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Abstract
This paper is an in-depth investigation using kernel methods to robustify optimization solutions
against distributional ambiguity. We propose kernel distributionally robust optimization (K-DRO)
using insights from the robust optimization theory and functional analysis. Our method uses repro-
ducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity sets, including
sets based on integral probability metrics and finite-order moment bounds. This perspective unifies
multiple existing robust optimization methods. We then prove a theorem that reformulates the max-
imization with respect to measures into the dual problem that searches for smooth functions. Using
universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations
such as quadratic loss and knowledge of Lipschitz constant.

1. Introduction

The concept of distributional ambiguity concerns the uncertainty of uncertainty — the underlying
probability measure is only partially known or subject to change. This idea is by no means a new
one. The classical moment problem concerns itself with estimating the worst-case risk expressed
by maxP∈K

∫
l dP where l is some loss function. The constraint P ∈ K describes the distribution

ambiguity, i.e., P is only known to live within a subset K of probability measures. The solution to
the moment problem gives the risk under some worst-case distribution withinK. To make decisions
that will minimize this worst-case risk is the idea of distributionally robust optimization (DRO) [8,
25].

Today’s learning tasks suffer from various manifestations of distributional ambiguity — e.g.,
covariate shift, adversarial attacks — phenomena that are caused by the discrepancy between train-
ing and test distributions. Kernel methods are known to possess robustness properties, e.g., [6, 35].
However, this robustness only applies to kernelized models. This paper extends the robustness of
kernel methods using the robust counterpart formulation techniques [1] as well as the conic duality
theory [27]. We term our approach kernel distributionally robust optimization (K-DRO), which can
robustify general optimization solutions not limited to kernelized models.

The main contributions of this paper are the following.
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1. We rigorously prove Theorem 1 for reformulating general DRO into a convex dual problem
searching for RKHS functions, lifting common limitations of DRO on the loss functions, such
as quadratic loss classes and knowledge of Lipschitz constant.

2. We use RKHSs to construct a wide range of convex ambiguity sets (in Table 1) including sets
based on integral probability metrics (IPM) and finite-order moment bounds. This perspective
unifies existing RO and DRO methods.

In addition, we give complete self-contained proofs in the full version of this paper1 that shed
light on the connection between RKHSs, conic duality, and DRO.

2. Background

Notation. X ⊂ Rd denotes the input domain, which is assumed to be compact unless otherwise
specified. P := P(X ) denotes the set of all Borel probability measures on X . SN denotes the
N -dimensional simplex. ri(·) denotes the relative interior of a set. A function f is upper semicon-
tinuous on X if lim supx→x0 f(x) ≤ f(x0),∀x0 ∈ X ; it is proper if it is not identically −∞.

Distributionally robust optimization. Distributionally robust optimization (DRO) minimizes the
expected loss assuming the worst-case distribution:

min
θ

sup
P∈K

{∫
l(θ, ξ) dP (ξ)

}
, (1)

where K ⊆ P , called the ambiguity set, is a subset of distributions, e.g., all distributions with the
given mean and variance. The goal of (1) is then to make the decision θ that will minimize the worst-
case risk. Compared with RO, DRO only immunizes the solution against a subset K of distributions
on X and is, therefore, less conservative. Existing DRO approaches can be grouped into three main
categories by the type of ambiguity sets used: DRO with moment constraints, likelihood bounds, and
Wasserstein distance. DRO with (finite-order) moment constraints has been studied in [8, 25, 38].
The authors of [2, 9, 16, 21, 34] studied DRO using likelihood bounds as well as φ−divergence.
Wasserstein-distance-based DRO has been studied by the authors of [4, 12, 20, 36], and applied in
a large body of literature. Notably, the authors of [26] applied Wasserstein-DRO to a kernel-based
learning task, which should not be confused with K-DRO in this paper.

Reproducing kernel Hilbert spaces. A symmetric function k : X × X → R is called a positive
definite kernel if

∑n
i=1

∑n
i=1 aiajk(xi, xj) ≥ 0 for any n ∈ N, {xi}ni=1 ⊂ X , and {ai}ni=1 ⊂ R.

