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Abstract
In this work, we generalize the probability simplex constraint to matrices, i.e., X1 + X2 + . . . +
XK = I, where Xi � 0 is a symmetric positive semidefinite matrix of size n × n for all i =
{1, . . . ,K}. By assuming positive definiteness of the matrices, we show that the constraint set
arising from the matrix simplex has the structure of a smooth Riemannian submanifold. We discuss
a novel Riemannian geometry for the matrix simplex manifold and show derivation of first- and
second-order optimization related ingredients.

1. Introduction

Column (or row) stochastic matrices are those where each column (or row) has non-negative entries
that sum to 1. Such matrices are shown to be useful in many machine learning applications [7, 9,
12, 15, 16]. The constraint of interest for those matrices is

x1 + x2 + . . .+ xK = 1,where xi ≥ 0 for all i = {1, . . . ,K}, (1)

which is also called the probability simplex constraint.
In this work, we propose to generalize the constraint (1) to constraints with matrices, i.e., the

matrix simplex constraint
X1 + X2 + . . .+ XK = I, (2)

where Xi � 0 is a symmetric positive semidefinite matrix of size n × n for all i = {1, 2, . . . ,K}.
Although the constraint (2) is a natural generalization of (1), its study is rather limited [10, 13].
An interesting property of this constraint is its ability to learn mutually orthogonal subspaces with
applications in machine learning [6] and computer vision [8].

We discuss a novel Riemannian geometry for the set obtained from the constraint (2) with strict
positive definiteness of the matrices. Strict positive definiteness of matrices is needed to obtain a
differentiable manifold structure. The proposed Riemannian structure allows to handle potentially
semidefinite, i.e., rank deficient, matrices gracefully by scaling those elements to the boundary of
the manifold. The main aim of this work is to develop optimization-related ingredients that allow
Riemannian optimization on this constraint set. The versatile framework of Riemannian optimiza-
tion enables to perform first-order and second-order optimization of a smooth function. We show
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the efficacy of the modeling on a toy problem of reconstructing orthogonal subspaces from their
noisy estimates.

The manifold related code files are available with the manifold optimization toolbox Manopt
[4].

2. The matrix simplex manifold

We define the matrix simplex manifold of interest as

MK
n := {(X1,X2, . . . ,XK) : X1 + X2 + . . .+ XK = I,

Xi ∈ Rn×n, and
Xi � 0 for all i ∈ {1, 2, . . . ,K}}.

(3)

It should be noted that the positive semidefiniteness constraint Xi � 0 is replaced with the positive
definiteness constraint Xi � 0 to ensure that the set MK

n is differentiable. Below, we impose
a Riemannian structure to the matrix simplex manifold (3) and discuss ingredients that allow to
develop optimization algorithms systematically [1, 5].

2.1. Riemannian metric and tangent space projector

An element x of MK
n is numerically represented as the structure (X1,X2, . . . ,XK) which is a

collection of K symmetric positive definite matrices of size n× n.
The tangent space of MK

n at an element x is the linearization of the manifold, i.e., the con-
straint (2). Accordingly, the tangent space characterization ofMK

n at x is

TxMK
n = {(ξX1 , ξX2 , . . . , ξXK

) : ξX1 + ξX2 + . . .+ ξXK
= 0

ξXi ∈ Rn×n, and
ξ>Xi

= ξXi for all i ∈ {1, 2, . . . ,K}}.
(4)

It can be shown thatMK
n is an embedding submanifold of the SKn := SPDn × SPDn × . . .×K

SPDn, which is the Cartesian product ofK manifolds of symmetric positive definite matrices of size
n×n [1, 5]. Here SPDn denotes the manifold of n×n symmetric positive definite matrices that has
a well-known Riemannian geometry [2]. The dimension of the manifoldMK

n is (K−1)n(n+1)/2.
We endow the manifold with a smooth metric gx : TxMK

n × TxMK
n → R (inner product) at

every x ∈ MK
n [1]. A natural choice of the metric is based on the well-known bi-invariant metric

of SPDn [2], i.e.,
gx(ξx, ηx) :=

∑
i

trace(X−1i ξXiX
−1
i ηXi). (5)

Once the manifoldMK
n is endowed with the metric (5), the manifoldMK

n turns into a Rieman-
nian submanifold of SKn . Following [1, Chapters 3 and 4], the Riemannian submanifold structure
allows the computation of the Riemannian gradient and Hessian of a function (on the manifold) in
a straightforward manner from the partial derivatives of the function.

