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Abstract
We study the implicit bias of gradient flow (i.e., gradient descent with infinitesimal step size) on
linear neural network training. We propose a tensor formulation of neural networks that includes
fully-connected, diagonal, and convolutional networks as special cases, and investigate the linear
version of the formulation called linear tensor networks. With this formulation, we can identify
the convergence direction of the network parameters as singular vectors of a tensor defined by the
network. For L-layer linear tensor networks that are orthogonally decomposable, we show that
gradient flow on separable classification finds a stationary point of the `2/L max-margin problem
in a “transformed” input space defined by the network. For underdetermined regression, we prove
that gradient flow finds a global minimum which minimizes a norm-like function that interpolates
between weighted `1 and `2 norms in the transformed input space. Our theorems subsume existing
results in the literature while removing standard convergence assumptions.

1. Introduction
Overparametrized neural networks have infinitely many solutions that achieve zero training error,
and such global minima have different generalization performance. Moreover, training a neural
network is a high-dimensional nonconvex problem, which is typically intractable to solve. However,
the success of deep learning indicates that first-order methods such as gradient descent or stochastic
gradient descent (GD/SGD) not only (a) succeed in finding global minima, but also (b) are biased
towards solutions that generalize well, which largely has remained a mystery in the literature.

To explain part (a) of the phenomenon, there is a growing literature studying the convergence
of GD/SGD on overparametrized neural networks (e.g., [1, 9, 10, 17, 28, 33]). There are also
convergence results that focus on linear networks [3, 5, 8, 16, 31]. These results typically focus on
the convergence of loss, hence do not address which of the many global minima is reached.

Another line of results tackles part (b), by studying the implicit bias or regularization of gradient-
based methods on neural networks or related problems [2, 4, 6, 11–14, 18, 29, 30]. These results
have shown interesting progress that even without explicit regularization terms in the training ob-
jective, algorithms such as GD applied on neural networks have an implicit bias towards certain
solutions among the many global minima. However, in proving such results, many results rely
on convergence assumptions such as global convergence of loss to zero and/or directional conver-
gence of parameters and gradients, which ideally should be removed. We cover more details on this
literature in Section B.
∗ Based on work performed during internship at Google Research
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A UNIFYING VIEW ON IMPLICIT BIAS IN TRAINING LINEAR NEURAL NETWORKS

1.1. Summary of our contributions
We study the implicit bias of gradient flow (GD with infinitesimal step size) on linear neural net-
works. Following recent literature, we consider classification and regression problems that have
multiple solutions with zero training error. Our analyses apply to a general class of networks,
and prove both convergence and bias, overcoming the limitations of the existing results.

We propose a general tensor formulation of nonlinear neural networks which includes many
network architectures considered in the literature. In this paper, we focus on the linear version of
this formulation, called linear tensor networks. For linearly separable classification, we prove that
the network parameters converge in direction to singular vectors of a tensor defined by the network.
Also, we show that if the linear tensor network is orthogonally decomposable (Assumption 1), the
gradient flow finds the `2/depth max-margin solution in the singular value space, leading the param-
eters to converge to the top singular vectors of the tensor when depth = 2. For underdetermined
linear regression, we study the limit points of gradient flow on orthogonally decomposable net-
works (Assumption 1), and provide a full characterization of the limit points. Due to space limits,
additional theorems on 2-layer linear tensor networks in an extremely overparametrized setting, as
well as results for specific network architectures (fully-connected, diagonal, and convolutional), are
deferred to Appendix D and E. We also present our simple experiments in Appendix F.

2. Problem settings and tensor formulation of neural networks
Given a positive integer a, let [a] := {1, . . . , a}. We use Id to denote the d× d identity matrix. For
two vectors a and b, let a⊗b be their tensor product, a�b be their element-wise product, and a�k

be the element-wise k-th power of a. Given an order-L tensor A ∈ Rk1×···×kL , we use [A]j1,...,jL
to denote (j1, j2, . . . , jL)-th element of A, where jl ∈ [kl] for all l ∈ [L]. In element indexing, we
use · to denote all indices in the corresponding dimension. We use ekj to denote the j-th stardard
basis vector of the vector space Rk. Given a tensor A ∈ Rk1×···×kL and linear maps Bl ∈ Rpl×kl
for l ∈ [L], we define the multilinear multiplication ◦ between them as

A ◦ (BT
1 ,B

T
2 , . . . ,B

T
L ) =

∑
j1,...,jL

[A]j1,...,jL(ek1j1 ⊗ · · · ⊗ e
kL
jL

) ◦ (BT
1 , . . . ,B

T
L )

:=
∑

j1,...,jL
[A]j1,...,jL(B1e

k1
j1
⊗ · · · ⊗BLe

kL
jL

) ∈ Rp1×···×pL .

2.1. Problem settings
We are given a dataset {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ R. We letX ∈ Rn×d and y ∈ Rn be
the data matrix and label vector, respectively. We study binary classification and linear regression
in this paper, in order to focus on the settings where there exist many global solutions. For binary
classification, we assume yi ∈ {±1} and that the data is separable: there exists a unit vector z such
that yixTi z ≥ γ > 0 for all i ∈ [n]. For regression, we consider the underdetermined case (n ≤ d)
where there are many parameters z ∈ Rd such thatXz = y. We assumeX has full row rank.

We use f(·; Θ) : Rd → R to denote a model parametrized by Θ. Given the network and the
dataset, we consider minimizing the training loss L(Θ) :=

∑n
i=1 `(f(xi; Θ), yi) over Θ. Follow-

ing previous results (e.g., [21, 23]), we use the exponential loss `(ŷ, y) = exp(−ŷy) for classifica-
tion problems. For regression, we use the squared error loss `(ŷ, y) = 1

2(ŷ − y)2. On the algorithm
side, we minimize L using gradient flow, which can be viewed as GD with infinitesimal step size.
The gradient flow dynamics is defined as d

dtΘ = −∇ΘL(Θ).
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2.2. Tensor formulation of neural networks
We now present a general tensor formulation of neural networks. Given an input x ∈ Rd, the
network uses a linear map M that maps x to a order-L tensor M(x) ∈ Rk1×···×kL , where L ≥ 2.
Using parameters vl ∈ Rkl and activation φ, the network computes its layers as the following:

H1(x) = φ (M(x) ◦ (v1, Ik2 , . . . , IkL)) ∈ Rk2×···×kL ,
Hl(x) = φ

(
Hl−1(x) ◦ (vl, Ikl+1

, . . . , IkL)
)
∈ Rkl+1×...,kL , for l = 2, . . . , L− 1,

f(x; Θ) = HL−1(x) ◦ vL ∈ R.
(1)

We use Θ to denote the collection of all parameters (v1, . . . ,vL). We call M(x) the data tensor.
This new formulation is general enough to capture many architectures considered in the literature,
including fully-connected networks, diagonal networks, and circular convolutional networks.
In Appendix C, we formally define these architectures and show that they are special cases of (1).

For the remaining of the paper, we study the case whose activation is linear, i.e., φ(t) = t:

f(x; Θ) = M(x) ◦ (v1,v2, . . . ,vL). (2)

We will refer to (2) as linear tensor networks. Since the data tensor M(x) is a linear function of x,
the linear tensor network is also a linear function of x. Thus, the output of the network can also be
written as f(x; Θ) = xTβ(Θ), where β(Θ) ∈ Rd denotes the linear coefficients computed as a
function of the network parameters Θ. Note that the expressive power of any linear tensor network is
at best a linear model x 7→ xTz; however, even though the models have the same expressive power,
their architectural differences lead to different implicit biases in training, which we investigate in this
paper. Studying separable classification and underdetermined regression is useful for highlighting
such biases because there are infinitely many coefficients that perfectly classify or fit the dataset.

For our linear tensor network, the evolution of the parameters vl via gradient flow reads

v̇l = −∇vlL(Θ) = −
∑n

i=1
`′(f(xi; Θ), yi)M(xi) ◦ (v1, . . . ,vl−1, Ikl ,vl+1, . . . ,vL)

= M(−XTr) ◦ (v1, . . . ,vl−1, Ikl ,vl+1, . . . ,vL), ∀l ∈ [L],

where we initialize vl(0) = αv̄l, for l ∈ [L]. We refer to α and v̄l as the initial scale and initial
direction, respectively. The vector r ∈ Rn is the residual vector, defined as

[r]i = `′(f(xi; Θ), yi) =

{
−yi exp(−yif(xi; Θ)) for classification,
f(xi; Θ)− yi for regression.

(3)

3. Implicit bias of gradient flow on separable classification
In this section, we present our results on the implicit bias of gradient flow in binary classification
with linearly separable data. Consider the singular value decomposition (SVD) of a matrix A =∑m

j=1 sj(uj ⊗ vj), where m is the rank of A. Note that the tuples (uj ,vj , sj) are solutions to the
system of equations su = Av and sv = ATu. Lim [22] generalizes this definition of singular
vectors and singular values to higher-order tensors: given an order-L tensor A ∈ Rk1×···×kL , we
define the singular vectors u1,u2, . . . ,uL and singular value s to be the solution of the following:

sul = A ◦ (u1, . . . ,ul−1, Ikl ,ul+1, . . . ,uL), for l ∈ [L]. (4)

Using the definition of the singular vectors of tensors, we can characterize the limit direction of
parameters after reaching 100% training accuracy. In Appendix G, we prove the following:
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Theorem 1 If the gradient flow satisfies L(Θ(t0)) < 1 for some t0 ≥ 0 andXTr(t) converges in
direction, then v1, . . . ,vL converge to the singular vectors of M(− limt→∞XT r(t)/‖XT r(t)‖).

For this theorem, we make some convergence assumptions, because the network is fully gen-
eral; this is the only result where we assume convergence. It fact, for the special case of linear
fully-connected networks, the directional convergence assumption is not required, and their linear
coefficients converge in direction to the `2 max-margin classifier. We state this corollary in Ap-
pendix E.2; this result also appears in Ji and Telgarsky [21], but we provide an alternative proof.

Admittedly, Theorem 1 is not a full characterization of the limit directions, because there are
usually multiple solutions that satisfy (4). However, a better characterization of the directions is dif-
ficult, because singular vectors of high-order tensors are not well-understood as well as intractable
to compute [15]. Given this intractability, it might be reasonable to make some assumptions on the
“structure” of the data tensor M(x), so that they are easier to handle. The following assumption de-
fines a class of orthogonally decomposable data tensors, which includes linear diagonal networks
and linear full-length convolutional networks as special cases (see Appendix H.2 and H.3).

Assumption 1 For the data tensor M(x) ∈ Rk1×···×kL of a linear tensor network (2), there exist
a full column rank matrix S ∈ Cm×d (d ≤ m ≤ minl kl) and matrices U1 ∈ Ck1×m, . . . ,UL ∈
CkL×m such that UH

l Ul = Ikl for all l ∈ [L], and the data tensor M(x) can be written as

M(x) =
∑m

j=1
[Sx]j([U1]·,j ⊗ [U2]·,j ⊗ · · · ⊗ [UL]·,j). (5)

In this assumption, we allowU1, . . . ,UL and S to be complex matrices, although M(x) and param-
eters vl stay real, as defined earlier. For a complex matrix A, we use A∗ to denote its entry-wise
complex conjugate, AT to denote its transpose (without conjugating), and AH to denote its conju-
gate transpose. Using the assumption, the following theorem characterizes the limit directions.

Theorem 2 Suppose a linear tensor network satisfies Assumption 1. If there exists λ > 0 such that
the initial directions v̄1, . . . , v̄L of the network parameters satisfy |[UT

l v̄l]j |2−|[UT
L v̄L]j |2 ≥ λ for

all l ∈ [L − 1] and j ∈ [m], then β(Θ(t)) converges in a direction that aligns with STρ∞, where
ρ∞ ∈ Cm denotes a stationary point of the following optimization problem

minimizeρ∈Cm ‖ρ‖2/L subject to yix
T
i S

Tρ ≥ 1, ∀i ∈ [n].

If S is invertible, then β(Θ(t)) converges in a direction that aligns with a stationary point z∞ of

minimizez∈Rd ‖S−Tz‖2/L subject to yix
T
i z ≥ 1, ∀i ∈ [n].

Theorem 2 shows that the gradient flow finds sparse ρ∞ that minimizes the `2/L norm in the
“singular value space,” where the data points xi are transformed into the singular values Sxi. Also,
the proof of Theorem 2 reveals that in case of L = 2, the parameters vl(t) in fact converge to the
top singular vectors of the data tensor M(−XTr); thus, compared to Theorem 1, we have a more
complete characterization of “which” singular vectors to converge to. The proof is in Appendix H.

In our theorems, we pose assumptions on initial directions v̄l that are sufficient conditions for
the loss L(Θ(t)) to converge to zero. Note that λ can be arbitrarily small, so the condition is
satisfied with probability 1 if we set v̄L = 0 and sample v̄l’s from i.i.d. Gaussian distribution.

Theorem 2 leads to corollaries (stated in Appendix E.3) on linear diagonal and full-length con-
volutional networks, showing that diagonal (or convolutional) networks converge to the stationary
point of the max-margin problem with respect to the `2/L norm (or DFT-domain `2/L norm). Al-
though this was already shown in Gunasekar et al. [14], note that Theorem 2 does not rely on
convergence assumptions, which is different from the prior results.
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4. Implicit bias of gradient flow on underdetermined regression
In Section 3, we observed that the limit directions of parameters do not depend on initialization.
This is not the case in regression setting, because parameters do not diverge to infinity. As we show
in this section, the limit points are closely tied to initialization. For the orthogonally decomposable
networks (Assumption 1) with real S and Ul’s, we show how limit points of gradient flow change
according to initialization. We consider an initialization scheme that, in the special case of diagonal
networks, corresponds to initializing the first L − 1 layers to the same value and the last layer to
zero. We use the following lemma on a relevant system of ODEs:

Lemma 3 Consider the system of ODEs, where p, q : R→ R:

ṗ = pL−2q, q̇ = pL−1, p(0) = 1, q(0) = 0.

Then, the solutions pL(t) and qL(t) are continuous on their maximal interval of existence of the
form (−c, c) ⊂ R for some c ∈ (0,∞]. Define hL(t) = pL(t)L−1qL(t); then, hL(t) is odd and
strictly increasing, satisfying limt↑c hL(t) =∞ and limt↓−c hL(t) = −∞.

Using the function hL(t) from Lemma 3, we can obtain the following theorem that characterizes
the limit points as the minimizer of a norm-like function QL,α,η̄ among the global minima.

Theorem 4 Suppose a linear tensor network satisfies Assumption 1. Assume further that the matri-
ces U1, . . . ,UL and S from Assumption 1 are all real. For some λ > 0, choose any vector η̄ ∈ Rm
satisfying [η̄]2j ≥ λ for all j ∈ [m], and choose initial directions v̄l = Ulη̄ for l ∈ [L − 1] and
v̄L = 0. Then, the linear coefficients β(Θ(t)) converge to STρ∞, where ρ∞ is the solution of

minimizeρ∈Rm QL,α,η̄(ρ) := α2
∑m

j=1
[η̄]2jHL

(
[ρ]j

αL|[η̄]j |L

)
subject to XSTρ = y,

where QL,α,η̄ : Rm → R is a norm-like function defined using HL(t) :=
∫ t

0 h
−1
L (τ)dτ . If S is

invertible, then β(Θ(t)) converges to the solution z∞ of

minimizez∈Rd QL,α,η̄(S−Tz) subject to Xz = y.

