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Abstract
We propose a new, simple, and computationally inexpensive termination test for constant step-size
stochastic gradient descent (SGD) applied to binary classification on the logistic and hinge loss with
homogeneous linear predictors. Our theoretical results support the effectiveness of our stopping
criterion when the data is Gaussian distributed. This presence of noise allows for the possibility
of non-separable data. We show that our test terminates in a finite number of iterations and when
the noise in the data is not too large, the expected classifier at termination nearly minimizes the
probability of misclassification. Finally, numerical experiments indicate for both real and synthetic
data sets that our termination test exhibits a good degree of predictability on accuracy and running
time.

1. Introduction

Minimization of an expected loss objective function using linear predictors,

min
θ∈Rd

f(θ) := E(ζ,y)∼P`(ζ
Tθ, y), (1)

is a central task in machine learning. Here the loss function is ` : Rd ×R → R, the probability
distribution P is unknown, and the data sample (ζ, y) ∈ Rd ×R is a random vector distributed as
P . The most prevalent algorithm employed for solving (1) is stochastic gradient descent (SGD).
Whereas a significant amount of work has been devoted to the convergence analysis of SGD (see,
e.g., [3, 4, 15, 16]), leading, in particular, to learning rate schedules, the question of how to terminate
the algorithm when one is near an optimal classifier remains largely unaddressed.

Yet, inexpensive stopping criteria are of utmost interest in machine learning. For instance, if one
could produce a low cost test to determine near-optimality, then without sacrificing the quality of
the solution or efficiency of the SGD algorithm, needless computational time would be eliminated.
Secondly, early termination tests impose a degree of predictability on accuracy and running times–
a useful quality when SGD occurs as a subproblem of a larger computation. Several works show
that early termination of SGD can prevent overfitting, speed up learning procedures, and/or improve
generalization properties [7, 10, 21]. Motivated by these facts, we sought to address from stochastic
optimization the following question:

How to design a test to terminate SGD with a fixed learning rate that is inexpensive without
sacrificing quality of the solution?
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To do so, we restrict ourselves to binary classification, one of the fundamental examples of super-
vised machine learning [19]. In binary classification, the learning algorithm is given a sequence of
training examples (ζ1, y1), (ζ2, y2), . . ., often noisy, where ζi ∈ Rd and yi ∈ {0, 1} for each i. The
job of the algorithm is to develop a rule for distinguishing future, unseen ζ’s that are classified as 1
from those classified as 0. In this work, we limit our attention to linear classifiers. This means that
the learning algorithm must determine a vector θ such that the classification of ζ is 1 when ζTθ > 0
else it is 0. Note that any algorithm for linear classification can be extended to one for nonlinear
classification via the construction of “kernels”; see, e.g., [19]. This extension is left for future work.

The usual technique for determining θ, which is also adopted here, is to define a loss function
that turns the discrete problem of computing a 1 or 0 for ζ to a continuous problem. Common
choices of loss functions include logistic and hinge. For brevity, here we only consider unregularized
logistic loss and we defer the analysis of hinge loss to Appendix.

Our contributions. In this paper, we introduce a new and simple termination criterion for stochas-
tic gradient descent (SGD) applied to binary classification using logistic and hinge regression with
constant step-size α > 0. Notably, our proposed criterion adds no additional computational cost to
the SGD algorithm. We analyze the behavior of the classifier at termination, where we sample from
a normal distribution with unknown means µ0,µ1 ∈ Rd and variances σ2Id. Here σ > 0 and Id is
the d× d identity matrix. As such, we make no assumptions on the separability of the data set.

When the variance is not too large (to be made precise later), we have the following results:

1. SGD with our stopping criterion will terminate for any fixed positive step-size. In particular,
we establish an upper bound for the expected number of iterations before termination occurs.
This upper bound tends to a numeric constant when σ converges to zero. In fact, we show
that the expected time until termination decreases exponentially as the data becomes more
separable (i.e., as the noise σ → 0).

2. We prove that the accuracy of the classifier at termination nearly matches the accuracy of an
optimal classifier. Accuracy is the fraction of predictions that a classification model got right
while an optimal classifier minimizes the probability of misclassification when the sample is
drawn from the same distribution as the training data.

When the variance is large, we show that the test will be activated for a sufficiently small step-size.
We empirically evaluate the performance of our stopping criterion versus a baseline competitor. We
compare performances on both synthetic (Gaussian and heavy-tailed t-distribution) as well as real
data sets (MNIST [11] and CIFAR-10 [9]). In our experiments, we observe that our test yields
relatively accurate classifiers with small variation across multiple runs.

Related work. The relationship between generalization and optimization is an active area of re-
search in machine learning. Much of the pioneering work in this area focused on understanding
how early termination of algorithms, such as conjugate gradient, gradient descent, and SGD, can
act as an implicit regularizer and thus exhibit better generalization properties [10, 12, 13, 20, 21].
Most notably, to the best of our knowledge, the earliest comprehensive numerical testing of a stop-
ping termination test for SGD in neural networks was introduced by [10]. His stopping criterion,
which we denote as small validation set (SVS), periodically checks the iterate on a validation set.
Theoretical guarantees for SVS were established in the works of [13, 21]. [7] shows that SGD is
uniformly stable and thus solutions with low training error found quickly generalize well. These
results support exploring new computationally inexpensive termination tests– the spirit of this paper.
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2. Notation

Throughout the paper we consider a Euclidean space, denoted by Rd, with an inner product and
an induced norm ‖·‖. Bold-faced variables are vectors. The matrix Id is the d × d identity matrix.
The indicator of the event A is denoted by 1A. If X is a measurable function and t ∈ R, we often
simplify the notation for the pull back of the function X , to simply {ω ∈ Ω : X(ω) ≤ t} =: {X ≤
t}. Finally, in the analysis of our stopping criteria in Section 4, we borrow the notion of stopping
times from probability theory. We refer the reader to [6] for related details.

3. Stopping criterion for stochastic gradient descent

We analyze learning by minimizing an expected loss problem of homogeneous linear predictors
(i.e., without bias) using logistic regression of the form

E(ζ,y)∼P [`(ζTθ, y)] := E(ζ,y)∼P [−yζTθ + log(1 + exp(ζTθ))].

Here the samples (ζ, y) ∈ Rd × {0, 1}. The data comes from a mixture model, that is, flip a fair
coin to determine whether an item is in the y = 0 or y = 1 class, then generate the sample ζ from
either the distribution P0 (if y = 0 was selected) or P1 (if y = 1 was selected). We denote the
mean of the P0 (resp. P1) distribution by µ0 (resp. µ1). The homogeneity of the linear classifier is
without loss of much generality because we can assume µ0 = −µ1. We enforce this assumption,
with minimal loss in accuracy, by recentering the data using a preliminary round of sampling (see
Sec. 5).