Given a positive definite kernel k, there exists a Hilbert spaceH and a feature map φ : X → H, for
which k(x, y) = 〈φ(x), φ(y)〉H defines an inner product on H, where H is a space of real-valued
functions on X . The space H is called a reproducing kernel Hilbert space (RKHS). It is equipped
with the reproducing property: f(x) = 〈f, φ(x)〉H for any f ∈ H, x ∈ X . By convention, we will
denote the canonical feature map as φ(x) := k(x, ·). A continuous kernel k on a compact metric
space X is said to be universal ifH is dense in C(X ) [31, Section 4.5].

RKHSs first gained widespread attention following the advent of the kernelized support vec-
tor machine for classification problems [7]. More recently, the use of RKHSs has been extended
to manipulating and comparing probability distributions via kernel mean embedding [28]. Given
a distribution P , and a (positive definite) kernel k, the kernel mean embedding of P is defined

1. A full version of this paper is available at https://arxiv.org/pdf/2006.06981.pdf
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(a) (b)

Figure 1: (a): Geometric intuition for choosing uncertainty set C inH such as norm-ball, polytope,
and Minkowski sum of sets. The scattered points are the embeddings of empirical sam-
ples. (b): Geometric interpretation of K-DRO (3). The (red) curve depicts f0 + f , which
majorizes l(θ, ·) (black). The horizontal axis is ξ. The dashed lines denote the boundary
of the domain X .

as µP :=
∫
k(x, ·) dP . If Ex∼P [k(x, x)] < ∞, then µP ∈ H [28, Section 1.2]. Embedding

distributions into H also allows one to measure the distance between distributions in H. If k is
universal, then the mean map P 7→ µP is injective on P [13]. With a universal H, given two
distributions P,Q, ‖µP − µQ‖H defines a metric. This quantity is known as the maximum mean
discrepancy (MMD) [13]. With ‖f‖H :=

√
〈f, f〉H and the reproducing property, it can be shown

that ‖µP − µQ‖2H = Ex,x′∼Pk(x, x′) + Ey,y′∼Qk(y, y′)− 2Ex∼P,y∼Qk(x, y), allowing the plug-in
estimator to be used for estimating the MMD from empirical data.

3. Main result

To solve the DRO problem (1), we need two essential elements: an appropriate ambiguity set that
contains meaningful distributions and a sharp reformulation of the min-max problem. We now
present the kernel distributionally robust optimization (K-DRO), which we will show to satisfy
those requirements:

min
θ

sup
P,µ

{∫
l(θ, ξ) dP (ξ) :

∫
φ dP = µ, P ∈ P, µ ∈ C

}
, (2)

whereH is an RKHS whose feature map is φ. Both sides of the constraint
∫
φ dP = µ are functions

in H. Note µ can be viewed as a generalized moment vector, which is constrained to lie within the
set C ⊆ H, referred to as an (RKHS) uncertainty set. Let us denote the set of all feasible distributions
in (2) as KC = {P :

∫
φ dP = µ, µ ∈ C, P ∈ P}, i.e., KC is the ambiguity set. Intuitively, the set

C restricts the RKHS embeddings of distributions in the ambiguity set KC . In this paper, we take
a geometric perspective to construct C using convex sets in H. Given data samples {ξi}Ni=1, we
outline various choices for C in the left column of Table 1 (see the full version for more cases), and
illustrate our intuition in Figure 1 (a). We make the following regularity assumptions used in the
proofs.

Assumption 1 l(θ, ξ) is proper, upper semicontinuous in ξ. C is closed convex. ri(KC) 6= ∅.

We first give the main result for solving K-DRO (2). All proofs are deferred to the full version of
this paper.
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Table 1: Examples of support functions for K-DRO. See the full version for more details.