The proofs of Lemma 3 and Theorem 4 are deferred to Appendix I. It can be checked thatHL(t)
grows like the absolute value function if t is large, and grows like a quadratic function if t is close
to zero. This means that

lim
α→0

QL,α,η̄(ρ) ∝
∑m

j=1

|[ρ]j |
|[η̄]j |L−2 , lim

α→∞
QL,α,η̄(ρ) ∝

∑m

j=1

[ρ]2j

[η̄]2L−2
j

,

so QL,α,η̄ interpolates between the weighted `1 and weighted `2 norms of ρ. Also, the weights
in the norm are dependent on the initialization direction η̄ unless L = 2 and α → 0. In general,
QL,α,η̄ interpolates the standard `1 and `2 norms only if |[η̄]j | is the same for all j ∈ [m]. This result
is similar to the observations made in Woodworth et al. [30] which considers a diagonal network
with a “differential” structure f(x;w+,w−) = xT (w�L+ −w�L− ). In contrast, our results apply to a
more general class of networks, without the need to have the differential structure. In Appendix E.4,
we state corollaries of Theorem 4 for linear diagonal networks and linear full-length convolutional
networks with even data points. There, we also show that deep matrix sensing with commutative
sensor matrices [4] is a special case of our setting.
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Appendix A. Organization and additional notation

Due to page limits, we deferred some parts of the paper to the appendix. We first summarize the
organization of the supplementary material and also introduce some additional notation that will be
used throughout. In Appendix B, we summarize existing results in the implicit bias/regularization
literature that are most relevant to our paper. Appendix C is devoted to showing specific examples
of our tensor formulation (1): we show that fully-connected, diagonal, and circular convolutional
networks are special cases of our formulation. Next, in Appendix D, we state theorems that were
omitted in the main text, which study an extreme overparametrization setting where there is only
one data point. Although having n = 1 is restrictive, our theorems hold for any 2-layer linear ten-
sor networks, including convolutional networks with filter size less than input dimension d, which
are not covered by previous results. In Appendix E, we state results on specific network architec-
tures such as fully-connected, diagonal, and convolutional networks. Our simple experiments are
presented in Appendix F, and the rest of the sections are the proofs of the theorems and corollaries.

We now summarize some additional notation used in the appendix. Given a matrix A, we use
vec(A) to denote its vectorization, i.e., the concatenation of all columns ofA. In element indexing
of tensors/matrices/vectors, we use · to denote all indices in the corresponding dimension, and a : b
to denote all indices from a to b. For example, for a matrix A, [A]·,4:6 denotes a submatrix that
consists of 4th–6th columns of A. The square bracket notation for indexing overloads with [a]
when a ∈ N, but they will be distinguishable from the context. Since element indices start from 1,
we re-define the modulo operation a mod d := a− ba−1

d cd ∈ [d] for a > 0.

Appendix B. Related works

Gradient flow/descent in separable classification. For linear models f(x; z) = xTz with sep-
arable data, Soudry et al. [29] show that the GD run on L drives ‖z‖ to ∞, but z converges in
direction to the `2 max-margin classifier. The limit direction of z is aligned with the solution of

minimizez∈Rd ‖z‖ subject to yix
T
i z ≥ 1 for i ∈ [n], (6)

where the norm in the cost is the `2 norm. Gunasekar et al. [13], Ji and Telgarsky [19, 20], Nacson
et al. [26, 27] extend these results to other (stochastic) algorithms and non-separable settings.

Gunasekar et al. [14] study the same problem on linear neural networks and show that GD
exhibits different implicit bias depending on the architecture. The authors show that the linear
coefficients of the network converges in direction to the solution of (6) with different norms: `2 norm
for linear fully-connected networks, `2/L (quasi-)norm for diagonal networks, and DFT-domain `2/L
(quasi-)norm for convolutional networks with full-length filters. Here, L denotes the depth. We note
that [14] assume that GD globally minimizes the loss, and the network parameters and the gradient
with respect to the linear coefficients converge in direction. Subsequent results [18, 21] remove such
assumptions for linear fully-connected networks.

A recent line of results [21, 23, 25] study general homogeneous models and show divergence of
parameters to infinity, monotone increase of smoothed margin, directional convergence and align-
ment of parameters (see Section 3 for details). Lyu and Li [23] also characterize the limit direction of
parameters as the KKT point of a max-margin problem similar to (6), but this characterization does
not provide useful insights for the functions f(·; Θ) represented by specific architectures, because
the formulation is in the parameter space Θ. Also, these results require that gradient flow/descent
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has already reached 100% training accuracy. Although we study a more restrictive set of networks
(i.e., deep linear), we provide a more complete characterization of the implicit bias for the functions
f(·; Θ), without assuming 100% training accuracy.

Gradient flow/descent in linear regression. It is known that for linear models f(x; z) = xTz,
GD converges to the global minimum that is closest in `2 distance to the initialization (see e.g.,
[13]). However, relatively less is known for deep networks, even for linear networks. This is partly
because the parameters do not diverge to infinity, hence making limit points highly dependent on
the initialization; this dependency renders analysis difficult. A related problem of matrix sensing
aims to minimize

∑n
i=1(yi− 〈Ai,W1 · · ·WL〉)2 overW1, . . . ,WL ∈ Rd×d. It is shown in [4, 12]

that if the sensor matricesAi commute and we initializeWl to αI , GD finds the minimum nuclear
norm solution as α→ 0.

Chizat et al. [7] shows that if a network is zero at initialization, and we scale the network output
by a factor of α→∞, then the GD dynamics enters a “lazy regime” where the network behaves like
a first-order approximation at its initialization, as also seen in results studying kernel approximations
of neural networks and convergence of GD in the corresponding RKHS (e.g., [17]).

Woodworth et al. [30] study linear regression with a diagonal network of the form f(x;w+,w−) =
xT (w�L+ − w�L− ), where w+ and w− are identically initialized w+(0) = w−(0) = αw̄. The
authors show that the global minimum reached by GD minimizes a norm-like function which inter-
polates between (weighted) `1 norm (α → 0) and `2 norm (α → ∞). In our paper, we consider a
more general class of orthogonally decomposable networks, and obtain similar results interpolating
between weighted `1 and `2 norms. We also remark that our results include the results in [4] as a
special case, and we do not assume convergence to global minima, as done in [4, 12, 30].

Appendix C. Tensor representation of neural networks: specific examples

Diagonal networks. An L-layer diagonal network is written as

fdiag(x; Θdiag) = φ(· · ·φ(φ(x�w1)�w2) · · · �wL−1)TwL, (7)

where wl ∈ Rd for l ∈ [L]. The representation of fdiag as the tensor form (1) is straightforward.
Let Mdiag(x) ∈ Rd×···×d have [Mdiag(x)]j,j,...,j = [x]j , while all the remaining entries of Mdiag(x)
are set to zero. We can set vl = wl for all l, and M = Mdiag to verify that (1) and (7) are equivalent.

Circular convolutional networks. The tensor formulation (1) includes convolutional networks

fconv(x; Θconv) = φ(· · ·φ(φ(x ?w1) ?w2) · · · ?wL−1)TwL, (8)

where wl ∈ Rkl with kl ≤ d and kL = d, and ? defines the circular convolution: for any a ∈ Rd
and b ∈ Rk (k ≤ d), we have a ? b ∈ Rd defined as [a ? b]i =

∑k
j=1[a](i+j−1) mod d[b]j ,

for i ∈ [d]. Define Mconv(x) ∈ Rk1×···×kL as [Mconv(x)]j1,j2,...,jL = [x](
∑L

l=1 jl−L+1) mod d for
jl ∈ [kl], l ∈ [L]. Setting vl = wl and M = Mconv, we can verify that (1) and (8) are identical.

Fully-connected networks. An L-layer fully-connected network is defined as

ffc(x; Θfc) = φ(· · ·φ(φ(xTW1)W2) · · ·WL−1)wL, (9)

where Wl ∈ Rdl×dl+1 for l ∈ [L − 1] (we use d1 = d) and wL ∈ RdL . One can represent ffc

as the tensor form (1) by defining parameters vl = vec(Wl) for l ∈ [L − 1] and vL = wL, and

10
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constructing the tensor Mfc(x) by a recursive “block diagonal” manner. For example, if L = 2, we
can define Mfc(x) ∈ Rd1d2×d2 to be the Kronecker product of Id2 and x.

For deeper networks, we start with T1(x) := x ∈ Rd1 . Next, define a block diagonal matrix
T2(x) ∈ Rd1d2×d2 where the “diagonals” [T2(x)]d1(j−1)+1:d1j,j = T1(x) for j ∈ [d2], while all
the other entries are filled with 0. We continue this “block diagonal” procedure, as the following.
Having defined Tl−1(x) ∈ Rd1d2×···×dl−2dl−1×dl−1 ,

1. Define Tl(x) ∈ Rd1d2×···×dl−1dl×dl .

2. Set [Tl(x)]·,...,·,dl−1(j−1)+1:dl−1j,j = Tl−1(x), ∀j ∈ [dl].

3. Set all the remaining entries of Tl(x) to zero.

We repeat this process for l = 2, . . . , L, and set Mfc(x) := TL(x). By defining the parameters
of the tensor formulation vl = vec(Wl) for l ∈ [L − 1] and vL = wL, and using the tensor
M(x) = Mfc(x), we can check the equivalence of (1) and (9).

Appendix D. Theorems on extremely overparametrized settings

Other than Assumption 1, there is another setting where we can prove a full characterization of
limit directions or limit points: when there is one data point (n = 1) and the network is 2-layer
(L = 2). This “extremely overparametrized” case is also motivated by an empirical paper [32]
which studies generalization performance of different architectures when there is only one training
data point. Here, we present theorems on classification/regression setups. Although having n = 1
is restrictive, our results hold for any linear tensor networks including the ones that are not covered
by the existing results, hence provide useful insights.

D.1. Classification setting

We first state the theorem for the classification task:

Theorem 5 Suppose we have a 2-layer linear tensor network (2) and a single data point (x, y).
Consider the compact SVD M(x) = U1 diag(s)UT

2 , where U1 ∈ Rk1×m, U2 ∈ Rk2×m, and
s ∈ Rm for m ≤ min{k1, k2}. Let ρ∞ ∈ Rm be a solution of the following optimization problem

minimizeρ∈Rm ‖ρ‖1 subject to ysTρ ≥ 1.

Assume that there exists λ > 0 such that the initial directions v̄1, v̄2 of the network parameters
satisfy [UT

1 v̄1]2j − [UT
2 v̄2]2j ≥ λ for all j ∈ [m]. Then, v1 and v2 converge in direction to U1η

∞
1

and U2η
∞
2 , where |η∞1 | = |η∞2 | = |ρ∞|�1/2, and sign(η∞1 ) = sign(y)� sign(η∞2 ).

The proof of Theorem 5 can be found in Appendix J. Since ρ∞ is the minimum `1 norm solution in
the singular value space, the parameters v1 and v2 converge in direction to the top singular vectors.
We would like to emphasize that this theorem can be applied to any network architecture that can be
represented as a linear tensor network. Recall that the previous result [14] only considers full-length
filters (k1 = d), hence providing limited insights on networks with small filters, e.g., k1 = 2. In
light of this, we present a corollary in Appendix E.5 showing that linear coefficients of convolutional
networks converge in direction to a “filtered” version of x.

11
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D.2. Regression setting

Next, we present the regression counterpart of Theorem 5, for 2-layer linear tensor networks with
a single data point. For this extremely overparametrized setup, we can fully characterize the limit
points as functions of initialization v1(0) = αv̄1 and v2(0) = αv̄2.

Theorem 6 Suppose we have a 2-layer linear tensor network (2) and a single data point (x, y).
Consider the compact SVD M(x) = U1 diag(s)UT

2 , where U1 ∈ Rk1×m, U2 ∈ Rk2×m, and
s ∈ Rm for m ≤ min{k1, k2}. Assume that there exists λ > 0 such that the initial directions v̄1, v̄2

of the network parameters satisfy [UT
1 v̄1]2j − [UT

2 v̄2]2j ≥ λ for all j ∈ [m]. Then, gradient flow
converges to a global minimizer of the loss L, and v1(t) and v2(t) converge to the limit points:

v∞1 =αU1

(
UT

1 v̄1 � cosh
(
g−1

( y
α2

)
s
)

+UT
2 v̄2 � sinh

(
g−1

( y
α2

)
s
))

+α(Ik1 −U1U
T
1 )v̄1,

v∞2 =αU2

(
UT

1 v̄1 � sinh
(
g−1

( y
α2

)
s
)

+UT
2 v̄2 � cosh

(
g−1

( y
α2

)
s
))

+α(Ik2 −U2U
T
2 )v̄2,

where g−1 is the inverse of the following strictly increasing function

g(ν) =
∑m

j=1
[s]j

(
[UT

1 v̄1]2j+[UT
2 v̄2]2j

2 sinh(2[s]jν) + [UT
1 v̄1]j [U

T
2 v̄2]j cosh(2[s]jν)

)
.

The proof can be found in Appendix K. We can observe that as α → 0, we have g−1
( y
α2

)
→ ∞,

which results in exponentially faster growth of the sinh(·) and cosh(·) for the top singular values.
As a result, the top singular vectors dominate the limit points v∞1 and v∞2 as α→ 0, and they do not
depend on the initial directions v̄1, v̄2. Experiment results in Section F support this observation.

Appendix E. Results on specific network architectures

In this section, we present corollaries obtained by specializing the theorems in the main text to
specific network architectures, as well as a theorem on deep fully-connected networks. We briefly
review the linear neural network architectures studied in this section.

Linear fully-connected networks. An L-layer linear fully-connected network is defined as

ffc(x; Θfc) = xTW1 · · ·WL−1wL, (10)

whereWl ∈ Rdl×dl+1 for l ∈ [L− 1] (we use d1 = d) and wL ∈ RdL .

Linear diagonal networks. An L-layer linear diagonal network is written as

fdiag(x; Θdiag) = (x�w1 � · · · �wL−1)TwL, (11)

where wl ∈ Rd for l ∈ [L].

Linear (circular) convolutional networks. An L-layer linear convolutional network is written as

fconv(x; Θconv) = (· · · ((x ?w1) ?w2) · · · ?wL−1)TwL, (12)

where wl ∈ Rkl with kl ≤ d and kL = d, and ? defines the circular convolution: for any a ∈ Rd
and b ∈ Rk (k ≤ d), we have a?b ∈ Rd defined as [a?b]i =

∑k
j=1[a](i+j−1) mod d[b]j , for i ∈ [d].

In case of kl = d for all l ∈ [L], we refer to this network as full-length convolutional networks.