Because of the homogeneity, we can simplify the notation by redefining our training examples
to be ξk := (2yk − 1)ζk and then assuming that for all k ≥ 0, yk = 1. Then the new samples ξ can
be drawn from a single, mixed distribution P∗ with mean µ := µ1 where sampling ξ ∼ P1 occurs
with probability 0.5 and −ξ ∼ P0 occurs with probability 0.5. We make this simplification and,
from this point on, we analyze the following optimization problem:

min
θ∈Rd

f(θ) := Eξ∼P∗ [`(ξTθ, 1)] = Eξ∼P∗ [−ξTθ + log(1 + exp(ξTθ))]. (2)

The most widely used method to solve (2) is SGD. Unlike gradient descent which uses the entire data
to compute the gradient of the objective function, the SGD algorithm, at each iteration, generates a
sample from the probability distribution and updates the iterate based only on this sample,

θk = θk−1 − α∇θ`(ξTk θk−1, 1), (3)

where ξk ∼ P∗. Our presentation of SGD assumes a constant step-size α > 0. Constant step-
size is commonly used in machine learning implementations despite the decreasing step-size often
assumed to prove convergence (see, e.g., [16]). With constant step-size, SGD is known to asymp-
totically converge to a neighborhood of the minimizer (see, e.g., [15]). Yet, for binary classification,
one does not require convergence to a minimizer in order to obtain good classifers.

It is known (see, e.g., [14]) that SGD applied to the logistic loss on linearly separable data will
produce a sequence of θk that diverge to infinity, but when normalized converge to the L2-max
margin solution. Little is known about the behavior of constant step-size SGD when the linear
separability assumption on the data is removed (see, e.g., [8]). The assumption of zero-noise in
our context would mean that P0, P1 each reduce to a single point, a trivial example of separable
data. Since there is often noise in the sample procedure, the data may not necessarily be linearly
separable. Understanding the behavior of SGD in the presence of noise is, therefore, important.
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3.1. Stopping criterion

A common stopping criterion from deterministic first-order optimization methods is to terminate at
an iterate satisfying ‖∇f(θ)‖2 < ε for a predetermined ε > 0. Yet, in stochastic optimization, the
full gradient is inaccessible or it is simply too expensive to compute. Several works [1, 2, 5, 17, 18]
have suggested an alternative for the stochastic setting– terminate when P(f(θ) −min f ≤ ε) ≥
1 − p for some chosen small ε > 0 and probability p. However, for binary classification, the
minimizer of the loss function and a perfect classifier may not be the same or one may find a
suitable substitute, at a lower cost, without having to compute the exact minimizer.

Optimal classifiers. In classification, we call a classifier, θ∗, optimal if it has the property that

θ∗ ∈ argmax
θ

P
(
ξTθ > 0 | ξ ∼ P∗

)
, (4)

i.e., the classifier, θ∗, minimizes the probability of misclassifying. Note there exist many optimal
classifiers, in fact, the condition (4) is scale-invariant; hence, for any λ > 0, λ · ξTθ∗ > 0 ⇐⇒
ξTθ∗ > 0. Even though the binary classifier is scale-free, the logistic regression loss is not. It
transitions from flat to unit-slope when ξTθ = O(1). This suggests that when θ reaches this region,
a classification has been made.

Termination test. Motivated by the above property of optimal classifiers, we propose the follow-
ing termination test: Sample ξ̂k ∼ P∗ and

Terminate when ξ̂Tk θk ≥ 1. (5)

Algorithm 1: SGD with termination test

initialize: θ0 ∈ Rd, α > 0, ξ̂0 ∼ P∗, k = 0
while ξ̂Tk θk < 1

Pick data point ξk+1 ∼ P∗.
Compute ∇θ`(ξTk+1θk, 1) as in (3)
Update θ by setting

θk+1 ← θk − α∇θ`(ξTk+1θk, 1) (6)

Sample ξ̂k+1 ∼ P∗
k ← k + 1

end

A second motivation for this termination
test comes from support vector machine (SVM)
theory [19] in which the scaling of the optimiz-
ing classifier is constrained so that the margin
between classes is O(1). Therefore, our termi-
nation test blends an SVM notion with SGD.
Algorithm 1 describes the termination criterion
(5) as applied with the update rule governed by
SGD.

The termination test (5) requires an addi-
tional sample and an additional inner product
per iteration and, as such, imposes a small ad-
ditional cost. To reduce this cost, in all our nu-
merical experiments (Sec. 5), we use the fol-
lowing termination test.

Terminate when ξTk+1θk ≥ 1, (7)

which imposes no computational overhead as SGD already computes ξTk+1θk. Unfortunately, we
could not perform a straightforward analysis of (7) because it introduces additional dependencies in
the sequences {ξk}∞k=1 and {θk}∞k=0.

After testing both (5) and (7), we found that up to the noise from the randomness, their behaviors
in numerical experiments were identical. The choice of 1 in (5) and (7) is arbitrary provided it is
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strictly positive. However, the constant should be positive enough to ensure a reasonable number of
SGD iterations occur before termination. Our numerical experimentation (see Sec. 5) indicate the
constant 1 worked well on a variety of real and simulated data.

Assumption 1 (The distribution P∗ is Gaussian) Our theoretical analysis makes a further assump-
tion on the distribution P∗. For the rest of this section and Sec. 4, P0 = N(µ0, σ

2Id), P1 =
N(µ1, σ

2Id), and therefore P∗ = N(µ, σ2Id), a Gaussian with unknown mean µ (= µ1 = −µ0)
and variance σ2Id. This assumption allows for non-separable data provided σ > 0.

The minimizer of logistic regression. The analysis of our proposed stopping criteria in Algo-
rithm 1 (see Sec. 4) involves knowing at least one optimal classifier. The following lemma (see
Appendix. Sec. 3.1 for proof) provides an exact formula for an optimal classifier.

Lemma 1 The function f defined in (2) has a unique minimizer at θ∗ = 2µ
σ2 . In addition, the set of

optimal classifiers, in the sense of (4), equals to c · θ∗ for all c > 0.

Therefore, up to rescaling the set of optimal classifiers is uniquely generated by 2µ
σ2 . For the rest of

the paper, we denote the vector θ∗ as the minimizer of the logistic loss.

4. Analysis of stopping criterion

In this section, we present our result on the stopping criterion (5) proposed in Sec. 3. Here we
introduce the first iteration at which the stopping criterion is satisfied, denoted by the stopping time

T := inf
{
k > 0 : ξ̂Tk θk ≥ 1

}
.

The following theorem presents the bound on the expected number of iterations until our stopping
criterion is satisfied. Proof is deferred to Appendix Sec. 4.1 and 4.2.

Theorem 2 Let θ0 = 0. Then the following are true

1. In the low variance regime (i.e., σ ≤ 0.33‖µ‖), for b = α‖µ‖2 and M = 501 + 640α‖µ‖2,
it holds that

E[T ] ≤ 2 +
2M2

b
·
(

Φc

(
‖µ‖
σ

)
+
ασ3

‖µ‖
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
+ 1

)
.

2. In the high variance regime (i.e., 0.33‖µ‖ ≤ σ), it holds that E[T ] < +∞ provided the
step-size α satisfies α ≤ A · ‖µ‖2

σ2(‖µ‖2+dσ2)
for some positive constant A.