RKHS uncertainty set C Support function δ∗C(f)

RKHS norm-ball C = {µ : ‖µ− µP̂ ‖H ≤ ε}
1
N

∑N
i=1 f(ξi) + ε‖f‖H

(P̂ =
∑N

i=1
1
N δξi)

Polytope C = conv{φ(ξ1), . . . , φ(ξN )} maxi f(ξi) (equivalent to scenario approach [5],
and SVMs with no slack)

Minkowski sum C =
∑N

i=1 Ci
∑N

i=1 δ
∗
Ci(f)

Whole space C = H 0 if f = 0,∞ otherwise (equivalent to RO)

Theorem 1 (K-DRO reformulation) Under Assumption 1, (2) is equivalent to solving

min
θ,f0∈R,f∈H

f0 + δ∗C(f) subject to l(θ, ξ) ≤ f0 + f(ξ), ∀ξ ∈ X (3)

where δ∗C(f) := supµ∈C〈f, µ〉H is the support function of C, i.e., strong duality holds for the inner
moment problem for any θ point-wise.

The theorem holds regardless of the dependency of l on θ, e.g., non-convexity. If l is convex in
θ, then (3) is a convex program. Formulation (3) has a clear geometric interpretation: we find a
function f0 + f that majorizes l(θ, ·) and subsequently minimize a surrogate loss involving f0 and
f . This is illustrated in Figure 1 (b).

A distinction between Theorem 1 and other DRO approaches is that it does not use the functional
(semi-)norm of the loss itself. Rather, it uses the universality of RKHS to find a surrogate which
can sharply bound the worst-case risk. This means we do not require the loss l(θ, ·) to be affine,
quadratic, or living in a known RKHS. Nor does it require the knowledge of Lipschitz constant or
RKHS norm of the loss. To our knowledge, existing works, such as Wasserstein DRO [20], typically
require one of those assumptions.

Theorem 1 generalizes existing RO and DRO in the sense that it gives us a flexible tool to work
with various ambiguity and uncertainty sets, which may be customized for specific applications.
It reveals the relationship between existing methods such as SVMs, worst-case RO and K-DRO.
We outline a few closed-form expressions of the support function δ∗C(f) in Table 1, while more are
given in Table ??. In the following, while we pay special attention to the RKHS norm-balls since
they provide the elementary topological sets, our proof holds for general choices of C.

Example 1 (Reduction to DRO with moment constraints) K-DRO with the second-order poly-
nomial kernel k2(x, y) := (1 +x>y)2 and a singleton uncertainty set C = {µP̂ } immunizes against
all distributions sharing the first two moments with P̂ . This is equivalent to DRO with known first
two moments, such as in [8, 25]. More generally, the choice of the pth-order polynomial kernel
kp(x, y) := (1 + x>y)p corresponds to DRO with known first p moments.

The example above reveals the relationship between Theorem 1 and the classical bound in gener-
alized moment problems [3, 15, 19, 22, 27, 32, 33]: Theorem 1 generalizes the moment bound to
infinite orders.
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Our K-DRO reformulation (3) can be further generalized to the class of integral probability
metric. Suppose dF is the IPM defined by some class of functions F . Then, we can reformulate
IPM-DRO minθ supdF (P,P̂ )≤ε

∫
l(θ, ξ) dP (ξ) as the following.

min
θ,λ≥0,f0∈R,f∈F

f0 +
1

N

N∑
i=1

λf(ξi) + λε subject to l(θ, ξ) ≤ f0 + λf(ξ), ∀ξ ∈ X . (4)

If we choose the class F = {f : ‖f‖H ≤ 1}, we recover K-DRO (by noting ‖λf‖H = λ,∀f ∈ F).
Similarly, F = {f : lip(f) ≤ 1} recovers the (type-1) Wasserstein-DRO. This puts Wasserstein-
DRO and K-DRO into a unified perspective.