12
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Deep matrix sensing. The deep matrix sensing problem considered in Arora et al. [4], Gunasekar
et al. [12] aims to minimize the following problem

minimize
W1,...,WL∈Rd×d

Lms(W1 · · ·WL) :=
∑n

i=1
(yi − 〈Ai,W1 · · ·WL〉)2, (13)

where the sensor matrices A1, . . . ,An ∈ Rd×d are symmetric. Following Arora et al. [4], Gu-
nasekar et al. [12], we consider sensor matrices A1, . . . ,An ∈ Rd×d that commute. To make the
problem underdetermined, we assume that n ≤ d, andAi’s are linearly independent.

E.1. Deep fully-connected networks: the α→ 0 limit

Before we state the corollaries, we present another theorem which proves that the linear coefficients
βfc(Θfc) of deep linear fully-connected networks converge to the minimum `2 norm solution as
α → 0. We assume for simplicity that d1 = d2 = · · · = dL = d in this section, but we can extend
it for dl ≥ d without too much difficulty. Recall ffc(x; Θfc) = xTW1 · · ·WL−1wL. We minimize
the training loss L with initializationWl(0) = αW̄l for l ∈ [L− 1] and wL(0) = αw̄L.

Theorem 7 Assume that initial directions W̄1, . . . , W̄L−1, w̄L satisfy (1) W̄ T
l W̄l � W̄l+1W̄

T
l+1

for l ∈ [L−2], and (2) there exists λ > 0 such that W̄ T
L−1W̄L−1−w̄Lw̄

T
L � λId. Then, the gradient

flow converges to a global minimum, and limα→0 limt→∞ βfc(Θfc(t)) = XT (XXT )−1y.

The proof is presented in Appendix L. Theorem 7 shows that in the limit α → 0, linear fully-
connected networks have bias towards the minimum `2 norm solution, regardless of the depth. This
is consistent with the results shown for classification. We also note that the convergence to a global
minimum holds regardless of α > 0, and our sufficient conditions on global convergence generalize
the zero-asymmetric initialization scheme proposed in Wu et al. [31].

E.2. Corollary of Theorem 1

Corollary 8 Consider an L-layer linear fully-connected network (10). If the training loss satisfies
L(Θfc(t0)) < 1 for some t0 ≥ 0, then βfc(Θfc(t)) converges in a direction that aligns with the
solution of the following optimization problem

minimizez∈Rd ‖z‖22 subject to yix
T
i z ≥ 1, ∀i ∈ [n].

Corollary 8 shows that whenever the network separates the data correctly, the linear coefficients
βfc(Θfc) convergence in direction to the `2 max-margin classifier. Note that this corollary does
not require the directional convergence of XTr, which is different from Theorem 1. In fact, this
corollary also appears in Ji and Telgarsky [21], but we provide an alternative proof based on our
tensor formulation. The proof of Corollary 8 can be found in Appendix G.

E.3. Corollaries of Theorem 2

Corollary 9 Consider an L-layer linear diagonal network (11). If there exists λ > 0 such that the
initial directions w̄1, . . . , w̄L of the network parameters satisfy [w̄l]

2
j−[w̄L]2j ≥ λ for all l ∈ [L−1]

and j ∈ [d], then βdiag(Θdiag(t)) converges in a direction that aligns with a stationary point z∞ of

minimizez∈Rd ‖z‖2/L subject to yix
T
i z ≥ 1, ∀i ∈ [n].
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For full-length convolutional networks, we define F ∈ Cd×d to be the matrix of discrete Fourier
transform basis [F ]j,k = 1√

d
exp(−

√
−1·2π(j−1)(k−1)

d ). Note that F ∗ = F−1, and both F and F ∗

are symmetric, but not Hermitian.

Corollary 10 Consider an L-layer linear full-length convolutional network (12). If there exists
λ > 0 such that the initial directions w̄1, . . . , w̄L of the network parameters satisfy |[Fw̄l]j |2 −
|[Fw̄L]j |2 ≥ λ for all l ∈ [L − 1] and j ∈ [d], then βconv(Θconv(t)) converges in a direction that
aligns with a stationary point z∞ of

minimizez∈Rd ‖Fz‖2/L subject to yix
T
i z ≥ 1, ∀i ∈ [n].

Corollary 9 shows that in the limit, linear diagonal network finds a sparse solution z that is a sta-
tionary point of the `2/L max-margin classification problem. Corollary 10 has a similar conclusion
except that the standard `2/L norm is replaced with DFT-domain `2/L norm. By specifying mild
conditions on initialization (see discussion below Theorem 2), these corollaries remove the con-
vergence assumptions required in Gunasekar et al. [14]. The proofs of Corollaries 9 and 10 are in
Appendix H.

E.4. Corollaries of Theorem 4

In this subsection, we apply Theorem 4 to linear diagonal networks, linear full-length convolutional
networks with even data, and deep matrix sensing. The proofs of the corollaries can be found in
Appendix I.

Corollary 11 Consider an L-layer linear diagonal network (11). For some λ > 0, choose any
vector w̄ ∈ Rd satisfying [w̄]2j ≥ λ for all j ∈ [d], and choose initial directions w̄l = w̄ for
l ∈ [L− 1] and w̄L = 0. Then, the linear coefficients βdiag(Θdiag(t)) converge to the solution z∞

of

minimizez∈Rd QL,α,w̄(z) := α2
∑d

j=1
[w̄]2jHL

(
[z]j

αL|[w̄]j |L

)
subject to Xz = y.

Recall that the original statement of Assumption 1 allows the matrices S,U1, . . . ,UL to be
complex, but Theorem 4 poses another assumption that these matrices are real. In applying Theo-
rem 2 to convolutional networks to get Corollary 10, we used the fact that the data tensor Mconv(x)

of a linear full-length convolutional network satisfies Assumption 1 with S = d
L−1
2 F and U1 =

· · · = UL = F ∗, where F ∈ Cd×d is the matrix of discrete Fourier transform basis [F ]j,k =
1√
d

exp(−
√
−1·2π(j−1)(k−1)

d ) and F ∗ is the complex conjugate of F . Note that these are complex
matrices, so one cannot directly apply Theorem 4 to convolutional networks. However, it turns out
that if the data and initialization are even, we can derive a corollary for convolutional networks.

We say that a vector is even when it satisfies the even symmetry, as in even functions. More
concretely, a vector x ∈ Rd is even if [x]j+2 = [x]d−j for j = 0, . . . , bd−3

2 c; i.e., the vector
has the even symmetry around its “origin” [x]1. From the definition of the matrix F ∈ Cd×d, it
is straightforward to check that if x is real and even, then its DFT Fx is also real and even (see
Appendix I.4 for details).
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Corollary 12 Consider an L-layer linear full-length convolutional network (12). Assume that the
data points {xi}ni=1 are all even. For some λ > 0, choose any even vector w̄ satisfying [Fw̄]2j ≥ λ
for all j ∈ [d], and choose initial directions w̄l = w̄ for l ∈ [L− 1] and w̄L = 0. Then, the linear
coefficients βconv(Θconv(t)) converge to the solution z∞ of

minimize
z∈Rd, even

QL,α,Fw̄(Fz) := α2
∑d

j=1
[Fw̄]2jHL

(
[Fz]j

αL|[Fw̄]j |L

)
subject to Xz = y.

Corollaries 11 and 12 show that the interpolation between minimum weighted `1 and weighted
`2 solutions occurs for diagonal networks, and also for convolutional networks (in DFT domain,
with the restriction of even symmetry). The conclusion of Corollary 11 is similar to the results in
Woodworth et al. [30], but the network architecture (11) considered in our corollary is a slightly
different from the “differential” network f(x;w+,w−) = xT (w�L+ −w�L− ) in Woodworth et al.
[30].

As mentioned in the main text, we can actually show that the matrix sensing result in Arora et al.
[4] is a special case of our Theorem 4. Given any symmetric matrix M ∈ Rd×d, let eig(M) ∈ Rd
be the d-dimensional vector of eigenvalues ofM .

Corollary 13 Consider the depth-L deep matrix sensing problem (13). LetAi’s be symmetric, and
assume A1, . . . ,An commute. For α > 0, choose initialization Wl(0) = αId for l ∈ [L − 1] and
WL(0) = 0. Then, the productWL(t) · · ·W1(t) converge to the solutionM∞ of

minimize
M∈Rd×d, symmetric

QL,α(eig(M)) := α2
∑d

j=1
HL

(
[eig(M)]j

αL

)
subject to Lms(M) = 0.

Under an additional assumption that Ai’s are positive semidefinite, Theorem 2 in Arora et al. [4]
studies the initialization Wl(0) = αId for all l ∈ [L], and shows that the limit point of WL . . .W1

converges to the minimum nuclear norm solution as α→ 0. We remove the assumption of positive
definiteness of Ai’s and let WL(0) = 0, to show a complete characterization of the solution found
by gradient flow, which interpolates between the minimum nuclear norm (i.e., Schatten 1-norm)
solution (when α → 0) and the minimum Frobenius norm (i.e., Schatten 2-norm) solution (when
α→∞).

E.5. Corollary of Theorem 5

Recall that Theorem 5 can be applied to any 2-layer networks that can be represented as linear tensor
networks. Examples include the convolutional networks that are not full-length (i.e., filter size
k1 < d), which are not covered by the previous result [14]. Here, we present the characterization of
convergence directions of βconv(Θconv(t)) for small-filter cases: k1 = 1 and k1 = 2.

Corollary 14 Consider a 2-layer linear convolutional network (12) with k1 = 1 and a single
data point (x, y). If there exists λ > 0 such that the initial directions w̄1 and w̄2 of the network
parameters satisfy ‖x‖2 v̄2

1 − (xT v̄2)2 ≥ ‖x‖2 λ, then βconv(Θconv(t)) converges in direction that
aligns with yx.

Consider a 2-layer linear convolutional network (12) with k1 = 2 and a single data point
(x, y). Let ←−x :=

[
[x]2 · · · [x]d [x]1

]
, and −→x :=

[
[x]d [x]1 · · · [x]d−1

]
. If there exists

λ > 0 such that the initial directions w̄1 and w̄2 of the network parameters satisfy

([v̄1]1 + [v̄1]2)2 − ((x+←−x )T v̄2)2

‖x‖22 + xT←−x
≥ λ, and ([v̄1]1 − [v̄1]2)2 − ((x−←−x )T v̄2)2

‖x‖22 − xT
←−x
≥ λ,
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then βconv(Θconv(t)) converges in a direction that aligns with a filtered version of x:

lim
t→∞

βconv(Θconv(t))

‖βconv(Θconv(t))‖2
∝

{
2yx+ y←−x + y−→x if xT←−x > 0,

2yx− y←−x − y−→x if xT←−x < 0.

Corollary 14 shows that if the filter size is k1 = 1, then the limit direction of βconv(Θconv) is always
the `2 max-margin classifier. Note that this is quite different from the case k1 = d which converges
to the DFT-domain `1 max-margin classifier. However, for 1 < k1 < d, it is difficult to characterize
the limit direction as the max-margin classifier of some common norms. Rather, the limit directions
of βconv(Θconv) correspond to a “filtered” version of the data point, and the weights of the filter
depend on the data point x. For k1 = 2, the filter is a low-pass filter if the autocorrelation xT←−x
of x is positive, and high-pass if the autocorrelation is negative. For k1 > 2, the filter weights are
more complicated to characterize in terms of x, and the filter length increases as k1 increases. We
prove Corollary 14 in Appendix J.

Appendix F. Experiments

Regression. To fully visualize the trajectory of linear coefficients, we run simple experiments
with 2-layer linear fully-connected/diagonal/convolutional networks with a single 2-dimensional
data point (x, y) = ([1 2], 1). For this dataset, the minimum `2 norm solution (corresponding to
fully-connected networks) of the regression problem is [0.2 0.4], whereas the minimum `1 norm
solution (corresponding to diagonal) is [0 0.5] and the minimum DFT-domain `1 norm solution
(corresponding to convolutional) is [0.33 0.33]. We randomly pick four directions z̄1, . . . z̄4 ∈ R2,
and choose initial directions of the network parameters in a way that their linear coefficients at
initialization are exactly β(Θ(0)) = α2z̄j . With varying initial scales α ∈ {0.01, 0.5, 1}, we run
GD with small step size η = 10−3 for large enough number of iterations T = 5 × 103. Figure 1
plot the trajectories of β(Θ) (appropriately clipped for visual clarity) as well as the predicted limit
points (Theorem 6). We observe that even though the networks start at the same linear coefficients
α2z̄j , they evolve differently due to different architectures. Note that the prediction of limit points
is accurate, and the solution found by GD is less dependent on initial directions when α is small.

Classification. It is shown in the existing works as well as in Section 3 that the limit directions
of linear coefficients are independent of the initialization. Is this also true in practice? To see this,
we run a set of toy experiments on classification with two data points (x1, y1) = ([1 2],+1) and
(x2, y2) = ([0 −3],−1). One can check that the max-margin classifiers for this problem are in
the same directions to the corresponding min-norm solutions in the regression problem above. We
use the same networks as in regression, and the same set of initial directions satisfying β(Θ(0)) =
α2z̄j . With initial scales α ∈ {0.01, 0.5, 1}, we run GD with step size η = 5×10−4 for T = 2×106

iterations. All experiments reachedL(Θ) . 10−5 at the end. The trajectories are plotted in Figure 1.
We find that unlike theory, the actual coefficients are quite dependent on initialization, because we
do not train the network all the way to zero loss. This observation is also consistent with a recent
analysis [24] for diagonal networks, and suggests that understanding the behavior of iterates after a
finite number of steps is an important future work.

16



A UNIFYING VIEW ON IMPLICIT BIAS IN TRAINING LINEAR NEURAL NETWORKS

(a) Regression, α = 0.01 (b) Regression, α = 0.5

(c) Regression, α = 1 (d) Classification, α = 0.01

(e) Classification, α = 0.5 (f ) Classification, α = 1

Figure 1: Gradient descent trajectories of linear coefficients of linear fully-connected, diagonal, and
convolutional networks on regression/classification tasks, initialized with different initial scales α =
0.01, 0.5, 1. Networks are initialized at the same coefficients (circles on purple lines), but follow
different trajectories due to implicit biases of networks induced from their architecture. Figures 1a,
1b and 1c show that our theoretical predictions (Theorem 6) on limit points (circles on yellow line,
the set of global minima) agree with the solution found by GD.

Appendix G. Proofs of Theorem 1 and Corollary 8

G.1. Proof of Theorem 1

The proof of Theorem 1 is outlined as follows. First, using the directional convergence and align-
ment results in Ji and Telgarsky [21], we prove that each of our network parameters vl converges
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in direction, and it aligns with its corresponding negative gradient −∇vlL. Then, we prove that the
directions of vl’s are actually singular vectors of M(−u∞), where u∞ := limt→∞

XT r(t)
‖XT r(t)‖2 .

Since a linear tensor network is an L-homogeneous polynomial of v1, . . . ,vL, it satisfies the
assumptions required for Theorems 3.1 and 4.1 in Ji and Telgarsky [21]. These theorems imply that
if the gradient flow satisfies L(Θ(t0)) < 1 for some t0 ≥ 0, then Θ(t) converges in direction, and
the direction aligns with −∇ΘL(Θ(t)); that is,

lim
t→∞
‖Θ(t)‖2 =∞, lim

t→∞

Θ(t)

‖Θ(t)‖2
= Θ∞, lim

t→∞

Θ(t)T∇ΘL(Θ(t))

‖Θ(t)‖2‖∇ΘL(Θ(t))‖2
= −1. (14)

For linear tensor networks (2), the parameter Θ is the concatenation of all parameter vectors
v1, . . . ,vL, so (14) holds for Θ =

[
vT1 . . . vTL

]T .
Now, recall that by the definition of the linear tensor network, we have the following gradient

flow

v̇l = M(−XTr) ◦ (v1, . . . ,vl−1, Ikl ,vl+1, . . . ,vL).

