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Abstract
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with
nonlinear dynamical systems has received considerable attention recently, yet the algorithmic
development remains relatively limited. In this work, we make an attempt along this line by first
showing that most widely-used algorithms for training DNNs can be linked to the Differential
Dynamic Programming (DDP), a celebrated second-order method rooted in trajectory optimization.
In this vein, we propose a new class of optimizer, DDP Neural Optimizer (DDPNOpt), for training
DNNs. DDPNOpt features layer-wise feedback policies which improve convergence and robustness.
It outperforms other optimal-control inspired training methods in both convergence and complexity,
and is competitive against state-of-the-art first and second order methods. Our work opens up new
avenues for principled algorithmic design built upon the optimal control theory.

1. Introduction

In this work, we consider the following optimal control problem (OCP) in the discrete-time setting:

min
ū
J(ū;x0) :=

[
φ(xT ) +

T−1∑
t=0

`t(xt,ut)

]
s.t. xt+1 = ft(xt,ut) , (OCP)

where xt ∈ Rn and ut ∈ Rm represent the state and control at each time step t. ft(·, ·), `t(·, ·) and
φ(·) respectively denote the nonlinear dynamics, intermediate cost and terminal cost functions. OCP
aims to find a control trajectory, ū , {ut}T−1

t=0 , such that the accumulated cost J over the finite
horizon T is minimized. Problems with the form of OCP describes a generic multi-stage decision
making problem [4], and have gained commensurate interest recently in deep learning [14, 23].

Central to the research along this line is the interpretation of DNNs as discrete-time nonlinear
dynamical systems, where each layer is viewed as a distinct time step [7, 15, 16, 23]. When we
further regard network weights as control variables, OCP describes w.l.o.g. the training objective
composed of layer-wise loss and terminal loss. This perspective (see Table 1) has been explored
recently for theoretical analysis [19, 24]. Algorithmically, however, OCP-inspired optimizers remain
limited, often restricted to specific network class (e.g. discrete weight) or small dataset [11, 12].

The aforementioned works are primarily inspired by the Pontryagin Maximum Principle (PMP,
[3]). Another parallel methodology which receives little attention is the Approximate Dynamic
Programming (ADP, [2]). ADP differs from PMP in that at each time step a locally optimal feedback
policy is computed. These policies are known to enhance the numerical stability of the optimization
process when models admit chain structures (e.g. in DNNs) [13, 20]. Practical ADP algorithms such
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Figure 1: Computational graph.

Table 1: Terminology mapping

Deep Learning Optimal Control

J Total Loss Trajectory Cost
xt Activation Vector State Vector
ut Weight Parameter Control Vector
f Layer Propagation Dynamical System
φ End-goal Loss Terminal Cost
` Weight Decay Intermediate Cost

as the Differential Dynamic Programming (DDP, [9]) appear extensively in modern autonomous
systems [8, 21]. However, whether they can be lifted to large-scale optimization remains unclear.

In this work, we make a significant advance toward optimal-control-theoretic training algorithms
inspired by ADP. We first draw a novel perspective of DNN training from trajectory optimization,
based on a theoretical connection between existing training methods and the DDP algorithm. We
then present a new class of optimizer, DDPNOpt, that performs a distinct backward pass inherited
with Bellman optimality and generates layer-wise feedback policies to robustify the training. We
show that DDPNOpt achieves competitive performance on classification datasets and outperforms
previous OCP-inspired methods in both training performance and runtime complexity.

2. Preliminaries

Theorem 1 (Bellman Optimality [1]) Define a value function Vt : Rn 7→ R at each time step that
is computed backward in time using the Bellman equation

Vt(xt) = min
ut(xt)∈Γxt

`t(xt,ut) + Vt+1(ft(xt,ut))︸ ︷︷ ︸
Qt(xt,ut)≡Qt

, VT (xT ) = φ(xT ) ,
(1)

where Γxt : Rn 7→ Rm denotes a set of mapping from state to control space. Then, we have
V0(x0) = J∗(x0) be the optimal objective value to OCP. Qt is often refer to the Bellman objective.