In particular, on relatively separable data (i.e., in the low variance regime), the expected waiting
time before termination exponentially decreases as the data becomes more separable (i.e., σ → 0).
It remains to determine whether the classifier at termination, θT , has a desirable accuracy. The scale-
invariance of optimal classifiers means a classifier yields a lower probability of misclassification the
closer its direction aligns with any optimal classifier. In view of this, it suffices to bound the absolute
value of the inner product of any unit vector that is perpendicular to θ∗, v with θT . The following
theorem establishes a bound on E[|vTθT |] (see Appendix Sec. 4.3 for the proof).
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Theorem 3 Let θ0 = 0. Fix any unit vector v ∈ Rd such that vTθ∗ = 0. Then the following

estmiate holds: E[|vTθT |] ≤ σα
√

2
πE[T ].

Combining Theorem 2 and Theorem 3, for a fixed step-size α, we obtain an upper bound for
E[|vTθT |]. Therefore, in the low variance regime, as σ → 0, E[|vTθT |] decreases exponentially
whereas in the high variance regime, Theorem 3 yields a very loose bound. Yet despite this, our
numerical results in Sec. 5 show promising accuracy of (5) in this case as well. We conjecture that
the inequality can be significantly strengthened.

5. Numerical Experiments
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Figure 1. Performance of stopping criterion (7) on a
mixture of Gaussians as σ is varied. Both plots show
tests for values of σ equally spaced from 0.05 to 2.0.
For each value of σ, 10 trials were run. The left plot
shows the relationship between σ and k, the iteration
number when (7) first holds. The right plot shows the
accuracy as red asterisks. The green asterisks in the
right plot show the accuracy of the optimal classifier.
The black curve on the right is the ratio of the aver-
age accuracy (over 10 trials) of the classifier when (7)
holds to the accuracy of the optimal classifier.

We investigate the performance of our termina-
tion test on two popular data sets, MNIST [11]
and CIFAR-10 [9], as well as synthetic data
generated from Gaussians and heavy-tailed stu-
dent t-distributions. All tests were performed
using our zero overhead stopping criteria out-
lined in (7); experiments using our test which
required an extra sample (5) are not presented
since the behaviors of the two criteria were in-
distinguishable on all data sets.

Comparison with a popular stopping crite-
rion. We include as a baseline a popular ter-
mination test, the small validation set (SVS)
[10]. The SVS termination test is as fol-
lows. One fixes a validation set of p instances
(ζV1 , y

V
1 ), . . . , (ζVp , y

V
p ) drawn from the same

distribution as the training data. Then on every
l iterations, one checks the fraction correct of the current classifier θml, where ml is the iteration
index, on the p instances. If the fraction correct fails to increase compared to the last run of the
SVS, then the iteration is terminated.

Note the computational overhead of running the small validation set is about p times the cost of
one SGD iteration. Therefore, in order to make the overhead only a constant factor, we choose l to
be a multiple of p. In all of our tests of SVS, we chose l = 2p, which means that the additional cost
of performing SVS on SGD is 50%. In contrast, the overhead for (7) is 0. The value of p is a tuning
parameter for SVS; we exhibit results for three different choices of p.

Measuring the accuracy. In all the experiments, we measure the performance of a method with
a score, generally known as “accuracy,” that is the fraction correct on a large validation set drawn
from the same distribution as the training data. Thus, 1.0 is perfect accuracy, while 0.5 means that
θk is no better at classifying than random guessing. It is important to note that even on data for
which the means µ0,µ1 are known a priori (e.g., synthetic data), the score of the optimal θ∗ will
not be 1.0 because the large validation set, itself, is noisy.

We center the data so that the linear classifier is homogeneous. In a preliminary phase, 100
samples are drawn from the training set. From this, µ0 and µ1 are estimated, and then the average
of these estimates is used to offset training instances during SGD.
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Parameter settings. After centering, the vectors θ and ξ scale inversely, so the step-size param-
eter α should scale as 1/σ2. In all computational experiments, we choose α = 1/(16τ̃2) where τ̃2

is the average of
∥∥ζj − µ̃yj∥∥2, and µ̃i (i = 0 or i = 1) is the estimate of µi, averaged over the

two classes. We compute the quantities τ̃2 and µ̃i using the 100 samples described in the preceding
paragraph. Note that for the Gaussian mixture model, the expected value of the step-size is σ2d. The
choice of 16 was manually tuned to get a good balance of performance versus accuracy on several
test sets; refer to Appendix Sec. 7. A second hyperparameter also considered in that section is the
‘1’ on the right-hand side of (7).

5.1. Experiments with synthetic data

Normal distribution. We generated test and training data using a mixture of Gaussians given by
N(0, σ2I) for the 0-class and N(e1, σ

2I) for the 1-class, where e1 = (1, 0, . . . , 0)T ∈ Rd.
In Fig. 1, we present the running time and accuracy (fraction correct) of our termination test for

a fixed dimension d = 500 and σ ranging from 0.05 to 2. We record 10 runs for each value of σ.
The performance of the classifier when our termination test (7) holds almost matches the optimal
classifier; in particular, the averaged accuracy of our classifier/accuracy of the optimal classifier
over the 10 runs, black curve in Fig. 1, never dips below 0.95.

In Fig. 2, the three plots on top, we compare performance of (7) against SVS termination .
One axis shows accuracy while the other shows iteration count. We continued to run SGD for an
additional 1.5k iterations where k is the first iteration at which (7) holds (green ’+’) to test whether
accuracy improves after termination.
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Figure 2. Each plot shows 10 random runs of SGD
applied to the indicated data set, and for each of
the ten runs, five termination tests corresponding
to five colors were applied. SVS was tried with
p = 8, 32, 128, depicted as red, magenta and cyan
circles respectively. Test (7) is indicated with a blue
asterisk. A green ‘+’ corresponds to termination after
1.5k iterations, k is the iteration index (7) first holds.

Heavy-tailed distribution. We consider the
student t-distribution with two degrees of free-
dom. This distribution is heavy-tailed since
some of its higher moments are infinite.

The two classes were generated as follows.
For ζ in the 0-class, each of the d entries of ζ
is chosen as βη, where β is varied in the ex-
periments and η is drawn from the student t-
distribution with two degrees of freedom. For
the 1-class, ζ is chosen in the same way ex-
cept that the first entry is incremented by 1.
Fig. 2, the three plots in bottom, shows our per-
formance against SVS.

5.2. Experiments with real data

MNIST handwritten digits. We compared
our termination test on the MNIST handwrit-
ten digit set [11] (d = 784, no preprocessing of
the data other than centering between the two means). Two trials are shown: distinguishing 1 from
8 (an easy case) and distinguishing 7 from 9 (a more difficult case). The test runs are obtained by
running through the training data in different randomized orders.
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CIFAR-10 image set. We compared our termination test on the CIFAR-10 [9] (d = 3072, no
preprocessing of the data other than centering between the two means). Two trials are shown:
distinguishing deer from airplanes and frogs from trucks. As in MNIST, test runs are obtained by
running through the training data in different randomized orders.
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Figure 3. Results for MNIST and CIFAR-
10 image classification data; refer to Fig. 2
for the legend.