Note that we can apply this to calculate the rate of growth of ‖vl‖22:

d

dt
‖vl‖22 = 2vTl v̇l = 2vTl M(−XTr) ◦ (v1, . . . ,vl−1, Ikl ,vl+1, . . . ,vL)

= 2M(−XTr) ◦ (v1, . . . ,vl−1,vl,vl+1, . . . ,vL)

=
d

dt
‖vl′‖22 for any l′ ∈ [L],

so the rate at which ‖vl‖22 grows over time is the same for all layers l ∈ [L]. By the definition of Θ
and (14), we have

‖Θ‖22 =
L∑
l=1

‖vl‖22 →∞,

which then implies

lim
t→∞
‖vl(t)‖2 →∞, lim

t→∞

‖Θ(t)‖2
‖vl(t)‖2

=

√
‖Θ(t)‖22
‖vl(t)‖22

=
√
L,

for all l ∈ [L]. Now, let Il be the set of indices that correspond to the components of vl in Θ. It
follows from (14) that

lim
t→∞

vl(t)

‖vl(t)‖2
= lim

t→∞

vl(t)

‖Θ(t)‖2
‖Θ(t)‖2
‖vl(t)‖2

= lim
t→∞

[Θ(t)]Il
‖Θ(t)‖2

‖Θ(t)‖2
‖vl(t)‖2

=
√
L[Θ∞]Il ,

thus showing the directional convergence of vl’s.
Next, it follows from directional convergence of Θ and its alignment with −∇ΘL(Θ) (14) that

∇ΘL(Θ) also converges in direction, in the opposite direction of Θ. By comparing the components
in Il’s, we get that∇vlL(Θ) converges in the opposite direction of vl.

For any l ∈ [L], now let v∞l := limt→∞
vl(t)
‖vl(t)‖2 . Also recall the assumption that XTr(t)

converges in direction; let the unit vector u∞ := limt→∞
XT r(t)
‖XT r(t)‖2 be the limit direction. By the

gradient flow dynamics of vl, we have

v∞l ∝ −∇vlL(Θ∞) = M(−u∞) ◦ (v∞1 , . . . ,v
∞
l−1, Ikl ,v

∞
l+1, . . . ,v

∞
L ),

18
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for all l ∈ [L]. Note that this equation has the same form as (4), the definition of singular vectors in
tensors. So this proves that (v∞1 , . . . ,v

∞
L ) are singular vectors of M(−u∞).

G.2. Proof of Corollary 8

The proof proceeds as follows. First, we will show using the structure of the data tensor Mfc that the
limit direction of linear coefficients βfc(Θ

∞
fc ) is proportional to cu∞, where c is a nonzero scalar

and u∞ is the limit direction of XTr. Then, through a closer look at u∞ and c, we will prove
that βfc(Θ

∞
fc ) is in fact a conic combination of the support vectors (i.e., the data points with the

minimum margins). Finally, we will compare βfc(Θ
∞
fc ) with the KKT conditions of the `2 max-

margin classification problem and conclude that βfc(Θ
∞
fc ) must be in the same direction as the `2

max-margin classifier.
Due to the way how the data tensor Mfc is constructed for fully-connected networks (Ap-

pendix C), we always have

−∇v1L(Θfc) = Mfc(−XTr) ◦ (Ik1 ,v2, . . . ,vL) ∈ span



XTr

0
...
0

 ,


0
XTr

...
0

 , . . . ,


0
0
...

XTr


 .

From Theorem 1, we have directional convergence of v1 and its alignment with−∇v1L(Θfc). This
means that the limit direction v∞1 , which is a fixed vector, must be also in the span of vectors written
above. This implies thatXTr must also converge to some direction, say u∞ := limt→∞

XT r(t)
‖XT r(t)‖2

.
Now recall the definition of v1 in case of the fully-connected network: v1 = vec(W1). So, by

reshaping v∞1 into its original d1 × d2 matrix formW∞
1 , we have

W∞
1 ∝ u∞qT ,

for some q ∈ Rd2 . This implies that the linear coefficients βfc(Θfc) of the network converge in
direction to

βfc(Θ
∞
fc ) = W∞

1 W
∞
2 . . .W∞

L−1w
∞
L ∝ u∞qTW∞

2 . . .W∞
L−1w

∞
L = cu∞, (15)

where c is some nonzero real number.
Let us now take a closer look at the vector u∞, the limit direction of XTr. Recall from Sec-

tion 2.1 that for any i ∈ [n],

[r]i = −yi exp(−yiffc(xi; Θfc)) = −yi exp(−yixTi βfc(Θfc)),

in case of classification. Recall that ‖βfc(Θfc(t))‖2 → ∞ while converging to a certain direction
βfc(Θ

∞
fc ). This means that if

yjx
T
j βfc(Θ

∞
fc ) > yix

T
i βfc(Θ

∞
fc )

for any i, j ∈ [n], then

lim
t→∞

exp(−yjxTj βfc(Θfc(t)))

exp(−yixTi βfc(Θfc(t)))
= 0. (16)
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Take i to be the index of any support vectors, i.e., any i that attains the minimum yix
T
i βfc(Θ

∞
fc )

among all data points. Using such an i, the observation (16) implies that limt→∞[r(t)]j = 0 for
any xj that is not a support vector. Thus, by the argument above, u∞ can in fact be written as

u∞ ∝ lim
t→∞

n∑
i=1

xi[r(t)]i = −
n∑
i=1

νiyixi, (17)

where νi ≥ 0 for all i ∈ [n], and νj = 0 for xj’s that are not support vectors. Combining (17) and
(15),

βfc(Θ
∞
fc ) ∝ −c

n∑
i=1

νiyixi. (18)

Recall that we do not yet know whether c, introduced in (15), is positive or negative; we will
now show that c has to be negative. From Lyu and Li [23], we know that L(Θfc(t)) → 0, which
implies that yixTi βfc(Θ

∞
fc ) > 0 for all i ∈ [n]. However, if c > 0, then (18) implies that βfc(Θ

∞
fc )

is inside a cone K defined as

K :=

{
n∑
i=1

γiyixi | γi ≤ 0,∀i ∈ [n]

}
.

Note that the polar cone of K, denoted as K◦, is

K◦ :=
{
z | βTz ≤ 0, ∀β ∈ K

}
= {z | yixTi z ≥ 0,∀i ∈ [n]}.

It is known that K ∩ K◦ = {0} for any convex cone K and its polar cone K◦. Therefore, having
c > 0 implies that there exists some i ∈ [n] such that yixTi βfc(Θ

∞
fc ) < 0, which contradicts the fact

that the loss goes to zero as t→∞. Therefore, c in (15) and (18) must be negative:

βfc(Θ
∞
fc ) ∝

n∑
i=1

νiyixi, (19)

for νi ≥ 0 for all i ∈ [n] and νj = 0 for all xj’s that are not suport vectors.
Finally, compare (19) with the KKT conditions of the following optimization problem:

minimize
z

‖z‖22 subject to yix
T
i z ≥ 1, ∀i ∈ [n].

The KKT conditions of this problem are

z =
n∑
i=1

µiyixi, and µi ≥ 0, µi(1− yixTi z) = 0 for all i ∈ [n],

where µ1, . . . , µn are the dual variables. Note that this is (up to scaling) satisfied by βfc(Θ
∞
fc ) (19),

if we replace µi’s with νi’s. This finishes the proof that βfc(Θ
∞
fc ) is aligned with the `2 max-margin

classifier.
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Appendix H. Proofs of Theorem 2 and Corollaries 9 & 10

H.1. Proof of Theorem 2

H.1.1. CONVERGENCE OF LOSS TO ZERO

Since Theorem 2 does not assume the existence of t0 ≥ 0 satisfying L(Θ(t0)) < 1, we need to first
show that given the conditions on initialization, the training loss L(Θ(t)) converges to zero. Recall
from Section 2.1 that

v̇l = −∇vlL(Θ) = M(−XTr) ◦ (v1, . . . ,vl−1, Ikl ,vl+1, . . . ,vL).

Applying the structure (5) in Assumption 1, we get

v̇l = M(−XTr) ◦ (v1, . . . ,vl−1, Ikl ,vl+1, . . . ,vL)

= −
m∑
j=1

[SXTr]j(v
T
1 [U1]·,j⊗ · · · ⊗ vTl−1[Ul−1]·,j⊗ [Ul]·,j⊗ vTl+1[Ul+1]·,j⊗ · · · ⊗ vTL [UL]·,j)

= −
m∑
j=1

[SXTr]j

(∏
k 6=l

[UT
k vk]j

)
[Ul]·,j .

Left-multiplying UH
l (the conjugate transpose of Ul) to both sides, we get

UH
l v̇l = −SXTr �

∏�

k 6=l
UT
k vk, (20)

where
∏� denotes the product using entry-wise multiplication �.

Now consider the rate of growth for the absolute value squared of the j-th component of UT
l vl:

d

dt
|[UT

l vl]j |2 =
d

dt
[UT

l vl]j [U
T
l vl]

∗
j =

d

dt
[UT

l vl]j [U
H
l vl]j

= [UT
l v̇l]j [U

H
l vl]j + [UH

l v̇l]j [U
T
l vl]j

= 2 Re
(
[UH

l v̇l]j [U
T
l vl]j

)
= 2 Re

(
−[SXTr]j

∏L

k=1
[UT

k vk]j

)
=

d

dt
|[UT

l′ vl′ ]j |2 for any l′ ∈ [L],

so for any j ∈ [m], the squared absolute value of the j-th components in UT
l vl grow at the same

rate for each layer l ∈ [L]. This means that the gap between any two different layers stays constant
for all t ≥ 0. Combining this with our conditions on initial directions, we have

|[UT
l vl(t)]j |2 − |[UT

L vL(t)]j |2 = |[UT
l vl(0)]j |2 − |[UT

L vL(0)]j |2

= α2|[UT
l v̄l]j |2 − α2|[UT

L v̄L]j |2 ≥ α2λ,
(21)

for any j ∈ [m], l ∈ [L− 1], and t ≥ 0. This inequality also implies

|[UT
l vl(t)]j |2 ≥ |[UT

L vL(t)]j |2 + α2λ ≥ α2λ. (22)
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Let us now consider the time derivative of L(Θ(t)). We have the following chain of upper
bounds on the time derivative:

d

dt
L(Θ(t)) = ∇ΘL(Θ(t))T Θ̇(t) = −‖∇ΘL(Θ(t))‖22

≤ −‖∇vLL(Θ(t))‖22 = −‖v̇L(t)‖22
(a)

≤ −‖UH
L v̇L(t)‖22

(b)
= −

∥∥∥SXTr(t)�
∏�

k 6=L
UT
k vk(t)

∥∥∥2

2

= −
∑m

j=1
|[SXTr(t)]j |2

∏
k 6=L
|[UT

k vk(t)]j |2

(c)

≤ −α2L−2λL−1
∑m

j=1
|[SXTr(t)]j |2

= −α2L−2λL−1‖SXTr(t)‖22
(d)

≤ −α2L−2λL−1smin(S)2‖XTr(t)‖22, (23)

where (a) used the fact that ‖v̇L(t)‖22 ≥ ‖ULUH
L v̇L(t)‖22 because it is a projection onto a subspace,

and ‖ULUH
L v̇L(t)‖22 = ‖UH

L v̇L(t)‖22 because UH
L UL = IkL ; (b) is due to (20); (c) is due to (22);

and (d) used the fact that S ∈ Cm×d is a matrix that has full column rank, so for any z ∈ Cd, we
can use ‖Sz‖2 ≥ smin(S)‖z‖2 where smin(S) is the minimum singular value of S.

We now prove a lower bound on the quantity ‖XTr(t)‖22. Recall from Section 2.1 the definition
of [r(t)]i = −yi exp(−yif(xi; Θ(t))) for classification problems. Also, recall the assumption that
the dataset is linearly separable, which means that there exists a unit vector z ∈ Rd such that

yix
T
i z ≥ γ > 0

holds for all i ∈ [n], for some γ > 0. Using these,

‖XTr(t)‖22 = ‖
∑n

i=1
yixi exp(−yif(xi; Θ(t)))‖22

≥ [zT
∑n

i=1
yixi exp(−yif(xi; Θ(t)))]2

≥ γ2[
∑n

i=1
exp(−yif(xi; Θ(t)))]2 = γ2L(Θ(t))2.

Combining this with (23), we get

d

dt
L(Θ(t)) ≤ −α2L−2λL−1smin(S)2γ2L(Θ(t))2,

which implies

L(Θ(t)) ≤ L(Θ(0))

1 + α2L−2λL−1smin(S)2γ2t
.

Therefore, L(Θ(t))→ 0 as t→∞.

H.1.2. CHARACTERIZING THE LIMIT DIRECTION

Since we proved that L(Θ(t)) → 0, the argument in the proof of Theorem 1 applies to this case,
and shows that the parameters vl converge in direction and align with v̇l = −∇vlL(Θ). Let
v∞l := limt→∞

vl(t)
‖vl(t)‖2 be the limit direction of vl.
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The remaining steps of the proof are as follows. We first prove that SXTr(t) converges in
direction u∞. Using this u∞, we derive a number of conditions that has to be satisfied by the limit
directions of the parameters. Finally, we compare these conditions with the KKT conditions of the
minimization problem, and finish the proof.

By Assumption 1, we have

f(x; Θ) = M(x) ◦ (v1, . . . ,vL) =

m∑
j=1

[Sx]j

L∏
l=1

[UT
l vl]j

=

[ m∑
j=1

( L∏
l=1

[UT
l vl]j

)
[S]j,·

]
x = xTST

(∏�

l∈[L]
UT
l vl

)
= xTSTρ.