Unfortunately, solving Eq. 1 in high dimension suffers from the Bellman curse of dimensionality.
To mitigate the computational, DDP (see Alg. 1) proposes to approximate Qt with its second order.
Given a nominal trajectory (x̄, ū), it iteratively optimizes the objective value, where each iteration
consists a backward and forward pass. During the backward pass, DDP performs second-order
expansion on the Bellman objective Qt and computes the updates from the following minimization:

δu∗t (δxt) = arg min
δut(δxt)∈Γ′

δxt

{1

2

 1
δxt
δut

T  0 Qtx
T

Qtu
T

Qtx Qtxx Qtxu
Qtu Qtux Qtuu

 1
δxt
δut

} . (2)

The derivatives of Qt follow standard chain rule. Γ′δxt = {bt + Atδxt : bt ∈ Rm,At ∈ Rm×n}
denotes the set of all affine mapping from δxt. The minimizer to Eq. 2 admits a linear form given by

δu∗t (δxt) = kt + Ktδxt , where kt , −(Qtuu)−1Qtu , Kt , −(Qtuu)−1Qtux , (3)
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Algorithm 1: Differential Dynamic Programming

1: Input: ū , {ut}T−1
t=0 , x̄ , {xt}Tt=0

2: Set V T
x = ∇xφ and V T

xx = ∇2
xφ

3: for t = T − 1 to 0 do
4: Compute δu∗

t (δxt) using V t+1
x , V t+1

xx (Eq. 2, 3)
5: Compute V t

x and V t
xx using Eq. 4

6: end for
7: Set x̂0 = x0

8: for t = 0 to T − 1 do
9: u∗

t = ut + δu∗
t (δxt), where δxt = x̂t − xt

10: x̂t+1 = ft(x̂t,u
∗
t )

11: end for
12: ū← {u∗

t }T−1
t=0

Algorithm 2: Back-propagation with GD

1: Input: ū , {ut}T−1
t=0 , x̄ , {xt}Tt=0,

learning rate η
2: Set pT ≡ ∇xT

JT = ∇xφ
3: for t = T − 1 to 0 do
4: δu∗

t = −η∇ut
Jt = −η(`tu + f tu

T
pt+1)

5: pt ≡ ∇xtJt = f tx
T
pt+1

6: end for
7: for t = 0 to T − 1 do
8: u∗

t = ut + δu∗
t

9: end for
10: ū← {u∗

t }T−1
t=0

respectively denote the open and feedback gains. δxt is called the state differential, which we will
discuss later. Substituting Eq. 3 back to Eq. 2 gives us the backward update for Vx and Vxx,

V t
x = Qtx −Qt T

ux (Qtuu)−1Qtu , and V t
xx = Qtxx −Qt T

ux (Qtuu)−1Qtux . (4)

In the forward pass, DDP applies the feedback policy sequentially from the initial time step while
keeping track of the state differential between the new simulated trajectory and nominal trajectory.

3. Training DNNs as Trajectory Optimization

First, recall that DNNs can be interpreted as dynamical systems where each layer is viewed as a
distinct time step. Consider the layer-wise propagation rule, xt+1 = σt(gt(xt,ut)), where σt and
gt denote the nonlinear activation function and the affine transform parametrized by the vectorized
weight ut. xt represents the activation vector at layer t. Hence, the equation can be seen as a
dynamical system (by setting ft ≡ σt ◦ gt in OCP) propagating the activation xt using ut. Next,
notice that the gradient descent (GD) update, denoted δū∗ ≡ −η∇ūJ , can be break down into each
layer, i.e. δū∗ , {δu∗t }T−1

t=0 , and computed backward through a per-layer objective Jt defined as

δu∗t = arg min
δut∈Rmt

{Jt +∇utJ
T
t δut + 1

2δu
T
t ( 1

ηIt)δut} , (5)

where Jt(xt,ut) , `t(ut) + Jt+1(ft(xt,ut),ut+1) , JT (xT ) , φ(xT ) . (6)

