e1 and the gradient∇f(x?) = 1
n1.

Hence we see that strict complementarity does not hold, using Lemma 3. In this case, even though
x? = e1 is sparse for α = 1, the solution is no longer sparse when α is slightly larger than 1. Hence,
we see a perturbation to the constraint can cause instability of the rank when strict complementarity
fails.

B.2. Lemmas and tables for strict complementarity

In this section, we show that the gap quantity defined in Definition ?? is indeed positive when strict
complementarity holds. We then present a table of summarizing the notations F(x?), Fc(x?), and
the gap δ.

Here, for group norm ball, we consider the general norm denoted as ‖ · ‖ which is not necessarily
the Euclidean `2 norm. The dual norm of ‖ · ‖ is defined as ‖x‖∗ = max‖y‖≤1〈y, x〉. We note here
the group norm ball is assumed to have radius one.

Lemma 3 When Ω is a polytope, group norm ball, spechedron, and nuclear norm ball, if strict
complementarity holds for Problem (1), then the gap δ is positive. Moreover, we can characterize the
gradient at the solution and the size of the gap in each case:

• Polytope: order the vertices v ∈ Ω according to the inner products 〈∇f(x?), v〉 in ascending
order as v1, . . . , vr? , . . . , vl where l is the total number of vertices. Then 〈∇f(x?), vi〉, i =
1, . . . , r? are all equal and the gap δ is δ = 〈∇f(x?), vr?+1〉 − 〈∇f(x?), vr?〉.

• Group norm ball for arbitrary base norm: order vectors [∇f(x?)]g, g ∈ G according to their
dual norm in descending order as [∇f(x?)]g1 ,. . . ,[∇f(x?)]g|G| . Then ‖[∇f ]gi‖∗, i = 1, . . . , r?
are all equal, and the gap δ is δ = ‖[∇f(x?)]gr?‖∗ − ‖[∇f(x?)]gr?+1‖∗.

• Spectrahedron: The smallest r? eigenvalues of∇f(X?) are all equal and δ = λn−r?(∇f(X?))−
λn−r?+1(∇f(X?))

• Nuclear norm ball: The largest r? singular values of ∇f(X?) are all equal and δ =
σr?(∇f(X?))− σr?+1(∇f(X?)).

Proof Let us first consider the polytope case.

14
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Polytope. Since the constraint set is a polytope and x? ∈ ∂Ω, we know the smallest face F(x?)
containing x is proper and admits a face-defining inequality 〈a, x〉 ≤ b for some a ∈ Rn and b ∈ R.
That is, F(x?) = {x | 〈a, x〉 = b} ∩ Ω and for every x ∈ Ω, 〈a, x〉 ≤ b. In particular, this implies
that (1) for any vertex v that is not in F(x?), 〈a, v〉 < b, and (2) 〈a, x?〉 = b.

Let us now characterize the normal cone NΩ(x?). Let V be the set of vertices in Ω. Since Ω is
bounded, we know that every point in Ω is a convex combination of the vertices. Hence NΩ(x?) is
the set of solutions g to the following linear system:

〈g, v〉 ≤ 〈g, x?〉, for all v ∈ V. (5)

Since F(x?) is the smallest face containing x?, we know that x? ∈ relint(F(x?)), and so the
description of normal cone NΩ(x?) in (5) reduces to

〈g, v1〉 = 〈g, x?〉, for all v1 ∈ F(x?), (6)

〈g, v2〉 ≤ 〈g, x?〉, for all v2 being vertices of Fc(x?). (7)

Note that the vector a in the face-defining inequality satisfies (6) and satisfies (7) with strict inequality
as we just argued. Hence, the relative interior of NΩ(x?) consists of those vectors g that satisfy (6)
and satisfy (7) with a strict inequality. As −∇f(x?) ∈ relint(NΩ(x?)), we know by the previous
argument that −∇f(x?) satisfies (7) with strict inequality, which is exactly the condition δ > 0. We
arrive at the formula for δ by noting that 〈∇f(x?), v〉 = 〈∇f(x?), x?〉 for every v ∈ F(x?) due to
(6).

Group norm ball. Again, recall we here define the group norm ball using any general norm ‖ · ‖.
The normal cone at x? for unit group norm ball is defined as

NΩ(x?) = {y | 〈y, x〉 ≤ 〈y, x?〉, for all
∑
g∈G
‖xg‖ ≤ 1}.

Standard convex calculus reveals the following properties:

1. The normal cone is a linear multiple of the subdifferential for x? ∈ ∂Ω: NΩ(x?) = {y | y ∈
λ∂‖x?‖G , λ ≥ 0}.

2. The product rule applies to ∂‖x?‖G as G forms a partition: ∂‖x?‖G =
∏
g∈G ∂‖(x?)g‖.

3. Any vector in the subdifferential of a group g in the support of the solution has norm 1: for
every g ∈ F(x?) and every yg ∈ ∂‖(x?)g‖, ‖yg‖∗ = 1, and 〈yg, (x?)g〉 = ‖(x?)g‖.

4. The subdifferential for groups g not in the support is a unit dual norm ball: for every g ∈
Fc(x?), ∂‖(x?)g‖ = B‖·‖∗ : = {yg ∈ R|g| | ‖yg‖∗ ≤ 1}.

The above properties reveal that the normal cone is the set

NΩ(x?) =
{
y | y ∈ λ

 ∏
g∈F(x?)

∂‖(x?)g‖ ×
∏

g∈G−F(x?)

B‖·‖∗

 , λ ≥ 0
}
, (8)
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where for every g ∈ F(x?) and every yg ∈ ∂‖(x?)g‖, ‖yg‖∗ = 1. Hence, we know that the relative
interior of NΩ(x?) is simply

relint (NΩ(x?)) =
{
y | y ∈ λ

 ∏
g∈F(x?)

relint (∂‖(x?)g‖)×
∏

g∈G−F(x?)

relint
(
B‖·‖∗

) , λ > 0
}
,

(9)
where for every g ∈ F(x?), and every yg ∈ relint (∂‖(x?)g‖), ‖yg‖∗ = 1, and for every g ∈
G − F(x?), and every yg ∈ relint

(
B‖·‖∗

)
, ‖yg‖∗ < 1. Because of the strict inequality of λ in (9),

and strict inequality for ‖yg‖∗ < 1 for yg ∈ relint
(
B‖·‖∗

)
, we see that

‖[∇f(x?)]g1‖∗ = · · · = ‖[∇f(x?)]gr?‖∗, and ‖[∇f(x?)]gr?‖∗ − ‖[∇f(x?)]gr?+1‖∗ > 0 (10)

as −∇f(x?) ∈ relint (NΩ(x?)). Using the condition that for every g ∈ F(x?) and every yg ∈
∂‖(x?)g‖, ‖yg‖∗ = 1, and 〈yg, (x?)g〉 = ‖(x?)g‖, we know 〈−∇f(x?), x?〉 = ‖[∇f(x?)]gr?‖∗.
Furthermore, using generalized Cauchy-Schwarz, it can be proved that minx∈Fc(x?)〈∇f(x?), x〉 =
−‖[∇f(x?)]gr?+1‖∗. Hence, combining the two equalities with (10), we see that δ > 0 and arrive at
the stated formula for δ.