A critical ingredient in those computations is the computation of the linear projection operator
of a vector in the ambient space Rn×n × Rn×n × . . . ×K Rn×n onto the tangent space (4) at an
element ofMK

n . In particular, given z = (Z1,Z2, . . . ,ZK) ∈ Rn×n×Rn×n× . . .×K Rn×n in the
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ambient space, we compute the projection operator Πx : Rn×n×Rn×n× . . .×K Rn×n → TxMK
n ,

orthogonal with respect to the metric (5), as [11]

Πx(z) = arg min
ξx∈TxMK

n

−gx(z, ξx) +
1

2
gx(ξx, ξx),

which has the expression

Πx(z) = (Z1 + X1ΛX1, Z2 + X2ΛX2, . . . , ZK + XKΛXK), (6)

where Λ is the symmetric matrix that is the solution to the linear system∑
i

XiΛXi = −
∑
i

Zi. (7)

It is easy to verify that

• Πx(z) belongs to the tangent space TxMK
n and

• z − Πx(z) and Πx(z) complementary to each other with respect to the chosen metric (5) for
all choices of z.

2.2. Retraction operator

Given a vector in the tangent space, the retraction operator maps it to an element of the manifold
[1, Chapter 4]. Overall, the notion of retraction operation allows to move on the manifold, which is
required by any optimization algorithm.

A natural choice of the retraction operator on the manifoldMK
n is inspired from the well-known

exponential mapping operation on SPDn, the manifold of positive definite matrices [2]. However,
this only ensures positive definiteness of the output matrices. To maintain the summation equal
to I constraint, we additionally normalize in a particular fashion. Overall, given a tangent vector
ξx ∈ TxMK

n , the expression for the retraction operator Rx : TxMK
n →MK

n is

Rx(ξx) := (Y
−1/2
sum Y1Y

−1/2
sum , Y

−1/2
sum Y2Y

−1/2
sum , . . . , Y

−1/2
sum YKY

−1/2
sum ), (8)

where ξx = (ξX1 , ξX2 , . . . , ξXK
), Yi = Xi(expm(X−1i ξXi)), Ysum =

∑
i Yi, and expm(·) is the

matrix exponential operator.
To show that the operator (8) is a retraction operator, we need to verify the conditions [1, Chap-

ter 4]:

• the centering condition, i.e., Rx(0x) = x and

• the local rigidity condition, i.e., DRx(0x) = idTxMK
n

, where idTxMK
n

denotes the identity
mapping on TxMK

n .

The centering condition for (8) is straightforward to verify by setting ξx = 0. To verify the local
rigidity condition, we analyze the differential of the retraction operator locally, which is the com-
position of two steps: the first one is through the matrix exponential and the second is through
the normalization by pre and post multiplying with Y

−1/2
sum . The matrix exponential is locally rigid

due to the fact that it defines the well-known exponential mapping on the SPDn manifold [1, 2].
The normalization step (with pre and post multiplying by Y

−1/2
sum ) does not change local rigidness.

Hence, the overall composition (8) satisfies both the centering and local rigidity conditions needed
to be a retraction operation.
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2.3. Riemannian gradient and Hessian computations

As mentioned earlier, a benefit of the Riemannian submanifold structure is that it allows to compute
the Riemannian gradient and Hessian of a function in a systematic manner. To that end, we consider
a smooth function f :MK

n → R on the manifold. We also assume that it is well-defined on SKn .
If ∇xf is the Euclidean gradient of f at x ∈ MK

n , then the Riemannian gradient gradx f has
the expression

gradx f = Πx(gradient on SKn )
= Πx(X1symm(∇X1f)X1, X2symm(∇X2f)X2, . . . , XKsymm(∇XK

f)XK),

where ∇Xif is the partial derivative of f at x with respect to Xi and Πx is the tangent space
projection operator defined in (6). Here, symm(·) extracts the symmetric part of a matrix, i.e.,
symm(∆) = (∆ + ∆>)/2.