4. Computation and numerical example

In the following, we propose a strightforward approximation to K-DRO solutions based on the
discretization method for solving SIP [14]. Let usconsider K-DRO restricted to a smaller ambiguity
set of distributions supported on some {ζj}Mj=1 ⊆ X . Then it suffices to consider the following
program, which relaxes the constraint of (3).

min
θ,f∈H,f0∈R

f0 +
1

N

N∑
i=1

f(ξi) + ε‖f‖H subject to l(θ, ξi) ≤ f(ζj) + f0, j = 1 . . .M. (5)

This idea of using a smaller optimistic ambiguity set has also been used in other DRO approaches,
e.g., in [18, Thoerem 6]. We can parametrize the RKHS function f by a wealth of kernel meth-
ods, such as the random Fourier features approximation f(x) ≈=

∑N
i=1 α

>φ̂i(x) for large scale
learning [23]. Note (5) is convex in the decision variable θ and f if l(θ, ξ) in convex in θ.

Distributionally robust solution to uncertain least squares We consider a robust least squares
problem adapted from [11], which demonstrated an historically important application of RO to
statistical learning. The task is to minimize the objective ‖Aθ − b‖22 w.r.t. θ. A is modeled by
A(ξ) = A0 + ξA1, where ξ ∈ X is uncertain, X = [−1, 1], and A0, A1 ∈ R10×10, b ∈ R10

are given. We compare K-DRO against using (a) empirical risk minimization (ERM; also known
as sample average approximation) that minimizes 1

N

∑N
i=1 ‖A(ξi) θ − b‖22, (b) worst-case RO via

SDP from [11]. We consider a data-driven setting with given samples {ξi}Ni=1. We formulate the
K-DRO problem as minθ maxP∈P,µ∈C Eξ∼P ‖A(ξ) θ − b‖22 subject to

∫
φdP = µ, where we

choose the uncertainty set to be C = {µ : ‖µ− µP̂ ‖H ≤ ε}, where µP̂ =
∑N

i=1
1
N φ(ξi).

Empirical samples {ξi}Ni=1(N = 10) are generated uniformly from [−0.5, 0.5]. We then apply
K-DRO formulation (5). To test the solution, we create a distribution shift by generating test samples
from [−0.5·(1+∆), 0.5·(1+∆)], where ∆ is a perturbation varying within [0, 4]. Figure 2 (a) shows
this comparison. As the perturbation increases, ERM quickly lost robustness. On the other hand,
RO is the most robust with the trade-off of being conservative. As expected, K-DRO achieves some
level of optimality while retaining robustness. We then ran K-DRO with fewer empirical samples
(N = 5) to show the geometric interpretations. We plot the optimal dual solution f∗0 +f∗ in Figure 2.
Recall it is an over-estimator of the loss l(θ, ·). We then solve the inner moment problem to obtain
a worst-case distribution P ∗. Comparing P ∗ with P̂ , we can observe the adversarial behavior of the
worst-case distribution. See the caption for more description.
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Figure 2: (a) This plot depicts the test loss of algorithms. All error bars are in standard error. We
ran 10 independent trials. In each trial, we solved K-DRO to obtain θ ∗ and tested it on
a test dataset of 500 samples. We then vary the perturbation ∆ from 0 to 4. (b) (red) is
the dual optimal solution f∗0 + f∗. (black) is the function l(θ∗, ·). The pink bars depict
a worst-case distribution while the blue bars the empirical distribution. We can observe
that f∗0 + f∗ touches loss l(θ∗, ·) at the support of the worst-case distribution P ∗ (pink
dots). Note f∗ (normalized) can be viewed as a witness function of the two distributions.

5. Other related work

The authors of [10] proposed variational approximations to marginal DRO to treat covariate shift
in supervised learning. The authors of [37] used kernel mean embedding for the inner moment
problem. The work of [30] used insights from DRO to motivate a regularizer for kernel ridge
regression. DRO has been also applied to Bayesian optimization in [17, 24], where the latter work
used MMD ambiguity sets of distributions over discrete spaces. To the best of our knowledge, no
existing work has explored the results, such as generalized ambiguity set constructions in Table 1,
as well as a bound in the form of Theorem 1 for general loss functions.

6. Discussion

The compactness assumption onX may be further extended, just like universality can be extended to
non-compact domains [29]. Choosing ε in this paper can be further motivated using kernel statistical
testing [13] and domain adaptation. All the programs in this paper are solved using off-the-shelf
solvers. A future direction is to explore tailored numerical methods for K-DRO for large scale
learning.
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