We now draw a novel connection between the training procedure of DNNs and trajectory
optimization. Let us summarize the Back-propagation with GD in Alg. 2 and compare it with DDP
(Alg. 1). At each training iteration, we treat the current weight as the control ū that simulates the
activation sequence x̄. Starting from this nominal trajectory (x̄, ū), both algorithms recursively
define some layer-wise objectives (Jt in Eq. 6 vs Vt in Eq. 1), compute the weight/control update from
the quadratic expansions (Eq. 5 vs Eq. 2), and then carry certain information (∇xtJt vs (V t

x, V
t
xx))

backward to the preceding layer. The two computation graphs are summarized in Fig. 1. Below we
make this connection formally and provide conditions when the two algorithms become equivalent.

Proposition 2 Assume Qtux = 0 at all stages, then the backward dynamics of the value derivative
can be described by the Back-propagation, i.e. ∀t, V t

x = ∇xtJ . Further, we have

Qtu = ∇utJ , Qtuu = ∇2
utJ , and δu∗t (δxt) = −(∇2

utJ)−1∇utJ . (7)
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Table 2: Update rule at each layer t, ut ← ut − ηM−1
t dt. (Expectation taken over batch data)

Methods Precondition matrix Mt Update direction dt

SGD It E[Jut
]

RMSprop diag(
√
E[Jut

� Jut
] + ε) E[Jut

]
KFAC & EKFAC E[xtx

T
t ]⊗ E[Jht

JT
ht

] E[Jut
]

vanilla DDP E[Qt
uu] E[Qt

u +Qt
uxδxt]

DDPNOpt Mt ∈


It ,

diag(
√
E[Qt

u �Qt
u] + ε) ,

E[xtx
T
t ]⊗ E[V t

hV
t T
h ]

 E[Qt
u +Qt

uxδxt]

Figure 2: (a) A toy illustration of the standard update (green) and the DDP feedback (red). (bc)
Trajectory optimization viewpoint of DNN training.

In other words, the DDP policy is equivalent to the stage-wise Newton, in which the gradient is
preconditioned by the block-wise inverse Hessian at each layer. If further we have Qtuu ≈ 1

η I, then
DDP degenerates to Back-propagation with gradient descent.

We leave the proof in Appendix A.1. Proposition 2 states that the backward pass in DDP collapses
to Back-propagation when Qux vanishes at all stages. In other words, DDP differs from existing
methods in that it expands the layer-wise objective wrt not only ut but xt. To make some intuitions,
consider the example in Fig. 2a. Given an objective L expanded at (x0, u0), standard second-order
methods apply the update δu = −L−1

uuLu (shown as green arrows). DDP differs in that it also
computes the mixed partial derivatives, i.e. Lux. The resulting update law has the same intercept
but with an additional feedback term linear in δx (shown as red arrows). Thus, DDP searches for an
update from the affine mapping Γ′δxt (Eq. 2), rather than the vector space Rmt (Eq. 5).

Now, to show how the state differential δxt arises during optimization, notice from Alg. 1 that
x̂t can be compactly expressed as x̂t = Ft(x0, ū + δū∗(δx̄))1. Hence, δxt = x̂t − xt captures
the state difference when new updates δū∗(δx̄) are applied until layer t− 1. Now, consider the 2D
example in Fig 2b. Back-propagation proposes the update directions (shown as blue arrows) from
the first-order derivatives expanded along the nominal trajectory (x̄, ū). However, as the weight at
each layer is correlated, parameter updates from previous layers affect proceeding states, thus the
trustworthiness of their descending directions. As shown in Fig 2c, cascading these (green) updates
may cause an over-shoot wrt the designed target. From the trajectory optimization viewpoint, a much
stabler direction will be instead∇utJt(x̂t,ut) (shown as orange), where the derivative is evaluated
at the new cascading state x̂t rather than xt. This is what DDP proposes, where the feedback Ktδxt
compensates the over-shoot and steers the GD update toward∇utJt(x̂t,ut) after observing δxt.