Spectrahedron. We first note that X? ∈ ∂Ω and tr(X) = 1 imply that 1 ≤ r? < n. To compute
the normal cone, we can apply the sum rule of subdifferentials to

χ({X ∈ Sn | tr(X) = 1}) + χ(X � 0),

where χ is the characteristic function, which takes value 0 for elements belonging to the set and +∞
otherwise) of {X ∈ Sn | tr(X) = 1} and Sn+ and reach

NΩ(X?) = {sI | s ∈ R}+ {−Z | Z � 0, range(Z) ⊂ nullspace(X?)}. (11)

We note that sum rule can be applied here because 1
nI belongs to the interior of both sets.

Next, using the sum rule of relative interior to (11) , we find that

relint(NΩ(X?)) = {sI | s ∈ R}+ {−Z | Z � 0, range(Z) = nullspace(X?)}. (12)

Or equivalently,

relint(NΩ(X?)) = {sI | s ∈ R}+ {−Z | Z � 0, nullspace(Z) = range(X?)}. (13)

Denote the eigenspace corresponding to the smallest r? values of ∇f(X?) as EVr?(∇f(X?)).
Using (13), it is immediate that −∇f(X?) ∈ relint(NΩ) means that

EVr?(∇f(X?)) = range(X?).

. Moreover, from (13) and −∇f(X?) ∈ relint(NΩ), we also have

λn−r?+1(∇f(X?))−λn−r?(∇f(X?)) > 0, and 〈∇f(X?), X?〉 = λn−i(∇f(X?)), i = 1, . . . , r?.
(14)

Combining (14) and the well-known fact that

min
X∈Ω, range(X)⊥EVr? (∇f(X?))=range(X?)

〈∇f(X?), X〉 = λn−r?+1(∇f(X?)),

we see that δ is indeed positive, and the formula for δ holds.
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Nuclear norm ball. We first note thatX? ∈ ∂Ω imply that 1 < r? < min(n1, n2), and ‖X?‖nuc =
1. Let the singular value decomposition of X? as X? = UΣV with U ∈ Rn1×r? and V ∈ Rn2×r? .
The normal cone of the unit nuclear norm ball is

NΩ(X?) = {Y | Y = λZ, Z = UV > +W, W>U = 0, WV = 0, ‖W‖op ≤ 1 andλ ≥ 0}. (15)

Hence, the relative interior is

NΩ(X?) = {Y | Y = λZ, Z = UV > +W, W>U = 0,WV = 0, ‖W‖op < 1 andλ > 0}. (16)

Since −∇f(X?) ∈ relint(NΩ(X?)), we know immediately that

σr?(∇f(X?))− σr?+1(∇f(X?)) > 0, (17)

(18)

the top r? left and right singular vectors of ∇f(X?) are just the columns of −U and V , and
〈∇f(X?), X?〉 = −σi(∇f(X?)) for i = 1, . . . , r?. Combining pieces and the standard fact that

min
range(X)⊥range(X?)=range(U), ‖X‖nuc≤1

〈∇f(X?), X〉 = −σr?+1(∇f(X?)),

we see the gap δ is indeed positive and the formula is correct.

A table of the notions Fc(x?),Fc(x?), and the formula of gap δ is shown as Table 6.

Table 6: For several constraint sets Ω, this table describes the support set F(x?), its complementary
set Fc, and the gap δ. Recall the gap δ = min{〈u,∇f(x?)〉 − 〈x?,∇f(x?)〉 | u ∈
Fc(x?) ⊂ Ω} and admits a specific formula as described in Lemma 3. We denote the
gradient at x? as∇?. For a polytope, we order the vertices v ∈ Ω according to their inner
products 〈∇f(x?), v〉 in ascending order as v1, . . . , vr? , . . . , vl, where l is the number of
vertices. For the group norm ball, we order vectors [∇f(x?)]g, g ∈ G according to their `2
norm in descending order as [∇f(x?)]g1 ,. . . ,[∇f(x?)]g|G| .

.
Constraint Ω F(x?) Fc δ formula

polytope smallest face convex hull of all 〈∇f(x?), vr?+1〉
containing x? the vertices not in F(x?) −〈∇f(x?), vr?〉

group norm ball {g ∈ G | (x?)g 6= 0} {x | xg = 0,∀g ∈ F(x?)} ‖[∇?]gr?‖2
−‖[∇?]gr?+1‖2

Spectrahedron range(X?) {X ∈ [range(X?)]
⊥} ∩ SPn λn−r?(∇?)

−λn−r?+1(∇?)
Nuclear norm ball range(X?) {X ∈ [range(X?)]

⊥} ∩B‖·‖nuc σr?(∇?)
−σr?+1(∇?)

B.3. Quadratic growth under strict complementarity

This section develops that quadratic growth does hold under strict complementarity and the condition
g in (1) is strongly convex.
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Theorem 4 Suppose Problem (1), minx∈Ω g(Ax) + 〈c, x〉, satisfies that g is strongly convex and
the constraint set Ω is one of the four sets (i) polytope, (ii) unit group norm ball, (iii) spechedron,
and (vi) unit nuclear norm ball. Further suppose that strict complementarity holds. Then quadratic
growth holds for Problem (1) as well.