Experimental conclusions. The plots in Figs. 2 and 3
show a consistent pattern that (7) achieves accuracy equal
to or better than SVS. In the cases when the accuracy is
equal, the iteration count for (7) is comparable or bet-
ter. Iterating beyond the step for which (7) holds does not
significantly improve accuracy. Another benefit of (7) ap-
parent from all plots is that its behavior (in terms of num-
ber of iterations and accuracy) is more consistent across
random trials, which is beneficial in the case that SGD is
used as a subproblem of a larger computation.

Our computational experiments did not explore reg-
ularization via early stopping. Experiments showed that
as SGD iterations continued, the accuracy on the test set
eventually levels off but does not decrease significantly,
i.e., SGD for binary classification is not prone to overfitting. Because the test accuracy never shows
marked decline, there is no opportunity for early stopping to regularize. However, we know of other
settings in which early stopping has a strong regularizing effect (e.g., conjugate gradient iterations
for image deconvolution, already known in [20]), so if (7) is extended beyond binary classification
in future work, there will likely also be an opportunity to explore regularization.
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1. Introduction

Minimization of an expected loss objective function using linear predictors,

min
θ∈Rd

f(θ) := E(ζ,y)∼P`(ζ
Tθ, y), (1)

is a central task in machine learning. Here the loss function ` : R × R → R, the probability
distribution P is unknown, and the data sample (ζ, y) ∈ Rd ×R is a random vector distributed as
P . The most prevalent algorithm employed for solving (1) is stochastic gradient descent (SGD).
Whereas a significant amount of work has been devoted to the convergence analysis of SGD (see,
e.g., [4, 5, 23, 25]), leading, in particular, to learning rate schedules, the question of how to terminate
the algorithm when one is near an optimal classifier remains largely unaddressed.

Yet, inexpensive stopping criteria are of utmost interest in machine learning. For instance, if one
could produce a low cost test to determine near-optimality, then without sacrificing the quality of
the solution or efficiency of the SGD algorithm, needless computational time would be eliminated.
Secondly, early termination tests impose a degree of predictability on accuracy and running times–
a useful quality when SGD occurs as a subproblem of a larger computation. Several works show
that early termination of SGD can prevent overfitting, speed up learning procedures, and/or improve
generalization properties [10, 14, 31]. Motivated by these facts, we sought to address from stochastic
optimization the following question:

How to design a test to terminate SGD with a fixed learning rate that is inexpensive without
sacrificing quality of the solution?

To do so, we simplified our setting to binary classification, one of the fundamental examples of su-
pervised machine learning [28]. In binary classification, the learning algorithm is given a sequence
of training examples (ζ1, y1), (ζ2, y2), . . ., often noisy, where ζi ∈ Rd and yi ∈ {0, 1} for each i.
The job of the algorithm is to develop a rule for distinguishing future, unseen ζ’s that are classified
as 1 from those classified as 0. In this work, we limit attention to linear classifiers. This means that
the learning algorithm must determine a vector θ such that the classification of ζ is 1 when ζTθ > 0
else it is 0. Note that any algorithm for linear classification can be extended to one for nonlinear
classification via the construction of “kernels”; see, e.g., [28]. This extension is not pursued; we
leave it for later work.

c© S. Baghal, C. Paquette & S. Vavasis.



The usual technique for determining θ, which is also adopted herein, is to define a loss func-
tion that turns the discrete problem of computing a 1 or 0 for ζ to a continuous quantity. Common
choices of loss functions include logistic and hinge. For simplicity, we consider only the unregular-
ized logistic and hinge loss in this work.

Our theoretical results assume that our data comes from a Gaussian mixture model (GMM). The
GMM is attributed to [24]. The problem of identifying GMM parameters given random samples
has attracted considerable attention in the literature; see, e.g., the recent work of [2] and earlier
references therein. Another common use of GMMs in the literature, similar to our application here,
is as test-cases for a learning algorithm intended to solve a more general problem. Examples include
clustering; see, e.g., [12] and [22] and tensor factorization; see, e.g., [29].

Ordinarily in deterministic first-order optimization methods, one terminates when the norm of
the gradient falls below a predefined tolerance. In the case of SGD for binary classification, this is
unsuitable for two reasons. First, the true gradient is generally inaccessible to the algorithm or it is
computationally expensive to generate even a sufficient approximation of the gradient.

Second, even if the computations were possible, an ‘optimal’ classifier θ for the classification
task is not necessarily the minimizer of the loss function since the loss function is merely a surrogate
for correct classification of the data.

Our contributions. In this paper, we introduce a new and simple termination criterion for stochas-
tic gradient descent (SGD) applied to binary classification using logistic regression and hinge loss
with constant step-size α > 0. Notably, our proposed criterion adds no additional computational
cost to the SGD algorithm.

We analyze the behavior of the classifier at termination, where we sample from a normal dis-
tribution with unknown means µ0,µ1 ∈ Rd and variances σ2Id. Here σ > 0 and Id is the d × d
identity matrix. As such, we make no assumptions on the separability of the data set.

When the variance is not too large, we have the following results:

1. The test will be activated for any fixed positive step-size. In particular, we establish an upper
bound for the expected number of iterations before the activation occurs. This upper bound
tends to a numeric constant when σ converges to zero. In fact, we show that the expected
time until termination decreases exponentially as the data becomes more separable (i.e., as
the noise σ → 0).

2. We prove that the accuracy of the classifier at termination nearly matches the accuracy of an
optimal classifier. Accuracy is the fraction of predictions that a classification model got right
while an optimal classifier minimizes the probability of misclassification when the sample is
drawn from the same distribution as the training data.

When the variance is large, we show that the test will be activated for a sufficiently small step-size.
We empirically evaluate the performance of our stopping criterion versus a baseline competitor.

We compare performances on both synthetic (Gaussian and heavy-tailed t-distribution) as well as
real data sets (MNIST [15] and CIFAR-10 [13]). In our experiments, we observe that our test yields
relatively accurate classifiers with small variation across multiple runs.

Related works. To the best of our knowledge, the earliest comprehensive numerical testing of a
stopping termination test for SGD in neural networks was introduced by [14]. His stopping criteria,
which we denote as small validation set (SVS), periodically checks the iterate on a validation set.
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Theoretical guarantees for SVS were established in the works of [17, 31]. [10] shows that SGD is
uniformly stable and thus solutions with low training error found quickly generalize well. These
results support exploring new computationally inexpensive termination tests– the spirit of this paper.

In a related topic, the relationship between generalization and optimization is an active area of
research in machine learning. Much of the pioneering work in this area focused on understanding
how early termination of algorithms, such as conjugate gradient, gradient descent, and SGD, can
act as an implicit regularizer and thus exhibit better generalization properties [14, 16, 17, 30, 31].
The use of early stopping as a tool for improving generalization is not studied herein because our
experiments indicate that for the problem under consideration, binary classification with a linear
separator, the accuracy increases as SGD proceeds and ultimately reaches a steady value but does
not decrease, meaning that there is no opportunity to improve generalization by stopping early. See
also [1].