In short, the use of feedback Kt and state differential δxt in DDP to stabilize and robustify the
training dynamics arises from the fact that deep nets exhibit chain structures. This perspective (i.e.
optimizing chained parameters) is explored rigorously in trajectory optimization, where DDP is
shown to be numerically stabler than direct optimization such as Newton method [13].

1. Ft , ft ◦ · · · ◦ f0 denotes the compositional dynamics propagating x0 with the control sequence {us}ts=0.
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Table 3: Performance comparison on accuracy (%). All values averaged over 10 seeds.

DataSet Standard baselines OCP-inspired baselines DDPNOpt (ours)SGD RMSProp Adam EKFAC E-MSA vanilla DDP
Fe

ed
fo

rw
ar

d DIGITS 95.36 94.33 94.98 95.24 94.87 91.68 95.13

MNIST 92.65 91.89 92.54 92.73 90.24 N/A 93.30
F-MNIST 82.49 83.87 84.36 84.12 82.04 84.98

C
N

N

MNIST 97.66 98.05 98.04 98.02 96.48
N/A

98.09
SVHN 88.05 88.41 87.76 90.63 79.45 90.70

CIFAR-10 68.95 70.52 70.04 71.85 61.42 71.92

4. Differential Dynamic Programming Neural Optimizer

Here we present DDP Neural Optimizer and validate its performance on training DNNs. We leave
implementation details, pseudo-code, and experiment setup in Appendix A.2 and A.3. DDPNOpt
follows the same procedure in vanilla DDP (Alg. 1). However, since ft is highly over-parametrized,
Qtuu will be computationally intractable to solve. Recall the interpretation we draw in Eq. 6 where
GD minimizes the quadratic expansion of Jt with the Hessian ∇2

utJt replaced by 1
ηIt. Similarly,

adaptive first-order (resp. second-order methods) can be recovered by approximating ∇2
utJt with

the diagonal of the covariance (resp. Gauss-Newton (GN)) matrix. DDPNOpt adapts the same
curvature approximation to Qtuu, except these approximations are constructed using (V,Q) rather
than J . Table 2 summarizes the update rule for different methods. Bellman framework differs from
Back-propagation in computing the update directions dt, where the former applies the feedback
through additional forward pass with δxt. The connection between these two dt is built in Proposition
2. Compared with vanilla DDP, DDPNOpt leverages efficient approximation of Mt inspiring by
existing methods, which greatly increase the scability.
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Figure 3: Runtime comparison on MNIST.

Table 3 reports the results on classification datasets.
All networks consist of 5-6 layers. For standard train-
ing baselines, we select first-order methods, i.e. SGD,
RMSprop, Adam, and second-order method EKFAC [5],
which is a recent extension of KFAC [17]. For OCP-
inspired methods, we compare DDPNOpt with vanilla
DDP and E-MSA [12], which is also a second-order
method yet built upon the PMP framework. It is clear from Table 3 that DDPNOpt outperforms two
OCP baselines on all datasets and network types. In practice, both baselines suffer from unstable
training and require careful tuning on the hyper-parameters. In fact, we are not able to obtain results
for vanilla DDP when the problem size goes beyond DIGITS. This is in contrast to DDPNOpt which
adapts amortized curvature estimation from widely-used methods; thus exhibits much stabler training
dynamics with superior convergence. In Fig 3, we compare the runtime and memory complexity
among different methods. While vanilla DDP scales poorly with batch size, DDPNOpt reduces the
computation by orders. It runs nearly as fast as standard methods and outperforms E-MSA by a large
margin. The additional memory complexity, when comparing DDP-inspired methods with Back-
propagation methods, comes from the layer-wise feedback policies. However, DDPNOpt is much
memory-efficient compared with vanilla DDP. On the other hand, the performance gain between
DDPNOpt and standard methods appear comparatively small. This is due to the inevitable use of
similar curvature adaptation, as the local geometry of the landscape directly affects the convergence
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behavior. In practice, we find DDPNOpt best shows its effect when using larger learning rates (i.e.
when training becomes unstable). We leave discussions on this ablation analysis in Appendix A.3.2.