We will use the machinery developed in [38] for the case of the group norm. We define a few notions
and notations for later convenience. We define the projection to Ω as PΩ(x) : = arg minv∈Ω ‖x−v‖2.
The difference of iterates for projected gradient with step size t is defined as Gt(x) : = 1

t (x−PΩ(x−
∇f(x))). Note that Gt(x) = 0 implies x = x?. Finally, for an arbitrary set S , we define the distance
of x ∈ Rn to it as dist(x,S) : = infv∈S ‖x− v‖2.
Proof The proof for the polytope appears in [4, Lemma 2.5]. The proof of the Spectrahedron appears
in [9, Theorem 6]. Here, we address the case of the group norm ball and Nuclear norm ball. Let us
first consider the case of the group norm ball with the `2 norm.

Unit group norm ball. Using [11, Corollary 3.6], we know that if the error bound condition holds
for some t, γ > 0 then the quadratic growth condition holds with some parameter γ′. The error bound
condition with parameter t, γ, ε > 0 means that for all x ∈ Ω and ‖x− x?‖2 ≤ ε, the following the
inequality holds: 6

‖x− x?‖2 ≤ γ‖Gt(x)‖2. (19)

Define ȳ = A(x?) and h̄ = ∇f(x?). Now using [38, Corollary 1 and Theorem 2], we need only
verify the following two conditions to establish (19):

1. Bounded linear regularity: The two sets Γf (ȳ) : = {x ∈ E | ȳ = A(x)} and ΓΩ(h̄) : = {x ∈
E | −h̄ ∈ NΩ(x)} satisfy that for every bounded set B, there exists a constant κ such that

dist(x,Γf (ȳ) ∩ ΓΩ(h̄)) ≤ κmax{dist(x,Γf (ȳ)), dist(x,ΓΩ(h̄))}, for all x ∈ Ω.

2. Metric subregularity: there exists κ, ε > 0 such that for all x with ‖x− x?‖2 ≤ ε,

dist(x,ΓΩ(h̄)) ≤ κdist(−h̄, NΩ(x)). (20)

Let us first verify bounded linear regularity. First, the subdifferential of the Euclidean norm ‖ · ‖2 is

∂‖x‖2 =

{
x
‖x‖2 x 6= 0,

B‖·‖2 x = 0.
.

From the characterization (9), we know that h̄ = ∇f(x?) is nonzero due to strict complementarity,
and hence any x ∈ Γ(h̄) must satisfy x ∈ ∂Ω. Following the derivation of the normal cone in (8),
we have for any x ∈ ∂Ω,

NΩ(x) =
{
y | y ∈ λ

 ∏
g∈F(x)

∂‖xg‖2 ×
∏

g∈G−F(x)

B‖·‖2

 , λ ≥ 0
}
. (21)

6. The error bound condition considered in [11, Corollary 3.6] actually require the bound (19) to hold for all x in the
intersection of Ω and a sublevel set of f . Note there is a difference between a sublevel set and a neighborhood of
x?. Because the continuity of f and the compactness of Ω, we know the two are actually equivalent (with a different
choice of γ). Moreover, the quadratic growth considered there is only required to hold for x in Ω and a sublevel set of
f . Again, this is not a problem as Ω is compact and f is continuous.
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Here the support set F(x) is the set of groups in the support of x. Let us pick a i? ∈ F(x?). For
each i ∈ G, define the vector h̃i = −h̄i

‖hi?‖2
∈ R|vi|. Recall from (10), we have ‖h̄i‖2 all equal for

i ∈ F(x?). For each i ∈ F(x?), define h̃i ∈ Rn so that it is only supported on group i with vector
value h̃i and is 0 elsewhere. Again, from (10) and Lemma 3, we have ‖h̄i‖2 all equal for i ∈ F(x?),
and is larger than those i not in F(x?). To remember the notation, we use h̃i, upper index i, to mean
vector in Rn. We use the notation h̃i, lower index i, to mean the shorter vector in R|vi|.

Combining the facts about h̃i, the formula (21), the formula of ‖ · ‖2, and x ∈ ∂Ω, we find that
actually

ΓΩ(h̄) = {x |
∑

i∈F(x?)

αih̃
i, αi ∈ ∆|F(x?)|},

which is a convex polyhedral. Because Γf (ȳ) and ΓΩ(h̄) are both convex polyhedral, we know from
[3, Corollary 3] that bounded linear regularity holds.

We verify metrical subregularity now. Note that from previous calculation of ΓΩ(h̄), we know

dist(x,ΓΩ(h̄))2 = min
αi∈∆|F(x?)|

∑
i∈F(x?)

‖xi − αih̃i‖22 +
∑

i 6∈F(x?)

‖xi‖22.

By choosing ε sufficiently small, say ε < ε0, we have F(x) ⊃ F(x?). The quantity, dist(h̄, NΩ(x)),
on the RHS of (20) for all x within an ε neighborhood of the solution x? satisfies that

dist2(h̄, NΩ(x)) =

{
+∞, x 6∈ Ω,

‖h̄‖22, x ∈ int(Ω),

where int(Ω) is the interior of Ω. For x ∈ ∂Ω, dist2(h̄, NΩ(x)) satisfies that

dist2(h̄, NΩ(x)) = ‖hi?‖22 min
λ≥0,vi∈B‖·‖2

∑
i∈F(x)

‖h̃i −
λxi
‖xi‖2

‖22 +
∑
i/∈F(x)

‖h̃i − λvi‖22.

The case of x 6∈ Ω is trivial. The case of x ∈ int(Ω) can be proved by choosing a large enough κ,
say κ > K0, as dist(x,ΓΩ(h̄))2 is upper bounded for any x ∈ Ω, and dist2(h̄, NΩ(x)) in this case
is fixed. We are left with the most challenging case x ∈ ∂Ω, where the normal cone is non-trivial.
First, we upper bound dist(x,ΓΩ(h̄))2 by choosing αi = ‖xi‖2. The numbers αi sum to one because
x ∈ ∂Ω. In this case, dist(x,ΓΩ(h̄))2 satisfies the bound

dist(x,ΓΩ(h̄))2 ≤
∑

i∈F(x?)

‖xi − ‖xi‖2h̃i‖2 +
∑

i 6∈F(x?)

‖xi‖22

(a)
=

∑
i∈F(x?)

‖xi‖2‖h̃i −
xi
‖xi‖2

‖22 +
∑

i∈(F(x)−F(x?))

‖xi‖22,
(22)

where step (a) is due to F(x) ⊃ F(x?) by our choice of small enough ε. We next lower bound
dist2(h̄, NΩ(x)) by ignoring the term not in F(x):

dist2(h̄, NΩ(x)) ≥ ‖gi?‖22 min
λ≥0

∑
i∈F(x)

‖h̃i −
λxi
‖xi‖2

‖22
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Now if F(x) = F(x?), then it is tempting to set λ = 1 above and compare the inequality with
(22) to claim victory. This does not work directly due to the minimization over λ and the fact
F(x) ⊃ F(x?).