Instead of using a validation set to stop early, [8] employs an estimate of the marginal likelihood
as a stopping criteria. Another termination test based upon a Wald-type statistic developed for
solving least squares with reproducing kernels guarantees a minimax optimal testing [18]. However
it is unclear the practical benefits of such procedures over a validation set.

Several works have introduced validation procedures to check the accuracy of solutions gen-
erated from stochastic algorithms based upon finding a point θε that satisfies a high confidence
bound P(f(θε) − min f ≤ ε) ≥ 1 − p, in essence, using this as a stopping criteria (e.g., see
[1, 3, 6, 26, 27]). Yet, notably, all these procedures produce points with small function values. For
binary classification, however, this could be quite expensive and a good classifier need not nec-
essarily be the minimizer of the loss function. Ideally, one should terminate when the classifier’s
direction aligns with the optimal direction– the approach we pursue herein.

2. Background and preliminaries

Throughout we consider a Euclidean space, denoted by Rd, with an inner product and an induced
norm ‖·‖. The set of non-negative real numbers is denoted by R≥0. Bold-faced variables are
vectors. Throughout, the matrix Id is the d by d identity matrix. All stochastic quantities defined
hereafter live on a probability space denoted by (P,Ω,F), with probability measure P and the σ-
algebra F containing subsets of Ω. Recall, a random variable (vector) is a measurable map from Ω
to R (Rd), respectively. An important example of a random variable is the indicator of the event
A ∈ F :

1A(ω) =

{
1, ω ∈ A
0, ω 6∈ A.

If X is a measurable function and t ∈ R, we often simplify the notation for the pull back of the
function X , to simply {ω ∈ Ω : X(ω) ≤ t} =: {X ≤ t}. As is often in probability theory,
we will not explicitly define the space Ω, but implicitly define it through random variables. For
any sequence of random vectors (X1,X2, . . . ,Xk), we denote the σ-algebra generated by random
vectors X1,X2, . . . ,Xk by the notation σ(X1,X2,X3, . . . ,Xk) and the expected value of X by
E[X] :=

∫
ΩX dP.

Particularly, we are interested in random variables that are distributed from normal distributions.
In the next section, we state some known results about normal distributions.
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Normal distributions The probability density function of a univariate Gaussian with mean µ and
variance σ2 is described by:

ϕ(t) :=
1

σ
√

2π
exp

(
−(t− µ)2

σ2

)
.

In particular, we say a random variable ξ is distributed as a Gaussian with mean µ and variance σ2

by ξ ∼ N(µ, σ2) to mean P(ξ ≤ t) =
∫ t
−∞ ϕ(t) dt. When the random variable ξ ∼ N(0, 1), we

denote its cumulative density function as

Φ(t) := P(ξ ≤ t) =
1√
2π

∫ t

−∞
exp

(
−ξ2

)
dξ,

and its complement by Φc(t) = 1 − Φ(t). The symmetry of a normal around its mean yields the
identity, Φ(t) = Φc(−t).

One can, analogously, formulate a higher dimensional version of the univariate normal distribu-
tion called a multivariate normal distribution. A random vector is a multivariate normal distribution
if every linear combination of its component is a univariate normal distribution. We denote such
multivariate normals by ξ ∼ N(µ,Σ) with µ ∈ Rd and Σ is a symmetric positive semidefinite
d× d matrix.

Normal distributions have interesting properties which simplify our computations throughout
the paper. We list those which we specifically rely on. See [9] for proofs. Below, v,v′ ∈ Rd,
r ∈ R, ξ ∼ N(µ, σ2Id) and ξ ∼ N(µ, σ2). Also, ψ ∼ N(0, 1).

Throughout our analysis, we encounter random variables of the form vT ξ + r, i.e. affine trans-
formations of a given normal distribution. A fundamental property of normal distributions is that
they stay in the same class of distributions after any such transformation. In other words, it holds
that

vT ξ + r ∼ N(vTµ+ r, σ2‖v‖2). (2)

Working with independent random variables makes the analysis significantly easier. In particular, it
is essential for us to know when the two random variables vT ξ and v′T ξ are independent. We will
use the following simple fact below: The following is true

vT ξ and v′T ξ are independent if and only if vTv′ = 0. (3)

We will also use the following simple fact about truncated normal distributions:

Eξ[ξ1{ξ≤b}] = 0 =⇒ Φ

(
b− µ
σ

)
· exp

(
1

2
·
(
b− µ
σ

)2
)

=
σ

µ
. (4)

We conclude our remarks on normal distributions with the statement of two facts about the expected
value of their norm. The following hold:

E
[
‖ξ‖2

]
= ‖µ‖2 + dσ2, Eξ[|ξ|] ≤

√
2

π
· σ + |µ| and E [|ψ|] =

√
2

π
. (5)
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Martingales and stopping times Here we state some relevant definitions and theorems used in
analyzing our stopping criteria in Section 4. We refer the reader to [7] for further details. For any
probability space, (P,Ω,F), we call a sequence of σ-algebras, {Fk}∞k=0, a filtration provided that
Fi ⊂ F and F0 ⊆ F1 ⊆ F2 ⊆ · · · holds. Given a filtration, it is natural to define a sequence of
random variables {Xk}∞k=0 with respect to the filtration, namely Xk is a Fk-measurable function.
If, in addition, the sequence satisfies

E[|Xk|] <∞ and E[Xk+1|Fk] ≤ Xk for all k,

we say {Xk}∞k=0 is a supermartingale. In probability theory, we are often interested in the (random)
time at which a given stochastic sequence exhibits a particular behavior. Such random variables are
known as stopping times. Precisely, a stopping time is a random variable T : Ω → N ∪ {0,∞}
where the event {T = k} ∈ Fk for each k, i.e., the decision to stop at time k must be measurable
with respect to the information known at that time. Supermartingales and stopping times are closely
tied together, as seen in the theorem below, which gives a bound on the expectation of a stopped
supermartingale.

Theorem 1 (See [7] Theorem 4.8.5) Suppose that {Xk}∞k=0 is a supermartingale w.r.t to the filtra-
tion {Fk}∞k=0 and let T be any stopping time satisfying E[T ] <∞. Moreover if E [|Xk+1 −Xk||Fk] ≤
B a.s. for some constant B > 0, then it holds that E[XT ] ≤ E[X0].

As we illustrate in Section 4, a connection between stopping criteria (i.e. the decision to stop an
algorithm) and stopping times naturally exists.