5. Conclusion

We introduce DDPNOpt, a new class of optimizer arising from bridging DNN training to trajectory
optimization. DDPNOpt features layer-wise feedback policies which improve convergence over
existing optimizers and outperforms other OCP-inspired methods in training and scalability.
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Appendix A.

A.1. Proof of Proposition 2

Proof We first prove the following lemma which connects the backward pass between two frame-
works in the degenerate case.

Lemma 3 Assume Qtux = 0 at all stages, then we have

V t
x = ∇xtJ , and V t

xx = ∇2
xtJ , ∀t . (8)

Proof It is obvious to see that Eq. 8 holds at t = T . Now, assume the relation holds at t + 1 and
observe that at the time t, the backward passes take the form of

V t
x = Qtx −Qt Tux(Qtuu)

−1
Qtu = `tx + f tx

T∇xt+1J = ∇xtJ ,

V t
xx = Qtxx −Qt Tux(Qtuu)

−1
Qtux = ∇xt{`tx + f tx

T∇xt+1J} = ∇2
xtJ ,

where we recall Jt = `t + Jt+1(ft) in Eq. 6.

Now, Eq. 7 follows by substituting Eq. 8 to the definition of Qtu and Qtuu

Qtu = `tu + f tu
T
V t+1
x = `tu + f tu

T∇xt+1J = ∇utJ ,

Qtuu = `tuu + f tu
T
V t+1
xx f tu + V t+1

x · f tuu
= `tuu + f tu

T
(∇2

xt+1
J)f tu +∇xt+1J · f tuu

= ∇ut{`tu + f tu
T∇xt+1J} = ∇2

utJ .

Consequently, the DDP feedback policy degenerates to layer-wise Newton update.

A.2. DDPNOpt Implementation Details

When the dynamics is represented by the layer propagation (i.e, when ft ≡ σt ◦ gt), we can expand
Eq. 2 as:

Qtx = gt Tx V t
h , Qtxx = gt Tx V t

hhg
t
x + V t

h · gtxx ,

Qtu = `tu + gt Tu V t
h , Qtux = gt Tu V t

hhg
t
x + V t

h · gtux ,
(9)

where V t
h , σt Th V t+1

x and V t
hh , σt Th V t+1

xx σth + V t+1
x · σthh. The matrix-vector product with the

Jacobian of the affine transform (i.e. gtu, g
t
x) can be evaluated efficiently for both feedforward (FF)

and convolution (Conv) layers:

ht
FF
= Wtxt + bt ⇒ gtx

T
V t
h = W T

t V
t
h , gtu

T
V t
h = xt ⊗ V t

h , (10)

ht
Conv
= ωt ∗ xt ⇒ gtx

T
V t
h = ωT

t ∗̂ V t
h , gtu

T
V t
h = xt ∗̂ V t

h , (11)

where ⊗, ∗̂ , and ∗ respectively denote the Kronecker product and (de-)convolution operator.
When the memory efficiency becomes nonnegligible as the problem scales, we make GN

approximation to ∇2φ as the low-rank structure at the prediction layer has been observed for
problems concerned in this work [10, 18]. In the following proposition, we show that for a specific
type of OCP, which happens to be the case of DNN training, such a low-rank structure preserves
throughout the DDP backward pass.
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Proposition 4 (Outer-product factorization in DDPNOpt) Consider the OCP where `t ≡ `t(ut)
is independent of xt, If the terminal-stage Hessian can be expressed by the outer product of vector
zTx ,∇2φ(xT ) = zTx ⊗ zTx (for instance, zTx = ∇φ for GN), then we have the factorization for all t:

Qtux = qtu ⊗ qtx , Qtxx = qtx ⊗ qtx , V t
xx = ztx ⊗ ztx . (12)

qtu, qtx, and ztx are outer-product vectors which are also computed along the backward pass.

qtu = f tu
T
zt+1
x , qtx = f tx

T
zt+1
x , ztx =

√
1− qt Tu (Qtuu)−1qtu qtx . (13)