Let λ? = arg minλ≥0

∑
i∈F(x) ‖h̃i −

λxi
‖xi‖2 ‖

2
2. In this case, we have an explicit formula of λ?:

λ? = max

{
0,

∑
i∈F(x)〈h̃i,

xi
‖xi‖2 〉

|F(x)|

}
.

If λ? = 0, then we can simply pick some κ > K0 as done in the case of x ∈ int(Ω). So we assume
λ? > 0 in the following. Next let λi = arg minλ≥0 ‖h̃i − λxi

‖xi‖2 ‖
2
2 for each i ∈ F(x?). With such

choice of λi and λ?, we can further lower bound dist2(h̄, NΩ(x)) by splitting the terms in F(x) and
those are not:

dist2(h̄, NΩ(x)) ≥ ‖gi?‖22


∑

i∈F(x?)

‖h̃i −
λixi
‖xi‖2

‖22︸ ︷︷ ︸
R1

+
∑

i∈F(x)\F(x?)

‖h̃i −
λ?xi
‖xi‖2

‖22︸ ︷︷ ︸
R2

 . (23)

We bound the two terms separately. Let us first deal with R1. From the expression of normal cone
(21) and −h̄ ∈ NΩ(x?) by our assumption, we know h̃i = (x?)i

‖(x?)i‖2 for every i ∈ F(x?). Hence by
choosing a (possibly smaller) ε, say ε < ε1, we can ensure that for any x within an ε1 neighborhood
of the solution x?, 〈 xi

‖xi‖2 , h̃i〉 ≥ 0 all for i ∈ F(x?). Moreover, for a small enough ε1, we know

each λi = 〈 xi
‖xi‖2 , h̃i〉 and is very close to 1. Thus the condition of Lemma 5 is fulfilled, and we have

R1 ≥
1

2

∑
i∈F(x?)

‖xi‖2‖h̃i −
xi
‖xi‖2

‖22. (24)

Next, to deal withR2, let us examine the expression of λ? =

∑
i∈F(x)〈h̃i,

xi
‖xi‖2

〉
|F(x)| . Recall 〈h̃i, xi

‖xi‖2 〉
is close to 1 for small enough ε. Due to strict complementarity, for each i ∈ F(x) \ F(x?), we know
‖h̃i‖2 < 1− δ0 for some δ0 > 0 that depends only on h̄. Combining these two facts together, we
know that i′ = arg mini∈F(x)〈h̃i, xi

‖xi‖2 〉 must belong to F(x) \ F(x?). Moreover, by choosing an

even smaller ε, say ε < ε2, we have λ? ≥ δ1 + mini〈h̃i, xi
‖xi‖2 〉 for some δ1 > 0 that only depends

on h̄, δ, and ε2. We can now lower bound R2 as follows:

R2 ≥ ‖h̃i′ − (δ1 + 〈h̃i,
xi
‖xi‖2

〉) xi′

‖xi′‖2
‖22

= ‖h̃i − 〈h̃i,
xi
‖xi‖2

〉 xi′

‖xi′‖2
‖22 + δ2

1 + 2δ 〈h̃i − 〈h̃i,
xi
‖xi‖2

〉 xi′

‖xi′‖2
,
xi′

‖xi′‖2
〉︸ ︷︷ ︸

=0

≥ δ2
1 .

(25)

20



APPENDICES TO “OF kFW: A FRANK-WOLFE STYLE ALGORITHMWITH STRONGER SUBPROBLEM ORACLE”

Combining the bounds (24) and (25) on R1 and R2, we found that

dist2(h̄, NΩ(x)) ≥ ‖gi
?‖22
2

∑
i∈F(x?)

‖h̃i −
xi
‖xi‖2

‖22 + ‖gi?‖22δ2
1

(a)

≥ ‖gi
?‖22
2

∑
i∈F(x?)

‖h̃i −
xi
‖xi‖2

‖22 + ‖gi?‖22δ2
1

∑
i∈F(x)\F(x?)

‖xi‖22

(26)

Here, for the step (a), we use ‖xi‖2 ≤ 1 as x ∈ ∂Ω. Hence, by taking ε = min(ε1, ε2) and
κ = max{K0, ‖gi?‖22δ1,

‖gi?‖22
2 }, and comparing (26) with (22), a bound on dist(x,ΓΩ(h̄))2, we see

that metric subregularity is satisfied and our proof for unit group norm ball is complete.
Finally, we consider the unit nuclear norm ball.

Unit nuclear norm ball. Let us first illustrate the main idea. We shall utilize the quadratic growth
result proved in [9, Theorem 6] for spectrahedron. To transfer our setting to spectrahedron, we use a
dilation argument with its relating lemmas [8, Lemma 3] and [26, lemma 1]. We now spell out all the
details.

Let ñ = n1 +n2. For any X̃ ∈ Sñ as λ1(X̃) ≥ · · · ≥ λñ(X̃). Also, for any X ∈ B‖·‖nuc , denote
is SVD as X = UXΣXV

>
X where UX ∈ Rn1×rX , VX ∈ Rn2×rX , and rX = rank(X). Define the

dilation X] ∈ Sñ of a X ∈ Rn1×n2 as

X] =
1

2

[
X1 X
X> X2

]
, (27)

where the X1 = UX(ΣX + ξXI)U>X , and X2 = VX(ΣX + ξXI)V >X . The number ξX ≥ 0 is

chosen so that X̃ has trace 1. Note that X] is positive semidefinite as X] = 1
2

[
UX
VX

]
ΣX [U>XV

>
X ] +

ξX
2

[
UXU

>
X 0

0 VXV
>
X

]
. Also define the linear map B ∈ Sñ → Rn1×n2 such that for any Ỹ =[

Y1 Y
Y > Y2

]
∈ Sñ with Y1 ∈ Sn1 , and Y2 ∈ Sn2 ,

B(Ỹ ) : = 2Y.

Consider the problem

minimize f̃(X̃) : = f(B(X̃)) = g(A(BX̃)) + 〈B∗c, X̃〉
subject to X̃ = 1 X̃ � 0.

(28)

We claim that it satisfies strict complementarity and its solution X̃? is unique and is simply X]
?.