Here, we defined ρ :=
∏�
l∈[L]U

T
l vl ∈ Cm. Since the linear coefficients must be real, we have

STρ ∈ Rd for any real vl’s. Since vl’s converge in direction, ρ also converges in direction, to
ρ∞ :=

∏�
l∈[L]U

T
l v
∞
l . So we can express the limit direction of β(Θ) as

β(Θ∞) ∝ ST
(∏�

l∈[L]
UT
l v
∞
l

)
= STρ∞. (24)

From (20) and alignment of vl and v̇l, we have

lim
t→∞

UH
l vl(t) = lim

t→∞
(UT

l vl(t))
∗ ∝ − lim

t→∞
SXTr(t)�

∏�

k 6=l
UT
k vk(t). (25)

Since all vectors UT
l vl(t) converge in direction, the term SXTr(t) should also converge in direc-

tion. Let u∞ := limt→∞
SXT r(t)
‖SXT r(t)‖2 . One can use the same argument as in Appendix G.2, more

specifically (16) and (17), to show that u∞ can be written as

u∞ ∝ lim
t→∞

S

n∑
i=1

xi[r(t)]i = −S
n∑
i=1

νiyixi, (26)

where νi ≥ 0 for all i ∈ [n], and νj = 0 for xj’s that are not support vectors, i.e., those satisfying
yjx

T
j S

Tρ∞ > mini∈[n] yix
T
i S

Tρ∞.
Using u∞, we can rewrite (25) as

UH
l v
∞
l ∝ −u∞ �

∏�

k 6=l
UT
k v
∞
k ,

for all l ∈ [L]. Element-wise multiplying UT
l v
∞
l to both sides gives

UT
l v
∞
l �UH

l v
∞
l = |UT

l v
∞
l |�2 ∝ −u∞ �

∏�

k∈[L]
UT
k v
∞
k = −u∞ � ρ∞, (27)

where a�b denotes element-wise b-th power of the vector a. Since the LHS of (27) is a positive real
number, we have

arg(|[UT
l vl]j |2) = 0 = arg([−u∞]j) + arg([ρ∞]j), (28)

so using this, (27) becomes
|UT

l v
∞
l |�2 ∝ |u∞| � |ρ∞|. (29)
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Now element-wise multiply (29) for all l ∈ [L], then we get

|ρ∞|�2 ∝ |u∞|�L � |ρ∞|�L. (30)

A close look at (30) reveals that if L ≥ 2, ρ∞ and u∞ must satisfy that

|[ρ∞]j | 6= 0 =⇒ |[u∞]j | ∝ |[ρ∞]j |
2
L
−1, (31)

for all j ∈ [m]. There is another condition that has to be satisfied when L = 2:

|[ρ∞]j | = 0, |[ρ∞]j′ | 6= 0 =⇒ |[u∞]j | ≤ |[u∞]j′ |, (32)

for any j, j′ ∈ [m]; let us prove why. First, consider the time derivative of [ρ]j = [UT
1 v1]j [U

T
2 v2]j .

d

dt
[ρ(t)]j = [UT

1 v1(t)]j
d

dt
[UT

2 v2(t)]j + [UT
2 v2(t)]j

d

dt
[UT

1 v1(t)]j

(a)
= −[SXTr(t)]∗j (|[UT

1 v1(t)]j |2 + |[UT
2 v2(t)]j |2), (33)

where (a) used (20). Now consider∣∣ d
dt [ρ(t)]j

∣∣
‖SXTr(t)‖2|[ρ(t)]j |

=
|[SXTr(t)]j |
‖SXTr(t)‖2

|[UT
1 v1(t)]j |2 + |[UT

2 v2(t)]j |2

|[ρ(t)]j |
. (34)

We want to compare this quantity for different j, j′ ∈ [m]. Before we do that, we take a look at the
last term in the RHS of (34). Recall from (21) that

|[UT
1 v1(t)]j |2 = |[UT

2 v2(t)]j |2 + |[UT
1 v1(0)]j |2 − |[UT

2 v2(0)]j |2. (35)

For simplicity, let δj := |[UT
1 v1(0)]j |2 − |[UT

2 v2(0)]j |2. Then, we can use (35) and |[ρ(t)]j | =
|[UT

1 v1(t)]j ||[UT
2 v2(t)]j | to show that

|[UT
1 v1(t)]j |2 + |[UT

2 v2(t)]j |2

|[ρ(t)]j |
=

2|[UT
2 v2(t)]j |2 + δj

|[UT
2 v2(t)]j |

√
|[UT

2 v2(t)]j |2 + δj

≥ 2,

lim
t→∞

|[UT
1 v1(t)]j |2 + |[UT

2 v2(t)]j |2

|[ρ(t)]j |
= 2 if lim

t→∞
|[UT

2 v2(t)]j | =∞.

Suppose that there exists j ∈ [m] that satisfies |[ρ∞]j | = 0 but |[u∞]j | > |[u∞]j′ |, for some
j′ ∈ [m] satisfying |[ρ∞]j′ | 6= 0. Note that having |[ρ∞]j | = 0 and |[ρ∞]j′ | 6= 0 implies that
|[ρ(t)]j′ | → ∞ and |[ρ(t)]j |

|[ρ(t)]j′ |
→ 0. We now want to compare the ratio of (34) for j and j′. First, note

that

lim
t→∞

|[SXTr(t)]j |/‖SXTr(t)‖2
|[SXTr(t)]j′ |/‖SXTr(t)‖2

=
|[u∞]j |
|[u∞]j′ |

> 1. (36)

Next, using |[ρ(t)]j |
|[ρ(t)]j′ |

→ 0 and the fact that x 7→ 2x2+δ
x
√
x2+δ

is a decreasing function of x ≥ 0 for any
δ > 0, we have

(|[UT
1 v1(t)]j |2 + |[UT

2 v2(t)]j |2)/|[ρ(t)]j |
(|[UT

1 v1(t)]j′ |2 + |[UT
2 v2(t)]j′ |2))/|[ρ(t)]j′ |

≥ 1, (37)
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for any t ≥ t0, when t0 is large enough. Combining (36) and (37) to compare the ratio of (34) for j
and j′, we get that there exists some t′0 ≥ 0 such that for any t ≥ t′0, we have∣∣ d

dt [ρ(t)]j
∣∣ /|[ρ(t)]j |∣∣ d

dt [ρ(t)]j′
∣∣ /|[ρ(t)]j′ |

> 1. (38)

This implies that the ratio of the absolute value of time derivative of [ρ(t)]j to the absolute value
of current value of [ρ(t)]j is strictly bigger than that of [ρ(t)]j′ . Moreover, we saw in (33) that the
phase of d

dt [ρ(t)]j converges to that of −[u∞]∗j . Since this holds for all t ≥ t′0, (38) results in a
growth of |[ρ(t)]j | that is exponentially faster than that of |[ρ(t)]j′ |, so [ρ(t)]j becomes a dominant
component in ρ(t) as t → ∞. This contradicts that [ρ∞]j = 0, hence the condition (32) has to be
satisfied.

So far, we have characterized a number of conditions (26), (28), (31), (32) that have to be satis-
fied by the limit directions u∞ and ρ∞ ofXTr and ρ. We now consider the following optimization
problem and prove that these conditions are in fact the KKT conditions of the optimization problem.
Consider

minimize
ρ∈Cm

‖ρ‖2/L subject to yix
T
i S

Tρ ≥ 1, ∀i ∈ [n]. (39)

The KKT conditions of this problem are

∂ ‖ρ‖2/L 3 S
∗

n∑
i=1

µiyixi, and µi ≥ 0, µi(1− yixTi STρ) = 0 for all i ∈ [n],

where µ1, . . . , µn are the dual variables. The symbol ∂ ‖·‖2/L denotes the (local) subdifferential of
the `2/L norm, which can be written as

∂ ‖ρ‖1 = {u ∈ Cm | |[u]j | ≤ 1 for all j ∈ [m], and [ρ]j 6= 0 =⇒ [u]j = exp(
√
−1 arg([ρ]j))},

if L = 2 (in this case ∂ ‖ρ‖1 is the global subdifferential), and

∂ ‖ρ‖2/L =

{
u ∈ Cm | [ρ]j 6= 0 =⇒ [u]j =

2

L
|[ρ]j |

2
L
−1 exp(

√
−1 arg([ρ]j))

}
,

ifL > 2. By replacing µi’s with νi’s defined in (26), we can check from (26), (28), (31), (32) that the
that ρ∞ and u∞ satisfy the KKT conditions up to scaling. Therefore, by (24), β(Θ(t)) converges in
direction aligned with STρ∞, where ρ∞ is again aligned with a stationary point (global minimum
in case of L = 2) of the optimization problem (39).

If S is invertible, we can get S−Tβ(Θ∞) ∝ ρ∞. Plugging this into the optimization prob-
lem (39) gives the last statement of the theorem.

H.2. Proof of Corollary 9

It suffices to prove that linear diagonal networks satisfy Assumption 1, with S = Id. The proof
is very straightforward, since Mdiag(x) ∈ Rd×···×d has [Mdiag(x)]j,j,...,j = [x]j while all the re-
maining entries are zero. It is straightforward to verify that Mdiag(x) satisfies Assumption 1 with
S = U1 = · · · = UL = Id. A direct substitution into Theorem 2 gives the corollary.
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H.3. Proof of Corollary 10

For full-length convolutional networks (k1 = · · · = kL = d), we will prove that they satisfy
Assumption 1 with S = d

L−1
2 F and U1 = · · · = UL = F ∗, where F ∈ Cd×d is the matrix

of discrete Fourier transform basis [F ]j,k = 1√
d

exp(−
√
−1·2π(j−1)(k−1)

d ) and F ∗ is the complex
conjugate of F .

For simplicity of notation, define ψ = exp(−
√
−1·2π
d ). With such matrices S and U1, . . . ,UL,

we can writeM(x) as

M(x) =

d∑
j=1

[Sx]j([U1]·,j ⊗ [U2]·,j ⊗ · · · ⊗ [UL]·,j)

=

d∑
j=1

[
d

L−2
2

d∑
k=1

[x]kψ
(j−1)(k−1)

]
ψ0/
√
d

ψ−(j−1)/
√
d

ψ−2(j−1)/
√
d

...
ψ−(d−1)(j−1)/

√
d



⊗L

,

where a⊗L denotes the L-times tensor product of a. We will show that M(x) = Mconv(x).
For any j1, . . . , jL ∈ [d],

[M(x)]j1,...,jL =
1

d

d∑
l=1

[
d∑

k=1

[x]kψ
(l−1)(k−1)

]
ψ−(l−1)(

∑L
q=1 jq−L)

=
1

d

d∑
k=1

[x]k

d∑
l=1

ψ(l−1)(k−1−
∑L

q=1 jq+L).

Recall that
d∑
l=1

ψ(l−1)(k−1−
∑L

q=1 jq+L) =

{
d if k − 1−

∑L
q=1 jq + L is a multiple of d,

0 otherwise.

Using this, we have

[M(x)]j1,...,jL =
1

d

d∑
k=1

[x]k

d∑
l=1

ψ(l−1)(k−1−
∑L

q=1 jq+L)

= [x]∑L
q=1 jq−L+1 mod d = [Mconv(x)]j1,...,jL .

Hence, linear full-length convolutional networks satisfy Assumption 1 with S = d
L−1
2 F . A direct

substitution into Theorem 2 and then using the fact that |[Fz]j | = |[F ∗z]j | for any real vector
z ∈ Rd gives the corollary.

Appendix I. Proofs of Theorem 4, Corollaries 11, 12 & 13, and Lemma 3

I.1. Proof of Lemma 3

In this subsection, we restate Lemma 3 and prove it.
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Lemma 15 Consider the system of ODEs, where p, q : R→ R:

ṗ = pL−2q, q̇ = pL−1, p(0) = 1, q(0) = 0.

Then, the solutions pL(t) and qL(t) are continuous on their maximal interval of existence of the
form (−c, c) ⊂ R for some c ∈ (0,∞]. Define hL(t) = pL(t)L−1qL(t); then, hL(t) is odd and
strictly increasing, satisfying limt↑c hL(t) =∞ and limt↓−c hL(t) = −∞.

Proof First, continuity of p(t) and q(t) is straightforward because they are the solution of the ODE.
Next, define p̃(t) = p(−t) and q̃(t) = −q(−t). Then, one can show that p̃ and q̃ are also the
solution of the ODE because

d

dt
p̃(t) =

d

dt
p(−t) = −ṗ(−t) = −p(−t)L−2q(−t) = p̃(t)L−2q̃(t),

d

dt
q̃(t) = − d

dt
q(−t) = q̇(−t) = p(−t)L−1 = p̃(t)L−1.

However, by the Picard-Lindelöf theorem, the solution has to be unique; this means that p(t) =
p̃(t) = p(−t) and q(t) = q̃(t) = −q(−t), which proves that p is even and q is odd and also implies
that the domain of p and q has to be of the form (−c, c) (i.e. symmetric around the origin) and
h = pL−1q is odd.

To show that h is strictly increasing, it suffices to show that p and q are both strictly increasing
on [0, c). To this end, we show that p(t) ≥ 1 for all t ∈ [0, c). First, due to the initial condition
p(0) = 1 and continuity of p, there exists ε1 > 0 such that p(t) > 0 for all t ∈ [0, ε1) =: I1. This
implies that q̇(t) = p(t)L−1 > 0 for t ∈ I1, so q is strictly increasing on I1. Since q(0) = 0, we
have q(t) > 0 for t ∈ I1, which then implies that ṗ(t) = p(t)L−2q(t) > 0. Therefore, p is also
strictly increasing on I1; this then means p(t) ≥ 1 for t ∈ [0, ε1] because p(0) = 1. Now, due to
p(ε1) ≥ 1 and continuity of p, there exists ε2 > ε1 such that p(t) > 0 for all t ∈ [ε1, ε2) =: I2.
Using the argument above for I2 results in p(t) ≥ 1 for t ∈ [0, ε2]. Repeating this until the end of
the domain, we can show that p(t) ≥ 1 holds for all t ∈ [0, c). By p ≥ 1, we have q̇ = pL−1 ≥ 1
on [0, c), so q is strictly increasing on [0, c). Also, q(t) > 0 on (0, c), so ṗ = pL−2q > 0 on (0, c)
and p is also strictly increasing on [0, c). This proves that h is strictly increasing on [0, c), and also
on (−c, c) by oddity of h.

Finally, it is left to show limt↑c h(t) =∞ and limt↓−c h(t) = −∞. If c <∞, then this together
with monotonicity implies that the limits hold. To see why, suppose c < ∞ and limt↑c h(t) < ∞.
Then, p and q can be extended beyond t ≥ c, which contradicts the fact that (−c, c) is the maximal
interval of existence of the solution. Next, consider the case c = ∞. From p(t) ≥ 1, we have
q̇(t) ≥ 1 for t ≥ 0. This implies that q(t) ≥ t for t ≥ 0. Now, ṗ(t) ≥ p(t)L−2q(t) ≥ t, which gives
p(t) ≥ t2

2 + 1 for t ≥ 0. Therefore, we have

lim
t→∞

h(t) = lim
t→∞

p(t)L−1q(t) ≥ lim
t→∞

(
t2

2
+ 1

)L−1

t =∞,

hence finishing the proof.
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I.2. Proof of Theorem 4

I.2.1. CONVERGENCE OF LOSS TO ZERO

We first show that given the conditions on initialization, the training loss L(Θ(t)) converges to zero.
Recall from Section 2.1 that

v̇l = −∇vlL(Θ) = M(−XTr) ◦ (v1, . . . ,vl−1, Ikl ,vl+1, . . . ,vL).

Applying the structure (5) in Assumption 1, we get

v̇l = M(−XTr) ◦ (v1, . . . ,vl−1, Ikl ,vl+1, . . . ,vL)

= −
m∑
j=1

[SXTr]j(v
T
1 [U1]·,j⊗ · · · ⊗ vTl−1[Ul−1]·,j⊗ [Ul]·,j⊗ vTl+1[Ul+1]·,j⊗ · · · ⊗ vTL [UL]·,j)

= −
m∑
j=1

[SXTr]j

(∏
k 6=l

[UT
k vk]j

)
[Ul]·,j .