3. Stopping criterion for stochastic gradient descent

We analyze learning by minimizing an expected loss problem of homogeneous linear predictors
(i.e., without bias) of the form

E(ζ,y)∼P [`(ζTθ, y)]

using logistic and hinge regression. Here the samples (ζ, y) ∈ Rd×{0, 1}. We recall that in logistic
regression the loss function is defined as follows

`(x, y) := −yx+ log (1 + exp(x)) . (6)

Also, the hinge loss is defined as the following

`(x, y) :=

{
max(1− x, 0) y = 1,

max(1 + x, 0) y = 0.
(7)

The data comes from a mixture model, that is, flip a coin to determine whether an item is in the
y = 0 or y = 1 class, then generate the sample ζ from either the distribution P0 (if y = 0 was
selected) or P1 (if y = 1 was selected). We denote the mean of the P0 (resp. P1) distribution by µ0

(resp. µ1). The homogeneity of the linear classifier is without loss of much generality because we
can assume µ0 = −µ1. We enforce this assumption, with minimal loss in accuracy, by recentering
the data using a preliminary round of sampling (see Sec. 5).
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Because of the homogeneity, we can simplify the notation by redefining our training examples
to be ξk := (2yk − 1)ζk and then assuming that for all k ≥ 0, yk = 1. Then the new samples ξ can
be drawn from a single, mixed distribution P∗ with mean µ := µ1 where sampling ξ ∼ P1 occurs
with probability 0.5 and −ξ ∼ P0 occurs with probability 0.5. We make this simplification and,
from this point on, we analyze the following optimization problem:

min
θ∈Rd

f(θ) := Eξ∼P∗ [`(ξTθ, 1)] (8)

Let us remark that the right-hand side of (8) is differentiable with respect to θ in either cases of
logistic and hinge loss functions. Indeed, in case of hinge loss, note that for any θk−1, the function
ξk 7→ `(ξTk θk−1, 1) is almost surely differentiable as Pξk

(
ξTk θk−1 = 1

)
= 0. Hence, we consider

the expectation in (8) to be over Rd\
{
ξk : ξTk θk−1 = 1

}
on which the argument is differentiable

with respect to θk−1.
The most widely used method to solve (8) is SGD. Unlike gradient descent which uses the entire

data to compute the gradient of the objective function, the SGD algorithm, at each iteration, gener-
ates a sample from the probability distribution and updates the iterate based only on this sample,

θk = θk−1 − α∇θ`(ξTk θk−1, 1), (9)

where ξk ∼ P∗. Our presentation of SGD assumes a constant step-size α > 0. Constant step-
size is commonly used in machine learning implementations despite the decreasing step-size often
assumed to prove convergence (see, e.g., [25]). [1] explain in more detail the theoretical basis for
both constant and decreasing step-size and provide an explanation as well as workarounds for the
poor practical performance of decreasing step-size. However, in practice, constant step-size is still
widely used. With constant step-size, SGD is known to asymptotically converge to a neighborhood
of the minimizer (see, e.g., [23]). Yet, for binary classification, one does not require convergence to
a minimizer in order to obtain good classifiers.

For homogeneous linear classifiers applied to the hinge loss function, it has been shown ([21])
that the homotopic sub-gradient method converges to a maximal margin solution on linearly sep-
arable data. In ([19]), SGD applied to the logistic loss on linearly separable data will produce a
sequence of θk that diverge to infinity, but when normalized also converge to the L2-max margin
solution. Little is known about the behavior of constant step-size SGD when the linear separability
assumption on the data is removed (see, e.g., [11]). The assumption of zero-noise in our context
would mean that P0, P1 each reduce to a single point, a trivial example of separable data. Since
there is often noise in the sample procedure, the data may not necessarily be linearly separable.
Understanding the behavior of SGD in the presence of noise is, therefore, important.

3.1. Stopping criterion

A common stopping criterion from deterministic first-order optimization methods is to terminate at
an iterate satisfying ‖∇f(θ)‖2 < ε for a predetermined ε > 0. Yet, in stochastic optimization, the
full gradient is inaccessible or it is simply too expensive to compute. Several works [1, 3, 6, 26, 27]
have suggested an alternative for the stochastic setting– terminate when P(f(θ) −min f ≤ ε) ≥
1 − p for some chosen small ε > 0 and probability p. However, for binary classification, the
minimizer of the loss function and a perfect classifier may not be the same or one may find a
suitable substitute, at a lower cost, without having to compute the exact minimizer.
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Optimal classifiers. In classification, we call a classifier, θ∗, optimal if it has the property that

θ∗ ∈ argmax
θ

P
(
ξTθ > 0 | ξ ∼ P∗

)
, (10)

i.e., the classifier, θ∗, minimizes the probability of misclassifying. Note there exist many optimal
classifiers, in fact, the condition (10) is scale-invariant; hence, for any λ > 0, λ · ξTθ∗ > 0 ⇐⇒
ξTθ∗ > 0. Even though the binary classifier is scale-free, the logistic and hinge regression loss is
not. It transitions from flat to unit-slope when ξTθ = O(1). This suggests that when θ reaches this
region, a classification has been made.

Termination test. Motivated by the above property of optimal classifiers, we propose the follow-
ing termination test: Sample ξ̂k ∼ P∗ and

Terminate when ξ̂Tk θk ≥ 1. (11)

A second motivation for this termination test comes from support vector machine (SVM) theory [28]
in which the scaling of the optimizing classifier is constrained so that the margin between classes is
O(1). Therefore, our termination test blends an SVM notion with SGD. Algorithm 1 describes the
termination criteria (11) as applied with the update rule governed by SGD.

The termination test (11) requires an additional sample and an additional inner product per
iteration and, as such, imposes a small additional cost. To reduce this cost, in all our numerical
experiments (Sec. 5), we use the following termination test.

Terminate when ξTk+1θk ≥ 1, (12)

which imposes no computational overhead as SGD already computes ξTk+1θk. Unfortunately, we
could not perform a straightforward analysis of (12) because it introduces additional dependencies
in the sequences {ξk}∞k=1 and {θk}∞k=0. After testing both (11) and (12), we found that up to the
noise from the randomness, their behaviors in numerical experiments were identical.

initialize: θ0 ∈ Rd, α > 0, ξ̂0 ∼ P∗, k = 0
while ξ̂Tk θk < 1
Pick data point ξk+1 ∼ P∗.
Compute∇θ`(ξTk+1θk, 1) as in (9)
Update θ by setting

θk+1 ← θk − α∇θ`(ξTk+1θk, 1) (13)

Sample ξ̂k+1 ∼ P∗
k ← k + 1
end

Algorithm 1: SGD with termination test

Assumption 1 [The distribution P∗ is Gaussian] Our theoretical analysis makes a further assump-
tion on the distribution P∗. For the rest of this section and Sec. 4, P0 = N(µ0, σ

2Id), P1 =
N(µ1, σ

2Id), and therefore P∗ = N(µ, σ2Id), a Gaussian with unknown mean µ (= µ1 = −µ0)
and variance σ2Id. This assumption allows for non-separable data provided σ > 0.
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The minimizer of logistic and hinge regression In (10) we defined θ∗ to be any member of the
set of optimal classifiers. For the remainder of this section, we provide an exact characterization of
this set. In the next lemma, we redefine θ∗ to the minimizer of the expected loss function for either
hinge or logistic and show that it is a positive scalar multiple of µ. We will continue to use θ∗ with
this meaning for the remainder of the paper. In the lemma after that, we show that the set of optimal
classifiers are exactly positive scalar multiples of µ (or of θ∗).