Proof We will prove Proposition 4 by backward induction. Suppose at layer t + 1, we have
V t+1
xx = zt+1

x ⊗ zt+1
x and `t ≡ `t(ut), then Eq. 2 becomes

Qtxx = f tx
T
V t+1
xx f tx = f tx

T
(zt+1

x ⊗ zt+1
x )f tx = (f tx

T
zt+1
x )⊗ (f tx

T
zt+1
x )

Qtux = f tu
T
V t+1
xx f tx = f tu

T
(zt+1

x ⊗ zt+1
x )f tx = (f tu

T
zt+1
x )⊗ (f tx

T
zt+1
x ) .

Setting qtx := f tx
T
zt+1
x and qtu := f tu

T
zt+1
x will give the first part of Proposition 4.

Next, to show the same factorization structure preserves through the preceding layer, it is
sufficient to show V t

xx = ztx ⊗ ztx for some vector ztx. This is indeed the case.

V t
xx = Qtxx −Qt T

ux (Qtuu)−1Qtux

= qtx ⊗ qtx − (qtu ⊗ qtx)T(Qtuu)−1(qtu ⊗ qtx)

= qtx ⊗ qtx − (qt Tu (Qtuu)
−1

qtu)(qtx ⊗ qtx) ,

where the last equality follows by observing qt Tu (Qtuu)
−1

qtu is a scalar.

Set ztx =
√

1− qt Tu (Qtuu)−1qtu qtx will give the desired factorization.

In other words, the outer-product factorization at the final layer can be backward propagated to all
proceeding layers. Thus, large matrices, such as Qtux, Qtxx, V t

xx, and even feedback policies Kt,
can be factorized accordingly, reducing complexity by orders.

Lastly, we apply Tikhonov regularization on the value Hessian V t
xx [20], which improves the

stability when the dimension of the activation varies along the DDP backward pass. We also expand
the dynamics only up to first order as the stability obtained by keeping only the linearized dynamics
is thoroughly discussed and widely adapted in practical DDP usages [20, 22].

9
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Below we provide the pseudo-code for DDPNOPt.

Algorithm 3: Differential Dynamic Programming Neural Optimizer (DDPNOPt)
Input: dataset D, learning rate η, training iteration K, (optional) Tikhonov regularization εV
Initialize the network weights (i.e. nominal control trajectory) ū(0)

for k = 0 to K do
Sample batch initial state from dataset , X0 ≡ {x(i)

0 }Bi=1 ∼ D
for t = 0 to T − 1 do

x
(i)
t+1 = ft(x

(i)
t ,u

(k)
t ), ∀i B Forward simulation

end for
Set V T

x(i) = ∇xΦ(x
(i)
T ) and V T

xx(i) = ∇2
x(i)Φ(x

(i)
T ), ∀i

for t = T − 1 to 0 do
Compute Qtu, Qtx, Qtxx, Qtux with Eq. 9 (or Eq. 12 if factorization is used), ∀i
Compute E[Qtuu] with one of the precondition matrices in Table 2 B Backward pass
Store the layer-wise feedback policy δu∗t (δXt) = 1

B

∑B
i=1 k

(i)
t + K

(i)
t δx

(i)
t

Compute V t
x(i) and V t

xx(i) with Eq. 4 (or Eq. 13 if factorization is used), ∀i
V t
xx(i) ← V t

xx(i) + εV I if Tikhonov regularization is preferable, ∀i
end for
Set x̂(i)

0 = x
(i)
0 , ∀i

for t = 0 to T − 1 do
u∗t = ut + δu∗t (δXt), where δXt = {x̂(i)

t − x
(i)
t }Bi=1 B Additional forward pass

x̂
(i)
t+1 = ft(x̂

(i)
t ,u

∗
t ), ∀i

end for
ū(k+1) ← {u∗t }T−1

t=0

end for

A.3. Experiment Detail

A.3.1. SETUP

Table 4: Hyper-parameter search in Table 3

Methods Learning Rate

SGD (7e-2, 5e-1)
Adam & RMSprop (7e-4, 1e-2)