The computation of the Riemannian Hessian on the manifoldMK
n involves the notion of Rie-

mannian connection [1, Section 5.5]. The Riemannian connection, denoted as ∇ξxηx, at x ∈ MK
n

generalizes the covariant-derivative of the tangent vector ηx ∈ TxMK
n along the direction of the

tangent vector ξx ∈ TxMK
n on the manifoldMK

n . SinceMK
n is a Riemannian submanifold of the

manifold SKn , the computation of the Riemannian connection enjoys a simple expression in terms
of the computations on the symmetric positive definite manifold SPDn [2]. In particular, the Rie-
mannian connection onMK

n is obtained by restricting the connection on SKn to the tangent space
TxMK

n . The connection on SKn is easy to derive thanks to the well-known Riemannian geometry
of SPDn. Overall, the Riemannian connection expression forMK

n is

∇ξxηx = Πx(connection on SKn )

= Πx(Dηx[ξx]− (symm(ξX1X
−1
1 ηX1), . . . , symm(ξXK

X−1K ηXK
))),

(9)

where Dηx[ξx] denotes the directional derivative of ηx along ξx. Based on the expression (9), the
Riemannian Hessian operation Hessxf [ξx] along a tangent vector ξx ∈ TxMK

n has the expression

Hessxf [ξx] = ∇ξx gradx f.

2.4. Computational cost of optimization ingredients

The expressions shown earlier involve matrix operations that cost O(n3K). The solution to the
system (7) can be obtained iteratively using standard linear equation solvers. The overall cost for
the computations is linear in K.

3. Extension to other cases

The Hermitian case

The earlier developments easily extend to Hermitian positive definite matrices satisfying the con-
straint (2). The matrix transpose operation is replaced with the conjugate transpose operation [14].
The expressions in Section 2 are modified accordingly.
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Decomposition of a symmetric positive definite matrix

The constraint (2) can be generalized to decomposition of a general symmetric positive definite
matrix M � 0, i.e.,

X1 + X2 + . . .+ XK = M. (10)

The constraint (10) can be translated to the simplex constraint (2) with a variable change by pre-
and post-multiplying with M−1/2. Consequently, the optimization ingredients developed in Section
2 can be used to perform optimization over the constraint set (10).

Dealing with large-scale scenarios

As discussed in Section 2.4, the manifold related operations cost O(n3). For large values of n,
the computational cost is prohibitive. A way forward is to learn the matrices Xis in a restricted
subspace. This is achieved by modeling Xi = UBiU

> as a rank-r matrix, where the subspace is
captured by U ∈ Rn×r and Bi � 0 is a r-by-r symmetric positive definite matrix [3]. It should
be noted that U is common across all Xis. Learning of U and Bis is then equivalent to optimizing
with the constraints U>U = I and B1 + B2 + . . . + BK = I, which is viewed as a Cartesian
product of Stiefel and matrix simplex manifolds. The computations of optimization ingredients in
this case cost O(nr2 + r3K) which is much less than O(n3K) for r � n.

4. Toy example: learning mutually orthogonal subspaces

The constraint (2) allows to learn mutually orthogonal subspaces, i.e., X1, X2, . . . , and XK are
mutually orthogonal. To this end, we consider three matrices A1, A2, and A3 of size 100 × 100
such that they share mutually orthogonal eigenvectors and have all eigenvalues as either 1 or 0. The
eigenvalues are added with uniformly random numbers between 0 and 1 to generate noisy matrices
Â1, Â2, and Â3. We solve the problem:

min
(X1,X2,...,XK)∈MK

n

−
∑
k

trace(XkÂk). (11)

Here, n = 100 and K = 3. To measure effectiveness of learning mutually orthogonal matrices, we
define the mutual orthogonality error for Xi as trace(Xi(I−Xi))

‖Xi‖Fro‖I−Xi‖Fro . A zero mutual orthogonality error
for Xi ensures that Xi is orthogonal to other matrices.

We implement a trust-region algorithm for solving (11). Figure 1 shows the performance of the
algorithm on the problem instance. We observe that our algorithm is able to achieve a high degree
of mutual orthogonality between the learned matrices as the error falls below 10−6.

In this case, the mutual orthogonality error for Â1, which is trace(Â1(Â2+Â3))

‖Â1‖Fro‖Â2+Â3‖Fro
is 0.68. Simi-

larly, the mutual orthogonality errors for Â2 and Â3 are 0.66 and 0.65, respectively.

5. Conclusion

We discussed the matrix simplex manifold as a generalization of the popular probability simplex
constraint to symmetric positive semidefinite matrices. The main aim of the work was to understand
the geometry of the manifold from an optimization perspective. To this end, the expressions of
optimization-related tools were developed.
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Figure 1: The matrix simplex constraint allows learning of mutually orthogonal subspaces. Solving
(11) leads to identifying mutually orthogonal matrices while ensuring a low reconstruc-
tion error.
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