Lemma 2 (Minimizer of the logistic and hinge loss) The function f defined in (8) with ` defined
in (6) or (7) has a unique minimizer at θ∗ = ρ∗µ for some ρ∗ ∈ (0,+∞). Moreover, let r =
ρ∗σ2. Then in the case of logistic regression, it holds that r = 2 and in the case of hinge loss,
w = σ

r‖µ‖ −
‖µ‖
σ satisfies

1√
2π
· σ

‖µ‖
= Φ(w) · exp(1

2w
2). (14)

Proof
We consider the logistic and hinge loss case separately.

1. Logistic loss. We have

f(θ) = Eξ∼N(µ,σ2Id)[−θT ξ + log(1 + exp(θT ξ))].

Clearly, f is a convex function. We next observe that for any v,θ ∈ Rd with vTθ = 0, it
holds that

vT∇f (θ) = Eξ
[

ξTv

1 + exp(ξTθ)

]
= Eξ[ξTv]Eξ

[
1

1 + exp(ξTθ)

]
= vTµ·Eξ

[
1

1 + exp(ξTθ)

]
.

(15)
Here we used that ξTv and ξTθ are independent random variables and the expectation of
the product of two uncorrelated random variables is the product of the expectations. Now
note that for any θ, the quantity Eξ

[
1

1+exp(ξT θ)

]
is strictly positive. Therefore, if vTθ = 0

and ∇f(θ) = 0 then, using (15), we obtain that vTµ = 0. Hence, we established that
∇f(θ) = 0 implies θ = ρµ for some ρ ∈ R. On the other hand, using (15) again, we
have that ∇f(ρµ) = 0 if and only if µT∇f(ρµ) = 0. To see the only if direction, suppose
µT∇f(ρµ) = 0 and∇f(ρµ) 6= 0. Then we have∇f(ρµ) = v where the vector v is nonzero
such that vTµ = 0. By (15), we deduce ‖v‖2 = vT∇f(ρµ) = 0 yielding a contradiction.

Next, we consider the function,

g(ρ) := −Eξ
[

µT ξ

1 + exp(ρµT ξ)

]
.

Observe that g(ρ) = µT∇f(ρµ). Therefore, if we can show g(ρ) has a unique zero at
ρ = 2

σ2 =: ρ∗, we can conclude that µT∇f(ρ∗µ) = 0 which, in turn, gives us that ρ∗µ is the
unique solution to ∇f(ρ∗µ) = 0. It remains to show that ρ∗ is the unique zero of g. By (2),
z := µT ξ ∼ N(‖µ‖2, σ2‖µ‖2). Therefore, this yields

g(ρ) =
1

σ‖µ‖
√

2π

∫ ∞
−∞

z

1 + exp(ρz)
exp

(
−(z − ‖µ‖2)2

2σ2‖µ‖2

)
dz.
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Expanding out the term inside the integral, we conclude

z

1 + exp(ρz)
exp

(
−(z − ‖µ‖2)2

2σ2‖µ‖2

)
=

z

2 cosh
(ρz

2

) exp

(
−ρz

2
− (z − ‖µ‖2)2

2σ2‖µ‖2

)
=

z

2 cosh
(ρz

2

) exp

(
−
z2 +

(
ρσ2‖µ‖2 − 2‖µ‖2

)
z + ‖µ‖4

2σ2‖µ‖2

)
.

(16)

When ρ = ρ∗, we observe that equation (16) is an odd function of z. Therefore, the function
g(ρ∗) = 0, i.e. the integral of (16) is 0. To see that ρ∗ is the only zero of g, we note that

g′(ρ) = Eξ

[(
µT ξ

)2
exp(ρµT ξ)

(1 + exp(ρµT ξ))2

]
> 0.

Here, g′(ρ) = 0 implies that µT ξ = 0 a.s. which is not true. As a result, the function g(ρ) is
strictly decreasing with a zero at ρ∗. The result follows.

2. Hinge loss. We begin by noting that f is differentiable and it holds that

∇f(θ) = −Eξ[ξ1{ξT θ≤1}].

We next observe that for any v,θ ∈ Rd such that vTθ = 0, it holds that

− vT∇f(θ) = Eξ[vT ξ1{ξT θ≤1}] = Eξ[vT ξ]Eξ[1{ξT θ≤1}] = vTµ · Eξ[1{ξT θ≤1}]. (17)

Here we used that ξTv and ξTθ are independent random variables and the expectation of
the product of two uncorrelated random variables is the product of the expectations. Now
note that for any θ, the quantity Eξ[1{ξT θ≤1}] is strictly positive. Therefore, if vTθ = 0

and ∇f(θ) = 0 then, using (17), we obtain that vTµ = 0. Hence, we established that
∇f(θ) = 0 implies θ = ρµ for some ρ ∈ R. On the other hand, using (17) again, we
have that ∇f(ρµ) = 0 if and only if µT∇f(ρµ) = 0. To see the only if direction, suppose
µT∇f(ρµ) = 0 and∇f(ρµ) 6= 0. Then we have∇f(ρµ) = v where the vector v is nonzero
such that vTµ = 0. By (17), we deduce ‖v‖2 = vT∇f(ρµ) = 0 yielding a contradiction.

Next, consider the function
g(ρ) = Eξ[µT ξ1{ρξTµ≤1}]. (18)

Observe that g(ρ) = µT∇f(ρµ). Dominated Convergence Theorem yields that

lim
ρ→+∞

g(ρ) = Eξ[µT ξ1{µT ξ≤0}], lim
ρ→−∞

g(ρ) = Eξ[µT ξ1{µT ξ≥0}].

It, therefore, holds that limρ→+∞ g(ρ) < 0 and limρ→−∞ g(ρ) > 0. Since g(0) = Eξ[µT ξ] >
0, it remains to show that g is a strictly decreasing function. To this end, we note that for any
fixed ρ1 < ρ2, it holds that

µT ξ
(

1{ρ1µT ξ≤1} − 1{ρ2µT ξ≤1}

)
≥ 0 for any value of ξ. (19)
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Indeed, if µT ξ ≥ 0, then ρ1µ
T ξ ≤ ρ2µ

T ξ; thus ensuring 1{ρ1µT ξ≤1} ≥ 1{ρ2µT ξ≤1}. The
case µT ξ ≤ 0 follows similarly. We, therefore, conclude that g(ρ1) ≥ g(ρ2). Finally, note
that g(ρ1) = g(ρ2), implies that (19) holds with equality, almost surely. Clearly, this yields a
contradiction. It remains to show (14). By (18), we have that g′(ρ∗) = Eξ[µT ξ1{µT ξ≤ 1

ρ∗ }
].

Using (2) and (4), we obtain that

Φ

(
1− ρ∗‖µ‖2

ρ∗σ‖µ‖

)
· exp

(
1

2
·
(

1− ρ∗‖µ‖2

ρ∗σ‖µ‖

)2
)

=
1√
2π
· σ

‖µ‖
. (20)

The result immediately follows.

The previous lemma has defined θ∗ to be the minimizer of the loss function and showed that it
is a positive multiple of µ. We now show that this θ∗ and its positive scalar multiples are exactly
the set of optimal classifiers in the sense of (10), i.e., we give an exact characterization of that set.