Left-multiplying UT
l to both sides, we get

UT
l v̇l = −SXTr �

∏�

k 6=l
UT
k vk, (40)

where
∏� denotes the product using entry-wise multiplication �.

Now consider the rate of growth for the second power of the j-th component of UT
l vl:

d

dt
[UT

l vl]
2
j = 2[UT

l v̇l]j [U
T
l vl]j = −2[SXTr]j

∏L

k=1
[UT

k vk]j =
d

dt
|[UT

l′ vl′ ]j |2

for any l′ ∈ [L]. Thus, for any j ∈ [m], the second power of the j-th components in UT
l vl grow at

the same rate for each layer l ∈ [L]. This means that the gap between any two different layers stays
constant for all t ≥ 0. Combining this with our conditions on initial directions, we have

[UT
l vl(t)]

2
j − [UT

L vL(t)]2j = [UT
l vl(0)]2j − [UT

L vL(0)]2j = α2[η̄]2j ≥ α2λ,

for any j ∈ [m], l ∈ [L− 1], and t ≥ 0. This inequality also implies

[UT
l vl(t)]

2
j ≥ [UT

L vL(t)]2j + α2λ ≥ α2λ. (41)

Let us now consider the time derivative of L(Θ(t)). We have the following chain of upper
bounds on the time derivative:

d

dt
L(Θ(t)) = ∇ΘL(Θ(t))T Θ̇(t) = −‖∇ΘL(Θ(t))‖22

≤ −‖∇vLL(Θ(t))‖22 = −‖v̇L(t)‖22
(a)

≤ −‖UT
L v̇L(t)‖22

(b)
= −

∥∥∥SXTr(t)�
∏�

k 6=L
UT
k vk(t)

∥∥∥2

2

= −
∑m

j=1
[SXTr(t)]2j

∏
k 6=L

[UT
k vk(t)]

2
j
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(c)

≤ −α2L−2λL−1
∑m

j=1
[SXTr(t)]2j

= −α2L−2λL−1‖SXTr(t)‖22
(d)

≤ −α2L−2λL−1smin(S)2smin(X)2‖r(t)‖22,
= −2α2L−2λL−1smin(S)2smin(X)2L(Θ(t)), (42)

where (a) used the fact that ‖v̇L(t)‖22 ≥ ‖ULUT
L v̇L(t)‖22 because it is a projection onto a subspace,

and ‖ULUT
L v̇L(t)‖22 = ‖UT

L v̇L(t)‖22 because UT
LUL = IkL ; (b) is due to (40); (c) is due to (41);

and (d) used the fact that S ∈ Rm×d andXT ∈ Rd×n are matrices that have full column rank, so for
any z ∈ Cn, we can use ‖SXTz‖2 ≥ smin(S)smin(X)‖z‖2 where smin(·) denotes the minimum
singular value of a matrix.

From (42), we get

L(Θ(t)) ≤ L(Θ(0)) exp(−2α2L−2λL−1smin(S)2smin(X)2t), (43)

so that L(Θ(t))→ 0 as t→∞.

I.2.2. CHARACTERIZING THE LIMIT POINT

Now, we move on to characterize the limit points of the gradient flow. First, by defining a “trans-
formed” version of the parameters ηl(t) := UT

l vl(t) and using (40), one can define an equivalent
system of ODEs:

η̇l = −SXTr �
∏�

k 6=l
ηk for l ∈ [L],

ηl(0) = αη̄ for l ∈ [L− 1], ηL(0) = 0.
(44)

Using Lemma 3, it is straightforward to verify that the solution to (44) has the following form.
For odd L, we have

ηl(t) = αη̄ � pL
(
−αL−2|η̄|�L−2 � SXT

∫ t

0
r(τ)dτ

)
for l ∈ [L− 1],

ηL(t) = α|η̄| � qL
(
−αL−2|η̄|�L−2 � SXT

∫ t

0
r(τ)dτ

)
.

(45)

Similarly, for even L, the solution for (44) satisfies

ηl(t) = αη̄ � pL
(
−αL−2η̄�L−2 � SXT

∫ t

0
r(τ)dτ

)
for l ∈ [L− 1],

ηL(t) = αη̄ � qL
(
−αL−2η̄�L−2 � SXT

∫ t

0
r(τ)dτ

)
.

(46)

Now that we know how the solutions ηl look like, let us see how these relate to the linear coefficients
of the network. By Assumption 1, we have

f(x; Θ) = M(x) ◦ (v1, . . . ,vL) =

m∑
j=1

[Sx]j

L∏
l=1

[UT
l vl]j
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=

[ m∑
j=1

( L∏
l=1

[ηl]j

)
[S]j,·

]
x = xTST

(∏�

l∈[L]
ηl

)
= xTSTρ.

Here, we defined ρ :=
∏�
l∈[L] ηl ∈ Rm. Therefore, the linear coefficients of the network can be

written as β(Θ(t)) = STρ(t). From the solutions (45) and (46), we can write

ρ(t) =

L∏
i=1

ηl(t) = αL|η̄|�L � hL
(
−αL−2|η̄|�L−2 � SXT

∫ t

0
r(τ)dτ

)
,

where hL := pL−1
L qL, defined in Lemma 3. By the convergence of the loss to zero (43), we have

limt→∞Xβ(Θ(t)) = y. Therefore,

XST
(
αL|η̄|�L � hL

(
−αL−2|η̄|�L−2 � SXT

∫ ∞
0
r(τ)dτ

))
︸ ︷︷ ︸

=:ρ∞

= y. (47)

Next, we will show that ρ∞ is in fact the solution of the following optimization problem

minimize
ρ∈Rm

QL,α,η̄(ρ) subject to XSTρ = y, (48)

where QL,α,η̄ : Rm → R is a norm-like function defined using HL(t) :=
∫ t

0 h
−1
L (τ)dτ :

QL,α,η̄(ρ) = α2
m∑
j=1

[η̄]2jHL

(
[ρ]j

αL|[η̄]j |L

)
.

Note that the KKT conditions for (48) are

XSTρ = y, ∇ρQL,α,η̄(ρ) = SXTν,

for some ν ∈ Rn. It is clear from (47) that ρ∞ satisfies the first condition (primal feasibility), so let
us check the other one. Through a straightforward calculation, we get

∇ρQL,α,η̄(ρ) = α2−L|η̄|�2−L � h−1
L

(
α−L|η̄|�(−L) � ρ

)
.

Equating this with SXTν gives

α2−L|η̄|�2−L � h−1
L

(
α−L|η̄|�(−L) � ρ

)
= SXTν

⇔ h−1
L

(
α−L|η̄|�(−L) � ρ

)
= αL−2|η̄|�L−2 � SXTν

⇔ ρ = αL|η̄|�L � hL
(
αL−2|η̄|�L−2 � SXTν

)
.

Hence, by setting ν = −
∫∞

0 r(τ)dτ , ρ∞ satisfies this condition as well. Also, if S is invertible, we
can substitute ρ = S−Tz to (48) to get the last statement of the theorem. This finishes the proof.
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I.3. Proof of Corollary 11

The proof is a direct consequence of the fact that Assumption 1 holds with S = U1 = · · · =
UL = Id for linear diagonal networks. Hence, the proof is the same as Corollary 9, proved in
Appendix H.2.

I.4. Proof of Corollary 12

We start by showing the DFT of a real and even vector is also real and even. Suppose that x ∈ Rd
is real and even. First,

[Fx]j =
1√
d

d∑
k=1

[x]k exp

(
−
√
−1 · 2π(j − 1)(k − 1)

d

)

=
1√
d

d∑
k=1

[x]k cos

(
−2π(j − 1)(k − 1)

d

)
+

√
−1√
d

d∑
k=1

[x]k sin

(
−2π(j − 1)(k − 1)

d

)

=
1√
d

d∑
k=1

[x]k cos

(
−2π(j − 1)(k − 1)

d

)
∈ R,

for all j ∈ [d]. To prove that Fx is even, for j = 0, . . . , bd−3
2 c, we have

[Fx]j+2 =
1√
d

d∑
k=1

[x]k cos

(
−2π(j + 1)(k − 1)

d

)

=
1√
d

d∑
k=1

[x]k cos

(
2π(k − 1)− 2π(j + 1)(k − 1)

d

)

=
1√
d

d∑
k=1

[x]k cos

(
2π(d− j − 1)(k − 1)

d

)

=
1√
d

d∑
k=1

[x]k cos

(
−2π(d− j − 1)(k − 1)

d

)
= [Fx]d−j .

It is proved in Appendix H.3 that linear full-length convolutional networks (k1 = · · · = kL = d)
satisfy Assumption 1 with S = d

L−1
2 F and U1 = · · · = UL = F ∗, where F ∈ Cd×d is the matrix

of discrete Fourier transform basis [F ]j,k = 1√
d

exp(−
√
−1·2π(j−1)(k−1)

d ) and F ∗ is the complex
conjugate of F .

The proof of convergence of loss to zero in Appendix I.2.1 is written for real matricesS,U1, . . . ,UL,
but we can actually apply the same argument as in Appendix H.1.1 and prove that the loss converges
to zero, even in the case where S,U1, . . . ,UL are complex.

Next, since Ul’s are complex, we can write the system of ODE as (see (20) for its derivation)

Fẇl = −d
L−1
2 FXTr �

∏�

k 6=l
F ∗wk, (49)
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Since all data points xi and initialization wl(0) are real and even, we have that FXTr is real and
even, and F ∗wl(0) = Fwl(0)’s are real and even. By (49), we see that the time derivatives of Fwl

are also real and even. Thus, the parameters wl(t) are all real and even for all t ≥ 0. From this
observation, we can define ηl(t) := Fwl(t), η̄ := Fw̄, and S := d

L−1
2 Re(F ), which are all real

by the even symmetry. Then, starting from (44), the proof goes through.

I.5. Proof of Corollary 13

Since the sensor matricesA1, . . . ,An commute, they are simultaneously diagonalizable with a real
unitary matrix U ∈ Rd×d, i.e., UTAiU ’s are diagonal matrices. From the deep matrix sensing
problem (13), we can compute∇Wl

∂L, which gives the gradient flow dynamics ofWl.

Ẇl = −∇Wl
∂L = −W T

l−1 · · ·W T
1 (
∑n

i=1
riAi)W

T
L · · ·W T

l+1,

where ri = 〈Ai,W1 · · ·WL〉 − yi is the residual for the i-th sensor matrix. If all we left-multiply
UT and right-multiply U to both sides, we get

UTẆlU = −UTW T
l−1U · · ·UTW T

1 U(
∑n

i=1
riU

TAiU)UTW T
LU · · ·UTW T

l+1U . (50)

If UTW T
k U is a diagonal matrix for all k 6= l, then UTẆlU is also a diagonal matrix. Note also

that, since Wl(0) = αId = αUUT for l ∈ [L − 1], the product UTWlU is a diagonal matrix at
initialization. These observations imply thatWl(t)’s are all diagonalizable with U for all t ≥ 0.

Now, define vl(t) = eig(Wl(t)), i.e.,UTWlU = diag(vl). Also, let xi = eig(Ai). Then, (50)
can be written as

v̇l = −(
∑n

i=1
rixi)�

∏�

k 6=l
vk.

Therefore, this is equivalent to the regression problem with linear diagonal networks, initialized at
vl(0) = α1 for l ∈ [L − 1] and vL(0) = 0. Given this equivalence, Corollary 13 can be implied
from Corollary 11.

Appendix J. Proofs of Theorem 5 and Corollary 14

J.1. Proof of Theorem 5

J.1.1. CONVERGENCE OF LOSS TO ZERO

Since Theorem 5 does not assume the existence of t0 ≥ 0 satisfying L(Θ(t0)) < 1, we need to first
show that given the conditions on initialization, the training loss L(Θ(t)) converges to zero. Since
L = 2 and M(x) = U1 diag(s)UT

2 , we can write the gradient flow dynamics from Section 2.1 as

v̇1 = −M(XTr) ◦ (Ik1 ,v2) = −rU1 diag(s)UT
2 v2,

v̇2 = −M(XTr) ◦ (v1, Ik2) = −rU2 diag(s)UT
1 v1,

(51)

where r(t) = −y exp(−yf(x; Θ(t))) is the residual of the data point (x, y). From (51) we get

UT
l v̇1 = −rs�UT

2 v2, U
T
2 v̇2 = −rs�UT

1 v1. (52)
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Now consider the rate of growth for the j-th component of UT
1 v1 squared:

d

dt
[UT

1 v1]2j = 2[UT
1 v1]j [U

T
1 v̇1]j = −2r[s]j [U

T
1 v1]j [U

T
2 v2]j =

d

dt
[UT

2 v2]2j . (53)

So for any j ∈ [m], [UT
1 v1]2j and [UT

2 v2]2j grow at the same rate. This means that the gap between
the two layers stays constant for all t ≥ 0. Combining this with our conditions on initial directions,

[UT
1 v1(t)]2j − [UT

2 v2(t)]2j = [UT
1 v1(0)]2j − [UT

2 v2(0)]2j

= α2[UT
1 v̄1]2j − α2[UT

2 v̄2]2j ≥ α2λ,
(54)

for any j ∈ [m] and t ≥ 0. This inequality implies

[UT
1 v1(t)]2j ≥ [UT

2 v2(t)]2j + α2λ ≥ α2λ. (55)

Let us now consider the time derivative of L(Θ(t)). We have the following chain of upper
bounds on the time derivative:

d

dt
L(Θ(t)) = ∇ΘL(Θ(t))T Θ̇(t) = −‖∇ΘL(Θ(t))‖22

≤ −‖∇v2L(Θ(t))‖22 = −‖v̇2(t)‖22
(a)

≤ −‖UT
2 v̇2(t)‖22

(b)
= −r(t)2

∥∥s�UT
1 v1(t)

∥∥2

2

= −r(t)2
∑m

j=1
[s]2j [U

T
1 v1(t)]2j

(c)

≤ −α2λr(t)2
∑m

j=1
[s]2j

= −α2λ‖s‖22L(Θ(t))2,

where (a) used the fact that ‖v̇2(t)‖22 ≥ ‖U2U
T
2 v̇2(t)‖22 because it is a projection onto a subspace,

and ‖U2U
T
2 v̇L(t)‖22 = ‖UT

2 v̇2(t)‖22 because UT
2 U2 = Ik2 ; (b) is due to (52); (c) is due to (55).

From this, we get

L(Θ(t)) ≤ L(Θ(0))

1 + α2λ‖s‖22t
.

Therefore, L(Θ(t))→ 0 as t→∞.

J.1.2. CHARACTERIZING THE LIMIT DIRECTION

Since we proved that L(Θ(t)) → 0, the argument in the proof of Theorem 1 applies to this case,
and shows that the parameters vl converge in direction and align with v̇l = −∇vlL(Θ). Let
v∞l := limt→∞

vl(t)
‖vl(t)‖2 be the limit direction of vl. As done in the proof of Theorem 2, define

ρ(t) = UT
1 v1(t)�UT

2 v2(t) and ρ∞ = UT
1 v
∞
1 �UT

2 v
∞
2 .