Suppose the claim is proved for the moment, then using [9, Theorem 6], we know there is some
γ̃ > 0, such that for all X̃ ∈ SP ñ, we have

f̃(X̃)− f̃(X]
?) ≥ γ‖X̃ −X]

?‖F.

Hence, for any X ∈ Ω, by construction of f̃ , we have

f(X)− f(X?) = f̃(X])− f̃(X]
?) ≥ γ‖X] −X]

?‖2F ≥
γ

2
‖X −X?‖2F.
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This proves quadratic growth.
We now verify our claim that X]

? is the unique solution to (28) and X]
? ∈ ∂SP ñ with∇f̃(X]

?) ∈
∂NSPñ(X]

?). First, consider feasibility and whether X]
? ∈ ∂SP ñ. The condition X? ∈ ∂Ω implies

that 1 ≤ r? < min(n1, n2) and ‖X?‖nuc = 1. Hence we do have tr(X]) = 1 and X]
? ∈ ∂SP ñ

as rank(X]
?) = rank(X?) = r? < n1 + n2. Next, consider optimality. Given any X̃ ∈ SP ñ with

X̃ = 1
2

[
X1 X
X> X2

]
, by [26, Lemma 1], we have

‖X‖nuc ≤ 1. (29)

To see X]
? is optimal for (28), note that

f(B(X̃)) = f(X)
(a)

≥ f(X?) = f(B(X]
?)),

where step (a) is due to optimality of X? in (1) and X is feasible as just argued. Thirdly, we argue

that X]
? is a unique solution to (28). For any optimal solution X̃? = 1

2

[
X?

1 X0

X>0 X?
2

]
of (28), we have

X0 is optimal to (1) as

f(X0) = f(B(X̃?))
(a)
= f(B(X]

?)) = f(X?),

where step (a) is because X]
? is optimal to (28). Hence due to uniqueness of X?, we know X0 = X?.

Because ‖X?‖nuc = 1, using [8, Lemma 3], we know in fact X]
? = X̃? and uniqueness of solution to

(28) is proved. Finally, we verify strict complementarity that∇f̃(X]
?) ∈ relint

(
NSPñ(X]

?)
)

. Recall
from (13), that we need to show

−∇f̃(X]
?) ∈ relint(NSPñ(X̃?)) = {sI | s ∈ R}+ {−Z̃ | Z̃ � 0, range(Z̃) = nullspace(X]

?)}.
(30)

Using the definition of X]
?, we know

∇f̃(X]
?) =

[
0 ∇f(X?)

∇f(X?)
> 0

]
.

Recall from Lemma 3, we have σ1(∇f(X?)) = · · · = σr?(∇f(X?)) = δ + σr?+1(∇f(X?))

for some gap δ > 0. Hence we see that ∇f̃(X]
?) has all its smallest r? eigenvalues equal as

−σr?(∇f(X?)) and the gap between its r?-th smallest eigenvalue and the r? + 1-th eigenvalue
is simply δ > 0. Moreover, let the singular value decomposition of X? as X? = U?ΣV

>
? with

U? ∈ Rn1×r? and V? ∈ Rn2×r? . From the description of normal cone of nuclear norm ball in (16),
we know U?,−V? are the matrices formed by the top r? left and right vectors of ∇f(X?). Hence,

the bottom r? eigenvector of ∇f(X̃?) is simply 1√
2

[
U?
V?.

]
. Since range(X]

?) = range(

[
U?
V?.

]
), we

may take s = σ1(∇f(X?)) and Z̃ = σ1(∇f(X?))I +∇f̃(X]
?). Using the eigengap condition on

∇f̃(X]
?), we see range(Z̃) = nullspace(X]

?) and our claim is proved.
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B.3.1. ADDITIONAL LEMMA FOR QUADRATIC GROWTH

We establish the following lemma for the proof of unit group norm ball.

Lemma 5 For any two x, y ∈ Rd with `2 norm one, and a := 〈x, y〉 ≥ 0, we have

2 min
λ≥0
‖x− λy‖22 ≥ ‖x− y‖22.

Proof Simple calculus reveals that the optimal solution λ? of the LHS of the inequality is λ? = a ≥ 0.
We know a ∈ [0, 1] due to Cauchy-Schwarz and our assumption on a. Direct calculation of the
difference yields

2 min
λ≥0
‖x− λy‖22 − ‖x− y‖22 = 2 + 2a2 − 4a2 − 2 + 2a

= −2a2 + 2a ≥ 0,
(31)

where the last line is due to a ∈ [0, 1].

B.4. Proofs of Theorem ?? for group norm ball

Proof The inequality (??) follows from the proof of convergence of FW as in [25] by noting that the
vector vt = arg minv∈Ω〈∇f(xt), v〉 is feasible for the kDS minimization problem.

Proof The proof follows from the intuition that once xt is close to x?, the set F(x?) can be identified
using ∇f(xt). The fact that δ > 0 is shown in Lemma 3. Let us now consider Algorithm 2 whose
constraint set Ω is a polytope. Denote the objective gap as ht = f(xt) − f(x?). Using quadratic
growth in the following step (a), and Theorem 2 in the following second step (b), and the choice in
the following step (c), the iterate xt with t ≥ T satisfies that

‖xt − x?‖
(a)

≤
√

1

γ
ht

(b)

≤

√
LfD2

γT

(c)

≤ δ

2LfD
. (32)

Next, for any t ≥ T , we have that for any vertex v in F(x?), and any vertices u in Fc(x?),

〈∇f(xt), v〉 − 〈∇f(xt), u〉 = 〈∇f(x?), v − u〉+ 〈∇f(xt)−∇f(x?), v − u〉
(a)

≤ −δ + 〈∇f(xt)−∇f(x?), v − u〉
(b)

≤ −δ
2
.

(33)

Here in step (a), we use the definition of δ in (??) and 〈x?,∇f(x?)〉 = 〈v,∇f(x?)〉 using the
optimality condition for Problem (1) and F(x?) being the smallest face containing x?. In step (b),
we use the bound in (32) , Lipschitz continuity of∇f(x), and ‖v − u‖ ≤ D.