EKFAC (1e-2, 3e-1)

All networks in the classification experiments are
composed of 5-6 layers. For the intermediate lay-
ers, we use ReLU activation on all dataset, except
Tanh on WINE and DIGITS to better distinguish
the differences between optimizers. We use identity
mapping at the last prediction layer on all dataset
except WINE, where we use sigmoid instead to help
distinguish the performance among optimizers. For
feedforward networks, the dimension of the hidden
state is set to 10-32. On the other hand, we use standard 3 × 3 convolution kernels for all
CNNs. The batch size is set 8-32 for dataset trained with feedforward networks, and 128 for
dataset trained with convolution networks. For each baseline we select its own hyper-parameter
from an appropriate search space, which we detail in Table 4. We use the implementation in
https://github.com/Thrandis/EKFAC-pytorch for EKFAC and implement our own
E-MSA in PyTorch since the official code released from Li et al. [12] does not support GPU imple-
mentation. Regarding the curvature approximation used in DDPNOpt (Mt in Table 2), we found

10
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Figure 4: (a) Performance difference between DDPNOpt and baselines on DIGITS across hyper-
parameter grid. Blue (resp. red) indicates an improvement (resp. degradation) over baselines. We
observe similar behaviors on other datasets. (b) Examples of the actual training dynamics.

that using adaptive diagonal and GN matrices respectively for feedforward and convolution networks
give the best performance in practice. We impose the GN factorization presented in Proposition 4 for
all CNN training. Regarding the machine information, we conduct our experiments on GTX 1080 TI,
RTX TITAN, and four Tesla V100 SXM2 16GB.

A.3.2. ABLATION ANALYSIS ON FEEDBACK POLICIES

To identify scenarios where DDPNOpt best shows its effectiveness, we conduct an ablation analysis
on the feedback mechanism. This is done by recalling Proposition 2: when Qtux vanishes, DDPNOpt
degenerates to the method associated with each precondition matrix. For instance, DDPNOpt with
identity (resp. adaptive diagonal and GN) precondition Mt will generate the same updates as SGD
(resp. RMSprop and EKFAC) when all Qtux are zeroed out. In other words, these DDPNOpt variants
can be viewed as the DDP-extension to existing baselines.

In Fig. 4a we report the performance difference between each baseline and its associated
DDPNOpt variant. Each grid corresponds to a distinct training configuration that is averaged
over 10 random trails, and we keep all hyper-parameters (e.g. learning rate and weight decay) the
same between baselines and their DDPNOpt variants. Thus, the performance gap only comes from
the feedback policies, or equivalently the update directions in Table 2. Blue (resp. red) indicates an
improvement (resp. degradation) when the feedback policies are presented. Clearly, the improvement
over baselines remains consistent across most hyper-parameters setups, and the performance gap
tends to become obvious as the learning rate increases. This aligns with the previous study on
numerical stability [13], which suggests the feedback can robustify unstable dynamics when a further
step size, i.e. a larger control, is taken. As shown in Fig. 4b, such a stabilization can also lead to
smaller variance and faster convergence. This sheds light on the benefit gained by bridging two
seemly disconnected methodologies between DNN training and trajectory optimization.

A.3.3. DISCUSSION: VISUALIZATION OF FEEDBACK POLICIES

To understand the effect of feedback policies more perceptually, we conduct eigen-decomposition
on the feedback matrices of convolution layers and project the leading eigenvectors back to image
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Figure 5: Visualization of the feedback policies on MNIST.

space, following Zeiler and Fergus [25]. These feature maps, denoted δxmax in Fig. 5, correspond to
the dominating differential image that the policy shall respond with during weight update. Fig. 5
shows that the feedback policies indeed capture non-trivial visual features related to the pixel-wise
difference between spatially similar classes, e.g. (8, 3) or (7, 1). These differential maps differ
from adversarial perturbation [6] as the former directly links the parameter update to the change in
activation; thus being more interpretable.
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