It follows from r(t) = −y exp(−yf(x; Θ(t))) that we have sign(r(t)) = − sign(y). Using
this, (52), and alignment of vl and v̇l, we have

UT
1 v
∞
1 ∝ ys�UT

2 v
∞
2 , U

T
2 v
∞
2 ∝ ys�UT

1 v
∞
1 . (56)
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Element-wise multiplying UT
l v
∞
l to both sides gives

(UT
1 v
∞
1 )�2 ∝ ys� ρ∞, (UT

2 v
∞
2 )�2 ∝ ys� ρ∞. (57)

Since the LHSs are positive and s is positive, the following equations have to be satisfied for all
j ∈ [m]:

sign(y) = sign([ρ∞]j). (58)

Now, multiplying both sides of the two equations (57), we get

(ρ∞)�2 ∝ s�2 � (ρ∞)�2. (59)

From (59), ρ∞ must satisfy that

[ρ∞]j 6= 0, [ρ∞]j′ 6= 0 =⇒ |[s]j | = |[s]j′ |, (60)

for all j, j′ ∈ [m]. As in the proof of Theorem 2, there is another condition that has to be satisfied:

[ρ∞]j = 0, [ρ∞]j′ 6= 0 =⇒ |[s]j | ≤ |[s]j′ |, (61)

for any j, j′ ∈ [m]; let us prove why. First, consider the time derivative of [ρ]j = [UT
1 v1]j [U

T
2 v2]j .

d

dt
[ρ(t)]j = [UT

1 v1(t)]j
d

dt
[UT

2 v2(t)]j + [UT
2 v2(t)]j

d

dt
[UT

1 v1(t)]j

(a)
= −r(t)[s]j([UT

1 v1(t)]2j + [UT
2 v2(t)]2j ),

where (a) used (52). Now consider∣∣ d
dt [ρ(t)]j

∣∣
|r(t)||[ρ(t)]j |

= |[s]j |
[UT

1 v1(t)]2j + [UT
2 v2(t)]2j

|[ρ(t)]j |
. (62)

We want to compare this quantity for different j, j′ ∈ [m]. Before we do that, we take a look at the
last term in the RHS of (62). Recall from (54) that

[UT
1 v1(t)]2j = [UT

2 v2(t)]2j + [UT
1 v1(0)]2j − [UT

2 v2(0)]2j . (63)

For simplicity, let δj := [UT
1 v1(0)]2j − [UT

2 v2(0)]2j . Then, we can use (63) and |[ρ(t)]j | =

|[UT
1 v1(t)]j ||[UT

2 v2(t)]j | to show that

[UT
1 v1(t)]2j + [UT

2 v2(t)]2j
|[ρ(t)]j |

=
2[UT

2 v2(t)]2j + δj

|[UT
2 v2(t)]j |

√
[UT

2 v2(t)]2j + δj
≥ 2,

lim
t→∞

[UT
1 v1(t)]2j + [UT

2 v2(t)]2j
|[ρ(t)]j |

= 2 if lim
t→∞
|[UT

2 v2(t)]j | =∞.

Suppose that there exists j ∈ [m] that satisfies [ρ∞]j = 0 but |[s]j | > |[s]j′ |, for some j′ ∈ [m]
satisfying [ρ∞]j′ 6= 0. Note that having [ρ∞]j = 0 and [ρ∞]j′ 6= 0 implies that |[ρ(t)]j′ | → ∞ and
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|[ρ(t)]j |
|[ρ(t)]j′ |

→ 0. We now want to compare the ratio of (62) for j and j′. Using |[ρ(t)]j |
|[ρ(t)]j′ |

→ 0 and the

fact that x 7→ 2x2+δ
x
√
x2+δ

is a decreasing function of x ≥ 0 for any δ > 0, we have

([UT
1 v1(t)]2j + [UT

2 v2(t)]2j )/|[ρ(t)]j |
([UT

1 v1(t)]2j′ + [UT
2 v2(t)]2j′))/|[ρ(t)]j′ |

≥ 1, (64)

for any t ≥ t0, when t0 is large enough. Combining |[s]j ||[s]j′ |
> 1 and (64) to compare the ratio of (62)

for j and j′, there exists some t0 ≥ 0 such that for any t ≥ t0, we have∣∣ d
dt [ρ(t)]j

∣∣ /|[ρ(t)]j |∣∣ d
dt [ρ(t)]j′

∣∣ /|[ρ(t)]j′ |
> 1. (65)

This implies that the ratio of the absolute value of time derivative of [ρ(t)]j to the absolute value of
current value of [ρ(t)]j is strictly bigger than that of [ρ(t)]j′ . Moreover, by the definition of r(t),
d
dt [ρ(t)]j does not change sign over time. Since this holds for all t ≥ t0, (65) results in a growth of
|[ρ(t)]j | that is exponentially faster than that of |[ρ(t)]j′ |, so [ρ(t)]j becomes a dominant component
in ρ(t) as t→∞. This contradicts that [ρ∞]j = 0, hence the condition (61) has to be satisfied.

So far, we have characterized some conditions (58), (60), (61) that have to be satisfied by the
limit direction ρ∞ of ρ. We now consider the following optimization problem and prove that these
conditions are in fact the KKT conditions of the optimization problem. Consider

minimize
ρ∈Rm

‖ρ‖1 subject to ysTρ ≥ 1. (66)

The KKT condition of this problem is

∂ ‖ρ‖1 3 ys,

where the global subdifferential ∂ ‖·‖1 is defined as

∂ ‖ρ‖1 = {u ∈ Rm | |[u]j | ≤ 1 for all j ∈ [m], and [ρ]j 6= 0 =⇒ [u]j = sign([ρ]j)}.

We can check from (58), (60), (61) that the that ρ∞ satisfies the KKT condition up to scaling.
Now, how do we characterize v∞1 and v∞2 in terms of ρ∞? Let η∞1 := UT

1 v
∞
1 and η∞2 :=

UT
2 v
∞
2 . Then, v∞l = Ulη

∞
l = UlU

T
l v
∞
l holds because any component orthogonal to the column

space of Ul stays unchanged while the component in the column space of Ul diverges to infinity.
By (53), |η∞1 | = |η∞2 | = |ρ∞|�1/2. By (56), we have sign(η∞1 ) = sign(y)� sign(η∞2 ).

J.2. Proof of Corollary 14

The proof of Corollary 14 boils down to characterizing the SVD of Mconv(x).

J.2.1. THE k1 = 1 CASE

First, it is straightforward to check that for L = 2 and k1 = 1, we have

βconv(Θconv) = v1v2.
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For k1 = 1, the data tensor is simply Mconv(x) = xT . Thus, we have U1 = 1, U2 = x
‖x‖2

,
and s = ‖x‖2. Substituting U1 and U2 to the theorem gives the condition on initial directions in
Corollary 14. Also, the theorem implies us that the limit direction v∞2 of v2 satisfies v∞2 ∝ yv∞1 x.
Using this, it is easy to check that

βconv(Θ∞conv) ∝ v∞1 v∞2 ∝ yx.

J.2.2. THE k1 = 2 CASE

First, it is straightforward to check that for L = 2 and k1 = 2, we have

βconv(Θconv) =



[v1]1 0 0 · · · 0 [v1]2
[v1]2 [v1]1 0 · · · 0 0

0 [v1]2 [v1]1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · [v1]1 0
0 0 0 · · · [v1]2 [v1]1


v2. (67)

For k1 = 2, by definition, the data tensor is

Mconv(x) =

[
xT
←−x T

]
,

and it is straightforward to check that the SVD of this matrix is

Mconv(x) =

[
xT
←−x T

]
=

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]√‖x‖22 + xT←−x 0

0
√
‖x‖22 − xT

←−x

 xT +←−x T
√

2
√
‖x‖22+xT←−x
xT−←−x T

√
2
√
‖x‖22−xT←−x

 ,
so

U1 =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
,U2 =

[
x+←−x√

2
√
‖x‖22+xT←−x

x−←−x√
2
√
‖x‖22−xT←−x

]
, s =

√‖x‖22 + xT←−x√
‖x‖22 − xT

←−x

 .
Substituting U1 and U2 to the theorem gives the conditions on initial directions. Also, note that the
maximum singular value depends on the sign of xT←−x . Consider the optimization problem in the
theorem statement:

minimizeρ∈Rm ‖ρ‖1 subject to ysTρ ≥ 1.

If xT←−x > 0, then the solution ρ∞ to this problem is in the direction of [y 0]. Therefore, the limit
directions v∞1 and v∞2 will be of the form

v∞1 ∝ c1

[
1
1

]
, v∞2 ∝ c2(x+←−x ),
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where sign(c1) sign(c2) = sign(y). Using (67), it is straightforward to check that

βconv(Θ∞conv) ∝ y



1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 1 1


(x+←−x ) = y(2x+←−x +−→x ).

Similarly, if xT←−x < 0, then the solution ρ∞ is in the direction of [0 y]. Using (67), we have

βconv(Θ∞conv) ∝ y



1 0 0 · · · 0 −1
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −1 1


(x−←−x ) = y(2x−←−x −−→x ).

Appendix K. Proof of Theorem 6

K.1. Convergence of loss to zero

We first show that given the conditions on initialization, the training loss L(Θ(t)) converges to
zero. Since L = 2 and M(x) = U1 diag(s)UT

2 , we can write the gradient flow dynamics from
Section 2.1 as

v̇1 = −M(XTr) ◦ (Ik1 ,v2) = −rU1 diag(s)UT
2 v2,

v̇2 = −M(XTr) ◦ (v1, Ik2) = −rU2 diag(s)UT
1 v1,

(68)

where r(t) = f(x; Θ(t))− y is the residual of the data point (x, y). From (68) we get

UT
l v̇1 = −rs�UT

2 v2, U
T
2 v̇2 = −rs�UT

1 v1. (69)

Now consider the rate of growth for the j-th component of UT
1 v1 squared:

d

dt
[UT

1 v1]2j = 2[UT
1 v1]j [U

T
1 v̇1]j = −2r[s]j [U

T
1 v1]j [U

T
2 v2]j =

d

dt
[UT

2 v2]2j .

So for any j ∈ [m], [UT
1 v1]2j and [UT

2 v2]2j grow at the same rate. This means that the gap between
the two layers stays constant for all t ≥ 0. Combining this with our conditions on initial directions,

[UT
1 v1(t)]2j − [UT

2 v2(t)]2j = [UT
1 v1(0)]2j − [UT

2 v2(0)]2j

= α2[UT
1 v̄1]2j − α2[UT

2 v̄2]2j ≥ α2λ,

for any j ∈ [m] and t ≥ 0. This inequality implies

[UT
1 v1(t)]2j ≥ [UT

2 v2(t)]2j + α2λ ≥ α2λ. (70)
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Let us now consider the time derivative of L(Θ(t)). We have the following chain of upper
bounds on the time derivative:

d

dt
L(Θ(t)) = ∇ΘL(Θ(t))T Θ̇(t) = −‖∇ΘL(Θ(t))‖22

≤ −‖∇v2L(Θ(t))‖22 = −‖v̇2(t)‖22
(a)

≤ −‖UT
2 v̇2(t)‖22

(b)
= −r(t)2

∥∥s�UT
1 v1(t)

∥∥2

2

= −r(t)2
∑m

j=1
[s]2j [U

T
1 v1(t)]2j

(c)

≤ −α2λr(t)2
∑m

j=1
[s]2j

= −2α2λ‖s‖22L(Θ(t)),

where (a) used the fact that ‖v̇2(t)‖22 ≥ ‖U2U
T
2 v̇2(t)‖22 because it is a projection onto a subspace,

and ‖U2U
T
2 v̇L(t)‖22 = ‖UT

2 v̇2(t)‖22 because UT
2 U2 = Ik2 ; (b) is due to (69); (c) is due to (70).

From this, we get
L(Θ(t)) ≤ L(Θ(0)) exp(−2α2λ‖s‖22t). (71)

Therefore, L(Θ(t))→ 0 as t→∞.

K.2. Characterizing the limit point

Now, we move on to characterize the limit points of the gradient flow. First, note that any changes
made in vl over time are in the subspace spanned by the columns of Ul. Therefore, any component
in the initialization vl(0) = αv̄l that is orthogonal to the column space of Ul stays constant.

So, we can focus on the evolution of vl in the column space of Ul; this can be done by defining
a “transformed” version of the parameters ηl(t) := UT

l vl(t) and using (69), one can define an
equivalent system of ODEs:

η̇1 = −rs� η2, η̇2 = −rs� η1,

η1(0) = αη̄1, η2(0) = αη̄2,
(72)

where η̄1 := UT
1 v̄1, η̄2 := UT

2 v̄2. It is straightforward to verify that the solution to (72) has the
following form.

η1(t) = αη̄1 � cosh

(
−s
∫ t

0
r(τ)dτ

)
+ αη̄2 � sinh

(
−s
∫ t

0
r(τ)dτ

)
,

η2(t) = αη̄1 � sinh

(
−s
∫ t

0
r(τ)dτ

)
+ αη̄2 � cosh

(
−s
∫ t

0
r(τ)dτ

)
.

(73)

By the convergence of the loss to zero (71), we have limt→∞ f(x; Θ(t)) = y. Note that f(x; Θ(t))
can be written as

f(x; Θ(t)) = M(x) ◦ (v1(t),v2(t)) = v1(t)TM(x)v2(t)

= v1(t)TU1 diag(s)UT
2 v2(t) = sT (η1(t)� η2(t)).
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Therefore,

lim
t→∞

f(x; Θ(t)) = lim
t→∞

sT (η1(t)� η2(t))

= α2sT
[
(η̄�2

1 + η̄�2
2 )� cosh

(
−s
∫ ∞

0
r(τ)dτ

)
� sinh

(
−s
∫ ∞

0
r(τ)dτ

)
+ (η̄1 � η̄2)�

(
cosh�2

(
−s
∫ ∞

0
r(τ)dτ

)
+ sinh�2

(
−s
∫ ∞

0
r(τ)dτ

))]
= α2sT

[
η̄�2

1 + η̄�2
2

2
� sinh

(
−2s

∫ ∞
0

r(τ)dτ

)
+ (η̄1 � η̄2)� cosh

(
−2s

∫ ∞
0

r(τ)dτ

)]
= α2

m∑
j=1

[s]j

(
[η̄1]2j + [η̄2]2j

2
sinh (2[s]jν) + [η̄1]j [η̄2]j cosh (2[s]jν)

)
= y, (74)

where we defined ν := −
∫∞

0 r(τ)dτ . Consider the function ν 7→ a sinh(ν) + b cosh(ν). This is a
strictly increasing function if a > |b|. Note also that

[η̄1]2j + [η̄2]2j
2

≥ |[η̄1]j [η̄2]j |, (75)

which holds with equality if and only if |[η̄1]j | = |[η̄2]j |. However, recall from our assumptions on
initialization that [η̄1]2j − [η̄2]2j ≥ λ > 0, so (75) can only hold with strict inequality. Therefore,

g(ν) :=
m∑
j=1

[s]j

(
[η̄1]2j + [η̄2]2j

2
sinh(2[s]jν) + [η̄1]j [η̄2]j cosh(2[s]jν)

)

is a strictly increasing (hence invertible) function because it is a sum of m strictly increasing func-
tion. Using this g(ν), (74) can be written as α2g(ν) = y, and by using the inverse of g, we have

ν = −
∫ ∞

0
r(τ)dτ = g−1

( y
α2

)
. (76)

Plugging (76) into (73), we get

lim
t→∞

v1(t)

= U1 lim
t→∞

η1(t) + α(Ik1 −U1U
T
1 )v̄1

= αU1

(
η̄1 � cosh

(
g−1

( y
α2

)
s
)

+ η̄2 � sinh
(
g−1

( y
α2

)
s
))

+ α(Ik1 −U1U
T
1 )v̄1,

lim
t→∞

v2(t)

= U2 lim
t→∞

η2(t) + α(Ik2 −U2U
T
2 )v̄2

= αU2

(
η̄1 � sinh

(
g−1

( y
α2

)
s
)

+ η̄2 � cosh
(
g−1

( y
α2

)
s
))

+ α(Ik2 −U2U
T
2 )v̄2.