Thus, the kLOO step will produce all the vertices in F(x?) as k ≥ r? after t ≥ T , and so x? is
a feasible and optimal solution of the optimization problem in the kdirection search step. Hence,
Algorithm 2 finds the optimal solution x? within T + 1 many steps. The case for unit group norm
ball can be similarly analyzed and we defer the detail to Section B.4 in the appendix.
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Proof Let us now consider Algorithm 2 whose constraint set Ω is a unit group norm ball with
arbitrary base norm ‖ · ‖. Using quadratic growth (a), Theorem 2 in the second step (b), and the
choice of T in the following step (c), the iterate xt with t ≥ T satisfies that

‖xt − x?‖
(a)

≤
√

1

γ
ht

(b)

≤

√
LfD2

γT

(c)

≤ δ

2LfD
. (34)

Next recall the definition ofF(x?) implies (x?)g? 6= 0 for any g? ∈ F(x?). The optimality conditions
and ‖x?‖G = 1 (due to x? ∈ ∂Ω) implies that for every g? ∈ F(x?),

〈[∇f(x?)]g? , [x?]g?〉 = ‖[∇f(x?)]g?‖∗‖[x?]g?‖, and 〈∇f(x?), x?〉 = ‖[∇f(x?)]g?‖∗.

For any g? ∈ F(x?), define a vector xg?? ∈ Ω as xg?? :=


(

[x?]g?
‖[x?]gr? ‖

)
i
, i ∈ g?,

0, i 6∈ g?.
So xg?? ∈ Ω is an

extended vector of the normalized vector [x?]g?
‖[x?]gr? ‖

. Combining this definition with previous two
equalities, we see

〈[∇f(x?)]g? , x
g?
? 〉 = 〈∇f(x?), x?〉. (35)

Now, for any t ≥ T , we have for any group g? in F(x?), and any vector v ∈ Ω that is in Fc(x?),

〈∇f(xt), x
g?
? 〉 − 〈∇f(xt), v〉 = 〈∇f(x?), x

g?
? − v〉+ 〈∇f(xt)−∇f(x?), v − u〉

(a)

≤ −δ + 〈∇f(xt)−∇f(x?), v − u〉
(b)

≤ −δ
2
.

(36)

Here in step (a), we use the definition of δ in (??) and (35). In step (b), we use the bound in (32) ,
Lipschitz continuity of∇f(x), and ‖v − u‖ ≤ D.

Thus, the kLOO step will produce all the groups in F(x?) as k ≥ r? after t ≥ T , and so x? is
a feasible and optimal solution of the optimization problem in the k direction search step. Hence
Algorithm 2 finds the optimal solution x? within T + 1 steps.

B.5. Proofs of Theorem ??

We state one lemma that is critical to our proof of linear convergence. It is proved in Section B.5.1.

Lemma 6 Given Y ∈ Rn1×n2 with σr(Y ) − σr+1(Y ) = δ > 0. Denote the matrices formed by
the top r left and right singular vectors of Y as U ∈ Rn1×r, V ∈ Rn2×r respectively. Then for any
X ∈ Rn1×n2 with ‖X‖nuc = 1,

there is an S ∈ Rr×r with ‖S‖nuc = 1 such that

〈X − USV >, Y 〉 ≥ δ

2
‖X − USV >‖2F.

Equipped with this lemma, let us now prove Theorem ??.
Proof [Proof of Theorem ??] The case of the spectrahedron is proved in [9, Theorem 3] by using
the eigengap formula in Lemma 3 and [9, Section 2.2 “relation with the eigengap assumption”]. Here,
we need only to address the case of the unit nuclear norm. The proof that we present here for the case
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of the nuclear norm ball is quite similar. For notation convenience, define the set Nr?,t = {USV > |
U, V are matrices formed by top r? left and right singular vectors of∇f(Xt) and ‖S‖nuc ≤ 1}.

Using the Lipschitz smoothness of f , we have for any t ≥ 1, η ∈ [0, 1], and any W ∈ Nr?,t:

f(Xt+1) ≤f(Xt) + (1− η)〈W −Xt,∇f(Xt)〉

+
(1− η)2Lf

2
‖W −Xt‖2F.

(37)

For t ≥ T , we find that ‖Xt −X?‖F ≤ δ
6
√

2Lf
, and

σr?(∇f(Xt))− σr?+1(∇f(Xt))

=σr? (∇f(X?))− σr?+1(∇f(X?))︸ ︷︷ ︸
(a)
=−δ

+ (σr?(∇f(Xt))− σr?+1 (∇f(X?)))︸ ︷︷ ︸
(b)

≤ 1
3
δ

+ (λn−r?+1 (∇f(X?))− λn−r?+1(∇f(Xt)))︸ ︷︷ ︸
(c)

≤ 1
3
δ

≤− 1

3
δ.

Here in step (a), we use the singular value gap formula of δ in Lemma 3. Step (b) and (c) are due to
Weyl’s inequality, the Lipschitz continutity of∇f , and the inequality ‖Xt −X?‖F ≤ δ

6
√

2Lf
.

Now we subtract the inequality (37) both sides by f(X?), and denote ht = f(Xt)− f(X?) for
each t to arrive at

ht+1 ≤ht + (1− η) 〈W −Xt,∇f(Xt)〉︸ ︷︷ ︸
R1

+
(1− η)2Lf

2
‖W −Xt‖2F︸ ︷︷ ︸

R2

.
(38)

Using Lemma 6, the inequality (38), and the assumption X? ∈ ∂Ω, we can choose W ∈ Nr?,t such
that

〈W −X?,∇f(Xt)〉 ≤ −
δ

6
‖X? −W‖2F. (39)

Let us now analyze the term R1 = 〈W −Xt,∇f(Xt)〉 using (39) and convexity of f :

R1 =〈W −Xt,∇f(Xt)〉
=〈W −X?,∇f(Xt)〉+ 〈X? −Xt,∇f(Xt)〉

≤ − δ

6
‖X? −W‖2F − ht.

The term R2 = ‖Xt −W‖2F can be bounded by

R2 = ‖Xt −W‖2F
(a)

≤ 2
(
‖Xt −X?‖2F + ‖X? −W‖2F

)
(b)

≤ 2

γ
ht + 2‖X? −W‖2F,
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where we use the triangle inequality and the basic inequality (a+ b)2 ≤ 2a2 + 2b2 in step (a), and
the quadratic growth condition in step (b).

Now combining (38), and the bounds of R1 and R2, we reach that there is a W ∈ Nr?,t such that
for any ξ = 1− η ∈ [0, 1], we have

ht+1 ≤ht + ξ

(
−δ

6
‖X? −W‖2F − ht

)
+
ξ2Lf

2

(
2

γ
ht + 2‖X? −W‖2F

)
=

(
1− ξ +

ξ2Lf
γ

)
ht +

(
ξ2Lf −

ξδ

6

)
‖X? −W‖2F.

A detailed calculation and choice of ξ below yields the factor 1−min{ γ
4Lf

, δ
12Lf
} in the theorem.

We need to choose ξ ∈ [0, 1] so that 1− ξ +
ξ2Lf

γ is minimized while keeping ξ2Lf − ξδ
6 ≤ 0.

For ξ2Lf − ξδ
6 ≤ 0, we need ξ ≤ δ

6Lf
. The function q(ξ) = 1− ξ +

ξ2Lf

γ is decreasing for ξ ≤ γ
2Lf

and increasing for ξ ≥ γ
2Lf

. If γ
2Lf
≤ δ

6Lf
, then we can pick ξ = γ

2Lf
, and q(ξ) = 1 − γ

4Lf
.

If γ
2Lf
≥ δ

6Lf
=⇒ δ

γ ≤ 3, then we can pick ξ = δ
6Lf

, and q(ξ) = 1 − δ
6Lf

+ δ2

36γLf
=

1 + δ
6Lf

(
δ

6γ − 1
)
≤ 1− δ

12Lf
.

B.5.1. ADDITIONAL LEMMAS FOR THE PROOF OF THEOREM ??

Here we give a proof of Lemma 6.
Proof [Proof of Lemma 6] We utilize the result in [9, Lemma 5]: given any Ỹ ∈ Sn with eigenvalues
λn(Ỹ ) ≤ · · · ≤ λn−r+1(Ỹ ) ≤ λn−r(Ỹ ) − δ′ ≤ · · · ≤ λ1(Ỹ ) − δ′ for some δ′ > 0. Denote the
matrices by the bottom r eigenvectors of Ỹ as Ṽ ∈ Rn2×r respectively. Then for any X̃ ∈ Sn+ with
tr(X̃) = 1, there is an S ∈ Rr×r+ with tr(S) = 1 such that

〈X̃ − Ṽ SṼ >, Ỹ 〉 ≥ δ′

2
‖X̃ − Ṽ SṼ >‖2F. (40)

To utilize this result, we consider the dilation of the matrices X and Y :

X̃ : =
1

2

[
X1 X
X> X2

]
, and Ỹ : =

[
0 Y
Y > 0

]
. (41)

Here the matrices X1 = UXΣXUX , X2 = VXΣXV
>
X where UXΣXVX is the SVD of X and

the number rX = rank(X). Since X̃ =

[
UX
VX

]
ΣX [U>X V >X ], the matrix X̃ ∈ Sn1+n2

+ � 0. The

trace of X̃ is tr(X̃) = 1 as ‖X‖nuc = 1. Note that the bottom r + 1 eigenvalues of Ỹ is simply
−σ1(Y ), . . . ,−σr(Y ),−σr+1(Y ), and the matrix Ṽ ∈ R(n1+n2)r defined below is formed by the
matrix eigenvectors corresponds the smallest r eigenvalues:

Ṽ : =
1√
2

[
U
−V

]
. (42)

Using [9, Lemma 5], we can find a matrix S ∈ Sr+ with tr(S) = 1 such that (40) holds. Writing the
equation in block form reveals that

〈X − U(−S)V >, Y 〉 = 〈X̃ − Ṽ SṼ >, Ỹ 〉 ≥ δ

2
‖X̃ − Ṽ SṼ >‖2F

(a)

≥ δ

2
‖X − U(−S)V >‖2F, (43)
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where the last step is due to Lemma 7. Note that the matrix U(−S)V > is the matrix we seek as
‖ − S‖nuc = tr(S) = 1. Hence the proof is completed.

Lemma 7 Suppose two matrices X,Y ∈ Rn1×n2 , and X = U1S1V
>

1 and Y = U2S2V
>

2 for some
unitary Ui, Vi that for some integers r1, r2, they satisfy Ui ∈ Rn1×ri , i = 1, 2 and Vi ∈ Rn2×ri ,
i = 1, 2. The matrices Si ∈ Sri+ are positive semidefinite. Then

‖U1S1U
>
1 − U2S2U

>
2 ‖2F + ‖V1S1V

>
1 − V2S2V

>
2 ‖2F ≥ 2‖U1S1V

>
1 − U2S2V

>
2 ‖2F.

Proof This result follows by direct computation. Consider the difference ‖U1S1U
>
1 −U2S2U

>
2 ‖2F +

‖V1S1V
>

1 −V2S2V
>

2 ‖2F−2‖U1S1V
>

1 −U2S2V
>

2 ‖2F. Expanding the square and using the orthogonal
invariance of the Frobenius norm, we find that

‖U1S1U
>
1 − U2S2U

>
2 ‖2F + ‖V1S1V

>
1 − V2S2V

>
2 ‖2F − 2‖U1S1V

>
1 − U2S2V

>
2 ‖2F

=2tr(S1U
>
1 U2S2(U>2 U1 − V >2 V1)) + 2tr(S1(V >1 V2 − U>1 U2)S2V

>
2 V1)

(a)
=2tr(S1U

>
1 U2S2(U>2 U1 − V >2 V1)) + 2tr(V >1 V2S2(V >2 V1 − U>2 U1)S1)

(b)
=2tr(S1(U>1 U2 − V >1 V2)S2(U>2 U1 − V >2 V1)),

where step (a) is due to the fact that tr(A) = tr(A>) and step (b) is due to the cyclic property of

trace. By factorizing Si = S
1
2
i for i = 1, 2 and the cyclic property of trace again, we find that

‖U1S1U
>
1 − U2S2U

>
2 ‖2F + ‖V1S1V

>
1 − V2S2V

>
2 ‖2F − 2‖U1S1V

>
1 − U2S2V

>
2 ‖2F

=tr(S
1
2
1 (U>1 U2 − V >1 V2)S

1
2
2 S

1
2
2 (U>2 U1 − V >2 V1)S

1
2
1 )

=‖S
1
2
2 (U>2 U1 − V >2 V1)S

1
2
1 ‖

2
F ≥ 0.

Hence the lemma is proved.