This finishes the proof.
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Appendix L. Proof of Theorem 7

L.1. Convergence of loss to zero

We first show that given the conditions on initialization, the training loss L(Θ(t)) converges to zero.
Recall from (10) that the linear fully-connected network can be written as

ffc(x; Θfc) = xTW1W2 · · ·WL−1wL.

From the definition of the training loss L, it is straightforward to check that the gradient flow dy-
namics read

Ẇl = −∇Wl
L(Θfc) = −W T

l−1 · · ·W T
1 X

TrwT
LW

T
L−1 · · ·W T

l+1 for l ∈ [L− 1],

ẇL = −∇wLL(Θfc) = −W T
L−1 · · ·W T

1 X
Tr,

Wl(0) = αW̄l for l ∈ [L− 1],

wL(0) = αw̄L,

(77)

where r ∈ Rn is the residual vector satisfying [r]i = ffc(xi; Θfc) − yi, as defined in Section 2.1.
From (77), we have

W T
l Ẇl = Ẇl+1W

T
l+1 = −W T

l · · ·W T
1 X

TrwT
LW

T
L−1 · · ·W T

l+1,

Ẇ T
l Wl = Wl+1Ẇ

T
l+1 = −Wl+1 · · ·WL−1wLr

TXW1 · · ·Wl,

for any l ∈ [L− 2]. From this, we have

d

dt
W T

l Wl =
d

dt
Wl+1W

T
l+1,

and thus

Wl(t)
TWl(t)−Wl+1(t)Wl+1(t)T = Wl(0)TWl(0)−Wl+1(0)Wl+1(0)T

= α2W̄ T
l W̄l − α2W̄l+1W̄

T
l+1,

(78)

for any l ∈ [L− 2]. Similarly, we have

WL−1(t)TWL−1(t)−wL(t)wL(t)T = WL−1(0)TWL−1(0)−wL(0)wL(0)T

= α2W̄ T
L−1W̄L−1 − α2w̄Lw̄

T
L .

(79)

Let us now consider the time derivative of L(Θfc(t)). We have the following chain of upper bounds
on the time derivative:

d

dt
L(Θfc(t)) = ∇Θfc

L(Θfc(t))
T Θ̇fc(t) = −‖∇Θfc

L(Θfc(t))‖22
≤ −‖∇wLL(Θfc(t))‖22 = −‖ẇL(t)‖22
= −‖W T

L−1 · · ·W T
1 X

Tr‖22. (80)

Note from (80) that if W T
L−1 · · ·W T

1 is full-rank, its minimum singular value is positive, and one
can bound

‖W T
L−1 · · ·W T

1 X
Tr‖2 ≥ σmin(W T

L−1 · · ·W T
1 )‖XTr‖2. (81)
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We now prove that the matrixW T
L−1 · · ·W T

1 is full-rank, and its minimum singular value is bounded
from below by αL−1λ(L−1)/2 for any t ≥ 0. To show this, it suffices to show that

W T
L−1 · · ·W T

1 W1 · · ·WL−1 � α2L−2λL−1Id. (82)

Now,

W T
L−1 · · ·W T

2 W
T
1 W1W2 · · ·WL−1

(a)
= W T

L−1 · · ·W T
2 (W2W

T
2 + α2W̄ T

1 W̄1 − α2W̄2W̄
T
2 )W2 · · ·WL−1

(b)

� W T
L−1 · · ·W T

3 W
T
2 W2W

T
2 W2W3 · · ·WL−1

(a)
= W T

L−1 · · ·W T
3 (W3W

T
3 + α2W̄ T

2 W̄2 − α2W̄3W̄
T
3 )2W3 · · ·WL−1

(b)

� W T
L−1 · · ·W T

3 (W3W
T
3 )2W3 · · ·WL−1

= · · · � (W T
L−1WL−1)L−1,

where equalities marked in (a) used (78), and inequalities marked in (b) used the initialization
conditions W̄ T

l W̄l � W̄l+1W̄
T
l+1. Next, it follows from (79) that

(W T
L−1WL−1)L−1 = (wLw

T
L + α2W̄ T

L−1W̄L−1 − α2w̄Lw̄
T
L)L−1

� α2L−2(W̄ T
L−1W̄L−1 − w̄Lw̄

T
L)L−1

(c)

� α2L−2λL−1Id.

where (c) used the assumption that W̄ T
L−1W̄L−1− w̄Lw̄

T
L � λId. This proves (82). Applying (82)

to (80) then gives

d

dt
L(Θfc(t)) ≤ −‖W T

L−1 · · ·W T
1 X

Tr‖22

≤ −σmin(W T
L−1 · · ·W T

1 )2‖XTr‖22
≤ −α2L−2λL−1‖XTr‖22
(d)

≤ −α2L−2λL−1σmin(X)2‖r‖22
= −α2L−2λL−1σmin(X)2L(Θfc(t)),

where (d) used the fact thatXT is a full column rank matrix to apply a bound similar to (81). From
this, we get

L(Θfc(t)) ≤ L(Θfc(0)) exp(−α2L−2λL−1σmin(X)2t),

hence proving L(Θfc(t))→ 0 as t→∞.

L.2. Characterizing the limit point: α→ 0 case

Now, we move on to characterize the limit points of the gradient flow, for the “active regime” case
α→ 0. This part of the proof is motivated from the analysis in Ji and Telgarsky [18].
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Let ul and vl be the top left and right singular vectors ofWl, for l ∈ [L−1]. Note that sinceWl

varies over time, the singular vectors and singular value also vary over time. Similarly, let sl be the
largest singular value ofWl. We will show that the linear coefficients βfc(Θfc) = W1 · · ·WL−1wL

align with u1 as α → 0, and u1 is in the subspace of row(X) in the limit α → 0, hence proving
that βfc(Θfc) is the minimum `2 norm solution in the limit α→ 0.

First, note from (78) and (79) that if we take trace of both sides, we get

‖Wl‖2F − ‖Wl+1‖2F = α2(
∥∥W̄l

∥∥2

F
−
∥∥W̄l+1

∥∥2

F
) for l ∈ [L− 2],

‖WL−1‖2F − ‖wL‖22 = α2(
∥∥W̄L−1

∥∥2

F
− ‖w̄L‖22).

Summing the equations above for l, l + 1, . . . , L− 1, we get

‖Wl‖2F − ‖wL‖22 = α2(
∥∥W̄l

∥∥2

F
− ‖w̄L‖22). (83)

Next, consider the operator norms (i.e., the maximum singular values), denoted as ‖·‖2, of the
matrices.

‖Wl‖22 ≥ u
T
l+1W

T
l Wlul+1

(e)
= uTl+1Wl+1W

T
l+1ul+1 + α2uTl+1(W̄ T

l W̄l − W̄l+1W̄
T
l+1)ul+1

= ‖Wl+1‖22 + α2uTl+1(W̄ T
l W̄l − W̄l+1W̄

T
l+1)ul+1

≥ ‖Wl+1‖22 − α
2‖W̄ T

l W̄l − W̄l+1W̄
T
l+1‖2 for l ∈ [L− 2],

‖WL−1‖22 ≥
wL

‖wL‖2
W T

L−1WL−1
wL

‖wL‖2
(f)
=

wL

‖wL‖2
wLw

T
L

wL

‖wL‖2
+ α2 wL

‖wL‖2
(W̄ T

L−1W̄L−1 − w̄Lw̄
T
L)

wL

‖wL‖2
≥ ‖wL‖22 − α

2‖W̄ T
L−1W̄L−1 − w̄Lw̄

T
L‖2.

where (e) used (78) and (f) used (79). Summing the inequalities gives

‖Wl‖22 ≥ ‖wL‖22 − α
2
L−1∑
k=1

‖W̄ T
k W̄k − W̄k+1W̄

T
k+1‖2. (84)

From (83) and (84), we get a bound on the gap between the second powers of the Frobenius norm
(or the `2 norm of singular values) and operator norm (or the maximum singular value sl) ofWl:

‖Wl(t)‖2F − ‖Wl(t)‖22 ≤ α
2(
∥∥W̄l

∥∥2

F
− ‖w̄L‖22) + α2

L−1∑
k=l

‖W̄ T
k W̄k − W̄k+1W̄

T
k+1‖2, (85)

which holds for any t ≥ 0. The gap (85) implies that eachWl, for l ∈ [L− 1], can be written as

Wl(t) = sl(t)ul(t)vl(t)
T +O(α2). (86)

Next, we show that the “adjacent” singular vectors vl and ul+1 align with each other as α→ 0. To
this end, we will get lower and upper bounds for a quantity vTl Wl+1W

T
l+1vl.

vTl Wl+1W
T
l+1vl = vTl W

T
l Wlvl − α2vTl W̄

T
l W̄lvl + α2vTl W̄l+1W̄

T
l+1vl
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≥ ‖Wl‖22 − α
2
∥∥W̄ T

l W̄l − W̄l+1W̄
T
l+1

∥∥
2

= s2
l − α2

∥∥W̄ T
l W̄l − W̄l+1W̄

T
l+1

∥∥
2
, (87)

vTl Wl+1W
T
l+1vl = vTl (s2

l+1ul+1u
T
l+1 +Wl+1W

T
l+1 − s2

l+1ul+1u
T
l+1)vl

= s2
l+1(vTl ul+1)2 + vTl (Wl+1W

T
l+1 − s2

l+1ul+1u
T
l+1)vl

≤ s2
l+1(vTl ul+1)2 + ‖Wl+1‖2F − ‖Wl+1‖22 . (88)

Combining (87), (88), and (85), we get

s2
l ≤ s2

l+1(vTl ul+1)2 + α2
∥∥W̄ T

l W̄l − W̄l+1W̄
T
l+1

∥∥
2

+ ‖Wl+1‖2F − ‖Wl+1‖22

≤ s2
l+1(vTl ul+1)2 + α2(

∥∥W̄l+1

∥∥2

F
− ‖w̄L‖22) + α2

L−1∑
k=l

‖W̄ T
k W̄k − W̄k+1W̄

T
k+1‖2. (89)

Next, by a similar reasoning as (87), we have

s2
l ≥ uTl+1W

T
l Wlul+1 ≥ s2

l+1 − α2
∥∥W̄ T

l W̄l − W̄l+1W̄
T
l+1

∥∥
2
. (90)

Combining (89) and (90) and dividing both sides by s2
l+1, we get

(vl(t)
Tul+1(t))2 ≥ 1− α2 Gl

sl+1(t)2
(91)

for t ≥ 0, where

Gl :=
∥∥W̄ T

l W̄l − W̄l+1W̄
T
l+1

∥∥
2

+ (
∥∥W̄l+1

∥∥2

F
− ‖w̄L‖22) +

L−1∑
k=l

‖W̄ T
k W̄k − W̄k+1W̄

T
k+1‖2.

By a similar argument, we can also get

(vL−1(t)TwL(t))2

‖wL(t)‖22
≥ 1− α2 GL−1

‖wL(t)‖22
, (92)

where

GL−1 := 2
∥∥W̄ T

L−1W̄L−1 − w̄Lw̄
T
L

∥∥
2
.

From (91) and (92), we can note that as α → 0, the inner product between the adjacent singular
vectors converges to ±1, unless s2, . . . , sL−1, ‖wL‖2 also diminish to zero. So it is left to show
that the singular values do not diminish to zero as α → 0. To this end, recall that we proved in the
previous subsection that

lim
t→∞

XW1(t) · · ·WL−1(t)wL(t) = y.

A necessary condition for this to hold is that

‖y‖2
‖X‖2

≤ lim
t→∞
‖W1(t) · · ·WL−1(t)wL(t)‖2 ≤ lim

t→∞

L−1∏
l=1

sl(t) ‖wL(t)‖2 .

43



A UNIFYING VIEW ON IMPLICIT BIAS IN TRAINING LINEAR NEURAL NETWORKS

This means that after converging to the global minimum solution of the problem (i.e., t → ∞),
the product of the singular values must be at least greater than some constant independent of α.
Moreover, we can see from (87) and (90) that the gap between singular values squared of adjacent
layers is bounded by O(α2), for all t ≥ 0; so the maximum singular values become closer and
closer to each other as α diminishes. This implies that

lim
α→0

lim
t→∞

sl(t) ≥
‖y‖1/L2

‖X‖1/L2

for l ∈ [L− 1], lim
α→0

lim
t→∞
‖wL(t)‖2 ≥

‖y‖1/L2

‖X‖1/L2

.

Therefore, we have the alignment of singular vectors at convergence as α→ 0:

lim
α→0

lim
t→∞

(vl(t)
Tul+1(t))2 = 1, for l ∈ [L− 2], lim

α→0
lim
t→∞

(vL−1(t)TwL(t))2

‖wL(t)‖22
= 1. (93)

So far, we saw from (86) thatWl(t)’s become rank-1 matrices as α→ 0, and from (93) that the
top singular vectors align with each other as t → ∞ and α → 0. These imply that, as t → ∞ and
α→ 0, βfc(Θfc) is a scalar multiple of the u1, the top left singular vector ofW1:

lim
α→0

lim
t→∞

βfc(Θfc(t)) = c · lim
α→0

lim
t→∞

u1(t), (94)

for some c ∈ R.
In light of (94), it remains to take a close look at u1(t). Note from the gradient flow dynamics

of W1 that Ẇ1 is always a rank-1 matrix whose columns are in the row space of X , since XTr ∈
row(X). This implies that, if we decompose W1 into two orthogonal components W⊥

1 and W ‖
1

so that the columns in W ‖
1 are in row(X) and the columns in W⊥

1 are in the orthogonal subspace
row(X)⊥, we have

Ẇ⊥
1 = 0, Ẇ

‖
1 = Ẇ1.

That is, any component W⊥
1 (0) orthogonal to row(X) remains unchanged for all t ≥ 0, while the

componentW ‖
1 changes by the gradient flow. Since we have∥∥∥W⊥

1 (t)
∥∥∥

F
=
∥∥∥W⊥

1 (0)
∥∥∥

F
≤ α

∥∥W̄l

∥∥
F
,

the component in W1 that is orthogonal to row(X) diminishes to zero as α → 0. This means that
at the limit α→ 0, the columns ofW1 are entirely from row(X), which also means that

lim
α→0

lim
t→∞

βfc(Θfc(t)) ∈ row(X).

However, recall that there is only one unique global minimum of Xz = y in row(X): namely,
z = XT (XXT )−1y, the minimum `2 norm solution. This finishes the proof.
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