Appendix C. Generalization to atomic sets

We consider how to generalize the ideas in this paper to other atomic sets.
Suppose we have a set of atoms A that each a ∈ A is in the same finite dimensional space

E. There might be infinitely many atoms in A. We assume for any ai ∈ A, the norm of ‖ai‖2 is
uniformly bounded by D

2 for some D ≥ 0. Then we consider Ω = conv(A). For the sets considered
in the paper, the sets A are

1. Polytope: A has finite cardinality.

2. Group norm ball: All vectors in B‖‖G that are only supported in one group, and different
vectors can have different support group.

3. Spectrahedron: rank one positive semidefinite matrices with trace 1.

4. Unit nuclear norm: rank one matrices with nuclear norm less than or equal to one.
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Suppose the optimal solution x? ∈ Ω admits a minimal representation using atoms a?i : r
′
? is the

smallest number such that x? ∈ conv([ai]
r′?
i=1). To further define kLOO and kDS, we must first

examine the optimality condition in this case. The optimality condition reveals that

〈∇f(x?), x?〉 = 〈∇f(x?), a
?
i 〉 ≤ 〈∇f(x?), a〉, ∀ a ∈ A. (44)

The core idea enabling the proof of algorithms is that there should be a separation in the above
inequality. Denote the dual vector as ∇? : = ∇f(x?). Also define the exposed face defined by
∇f(x?) as F(∇?) = Ω ∩ {x | 〈x,∇?〉 = 〈x?,∇?〉}. Since conv([ai]

r′?
i=1) 6= F(∇?) in general,

this means that we might need to compute more than r′? vectors in finding the vs that minimize
〈v,∇?〉. This observation explains why we need did not define r? to be the number smallest number
of vertices in polytope and why we needed to redefine kDS for the spectrahedron and nuclear norm
ball.

The key of enabling faster convergence is the gap condition. This means that we need to
decompose Ω into two convex sets Ω1 and Ω2 such that Ω1 ∩ Ω2 = ∅, conv(Ω1,Ω2) = Ω,
Ω1 ⊃ F(∇?), and there is a gap δ > 0,

〈∇f(x?), x?〉 = 〈∇f(x?), a
?
i 〉 ≤ 〈∇f(x?), a〉 − δ, ∀ a ∈ conv(Ω2). (45)

For the Ω considered in the paper, we have

1. Polytope: Ω1 = F(x?), and Ω2 = Fc(x?)

2. Group norm ball: Ω1 = {x ∈ Ω, x supported in F(x?)}, and Ω2 = Fc(x?).

3. Spectrahedron or nuclear norm ball: Ω1 = {X | range(X) ∈ F(X?)}, and Ω2 = Fc(X?).

Let us now explain how to generalize the ideas in this paper to atomic sets more concretely:

1. Algorithmically, it is feasible to compute Ω1 ⊃ F(∇?) and optimize over it given ∇?. The
kLOO and kDS are approximate versions of Ω1 for general∇f(x).

2. Theoretically, in order to prove faster convergence, we need to find Ω1 and Ω2, that induces
the gap δ. A usual candidate of Ω1 is F(∇?). Linearity, orthogonality, and other properties of
Ω should be considered for such choice.

Appendix D. Discussion on multiple solutions

When the problem has more than one solution, let X be the solution set. This set is convex and closed.
We change the term ‖x− x?‖ in the quadratic growth condition to dist(x,X ) = minx?∈X ‖x− x?‖.
For strict complementarity, we remove the condition that x? is unique and demand instead that
some x? ∈ X satisfies the conditions listed in strict complementarity. The support set F(x?) and
complementary set Fc(x?) are defined via the x? that satisfies strict complementarity. Note that
the dual vector ∇f(x?) is the same for every x? ∈ X [38, Proposition 1]. The algorithmic results,
Theorem 2, ??, and ?? hold almost without any change of the proof using the new definition of r?
and δ. The argument to establish quadratic growth via strict complementarity is more tedious and we
defer it to future work.
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Figure 3: Objective against time cost

Appendix E. Numerical Experiment setting for Section 4

We detail the experiment settings of Lasso, support vector machine (SVM), group Lasso, and matrix
completion problems. The compared methods include FW, away-step FW (awayFW) [22], pairwise
FW (pairFW)[29], DICG [19], and blockFW [1]. All codes are written by MATLAB and performed
on a MacBook Pro with Processor 2.3 GHz Intel Core i5 and Memory 8 GB 2133 MHz LPDDR3. In
our k-FW, we solve the kDS by the FASTA toolbox [20, 21]: https://github.com/tomgoldstein/fasta-
matlab. In DICG (as well as FW, awayFW, pairFW in Group Lasso and SVM), the step size is
determined by backtracking line search. The ball sizes of `1 norm, group norm, and nuclear norm
are set to be the ground truth respectively.

E.1. Lasso

The experiment is the same as that in [29] except that the data size in our setting is ten times of that
in [29]: A ∈ R2000×5000 and b ∈ R2000. The large size is more reasonable for comparing the compu-
tational costs of FW, awayFW, pairFW, DICG and our k-FW. For FW, awayFW and pairFW, we use
the MATLAB codes provide by [29]: https://github.com/Simon-Lacoste-Julien/
linearFW. In DICG (as well as FW, awayFW, pairFW in Group Lasso and SVM), the step size is
determined by backtracking line search.

E.2. SVM

We generate the synthetic data for two-class classification by the following model

X = [X1 X2] = [U1V1 + 1 U2V2 − 1], X ← X + E,

where the elements of U1 ∈ R20×5, V1 ∈ R5×500, U2 ∈ R20×5, and V2 ∈ R5×500 are drawn from
N (0, 1). E consists of noise drawn from N (0, 0.1σX), where σX denotes the standard deviation of
the entries of X . Thus, in X , the number of samples is 1000 and the number of features is 20. We
use 80% of the data as training data to classify the remaining data. In SVM, we use a polynomial
kernel k(x, y) = (x>y + 1)2.

E.3. Group Lasso

We generate a 100× 1000 matrix X whose entries are drawn from N (0, 1) and a 10× 100 matrix
W with 10 nonzero columns drawn from N (0, 1). Then let Y = WX and set Y ← Y + E, where
the entries of noise matrix E are drawn from N (0, 0.01σY ). Then we estimate W from Y and X by
solving a Group Lasso problem with kFW.
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E.4. Matrix Completion

We generate a low-rank matrix as X = UV>, where the entries of U ∈ R500×5 and V ∈ R5×500 are
drawn from N (0, 1). We sample 50% of the entries uniformly at random and recover the unknown
entries by low-rank matrix completion.

E.5. Objective function vs running time

See Figure 3.
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