Lemma 3 (Characterization of the optimal classifier) The following is true

argmax
θ

P
(
ξTθ > 0

)
= {λ · θ∗ : λ > 0}. (21)

Proof Observe that the following simple fact holds.

Pξ̂
(
ξ̂Tθ ≥ t

)
= Φc

(
µTθ − t
σ‖θ‖

)
, for all θ ∈ Rd, t ∈ R and ξ̂ ∼ N(µ, σ2Id). (22)

Therefore we have that Pξ(ξTθ > 0) = Φc
(
‖µ‖
σ · cos(wθ)

)
where ξ ∼ N(µ, σ2Id) and wθ

denotes the angle between the two vectors θ and µ. On the other hand a classifier θ is optimal if
and only if θ = ρµ for some ρ > 0, i.e. cos(wθ) = 0. The proof is complete after noting that Φ is
an increasing function.

4. Analysis of stopping criterion

In this section, we present our analysis of the stopping criterion (11) proposed in Section 3. Here
we introduce the first iteration at which the stopping criterion is satisfied, denoted by the random
variable

T := inf
{
k > 0 : ξ̂Tk θk ≥ 1

}
. (23)

By viewing the stopping criterion through the lens of stopping times, we are able to utilize proba-
bility theory to analyze the classifier at termination θT . Throughout this section, we work with the
following filtration.

F0 = σ(θ0) and Fk := σ(θ0, ξ̂1, ξ1, ξ̂2, ξ2, . . . , ξ̂k, ξk), for all k ≥ 1 (24)

Clearly, the random variable θk is Fk-measurable. Our theoretical results are structured as follows.
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First, we show that SGD with our proposed termination test indeed stops after a finite number
of iterations. To do so, we provide a bound on E[T ], i.e. the expected number of iterations before
termination. Yet, despite this guarantee, the resulting classifier at termination need not be optimal.
Hence, our second result establishes that both θT and θ∗ point in approximately the same direction;
thereby ensuring that the classifier at termination, θT , is nearly optimal. We remark the worst-case
bounds established throughout these sections are conservative; we observe in our experiments that
the termination test stops sooner while also yielding good classification properties for Gaussian and
non-Gaussian data sets.

To bound E[T ], we identify subsets of Rd for which when an iterate enters the set, termination
(i.e. (11)) is highly likely to succeed. Such sets C, we call target sets. Precisely, for any θ ∈ C and
ξ̂ ∼ N(µ, σ2Id), the probability of terminating is at least δ > 0,

∃ δ > 0 such that Pξ̂
(
ξ̂Tθ ≥ 1

)
≥ δ. (25)

We guarantee the iterates generated by SGD enter the target set by way of a drift function, V :
Rd → [0,+∞). A drift function, on average, decreases each time the iterate fails to live in the
target set. In other words, conditioned on the past iterates the following holds

(E[V (θk)|Fk−1]− V (θk−1)])1{θk−1 6∈C} ≤ −b1{θk−1 6∈C} (26)

for the target set C and some positive constant b. Loosely speaking, the iterates in expectation drift
towards the target set. Target sets and drift functions in the context of drift analysis are well-studied
in stochastic processes, see Lemma 9 below.

A natural choice for the target set is a neighborhood of the unique optimum solution of (8), θ∗,
with the drift function ‖θ−θ∗‖2. Indeed, it is known the iterates of SGD converge to a neighborhood
of θ∗ ([23]). However, an iterate may be nearly optimal well before it enters this neighborhood. In
fact when σ � ‖µ‖, we identify a target set where satisfying the stopping criterion occurs at least
half the time and does not require the iterate to be near θ∗. We summarize below our target set and
drift function.

1. Under the assumption σ ≤ c‖µ‖ for some numerical constant c, which we call the Low
Variance Regime, we define the target set to be

C = {θ : µTθ ≥ 1}, (27)

and the drift function by
V (θ) =

(
M − µTθ

)2
, (28)

for some constant M , to be determined later.

2. Under the assumption c‖µ‖ ≤ σ where the constant c is the same as in 1 above, which we
call the High Variance Regime, we define the target set to be

C = {θ : |ρσ2 − 1| < 1 and σ‖θ̃‖ ≤ c′}, (29)

for some numerical constant c′. Here, we orthogonally decompose θ = ρµ+θ̃ withµT θ̃ = 0.
We use the following drift function

V (θ) =
1

2α
‖θ − θ∗‖2. (30)

11



In Section 4.1 (resp. Section 4.2) we show that the pairs (C, V ) defined in (27) and (28) (resp.
(29) and (30)) satisfies the drift equation (26) for any step-size α (resp. for any sufficiently small
step-size α).

As mentioned above, the target setC attracts the iterates generated by SGD. Each time an iterate
enters C, the stopping criterion holds with probability at least δ > 0. Provided the iterates enters
the set C an infinite number of times, then after waiting a geometrically distributed many iterations,
we expect the following condition to hold:

ξ̂Tk θk ≥ 1 and θk ∈ C. (31)

The SGD algorithm does not know the value of θ∗; therefore at each iteration, it cannot check
whether the condition (31) occurs. Nevertheless, we are able to compute a bound on the average
waiting time until (31) holds and the first time (31) holds is always an upper bound on T , our
stopping criterion. This is summarized in Lemma 4. Precisely, if we denote by

TC := inf{k > 0 : ξ̂Tk θk ≥ 1 and θk ∈ C}, (32)

then T ≤ TC , thus yielding E[T ] ≤ E[TC ]. We bound E[TC ] by way of stopping times τm defined
as the mth time the iterates of SGD enters C. Formally for any sequence {θk}∞k=0 generated by
SGD starting at θ0 = 0, we set

τ1 := inf{k > 0 : θk ∈ C} (33)

and inductively, for m ≥ 2,
τm := inf{k > τm−1 : θk ∈ C}. (34)

The following lemma formalizes the discussion above.

Lemma 4 Let {θk}∞k=0 be a sequence generated by SGD such that θ0 = 0 and suppose that
E[τm] < +∞ for all m ≥ 1. Then the following holds

E[T ] ≤ E[TC ] ≤
∞∑
m=1

E[τm](1− δ)m−1, (35)

where δ satisfies (25).

Proof We first show that
E
[
1{TC≥τm}

]
≤ (1− δ)m−1. (36)

Define the σ-algebra F ′ = σ(θ0, ξ1, ξ2, · · · ). From the independence between σ(ξ̂k)’s and F ′ and
also τi < +∞ a.s. for all i ≥ 1, the following is obtained:

E
[
1{TC≥τm}|F

′] = E
[
1{ξ̂Tτ1θτ1<1} · · · 1{ξ̂Tτm−1

θτm−1<1}|F
′
]

=

m−1∏
i=1

E
[
1{ξ̂Tτiθτi<1}|F

′
]

≤ (1− δ)m−1.

12



By taking expectations, we conclude (36) holds. Now since E[1{TC=+∞}] ≤ E[1{TC≥τm}] for all
m ≥ 1, it follows from (36) that TC <∞ a.s. We next observe that

E
[
TC1{TC=τm}|F

′] = E
[
τm1{TC=τm}|F

′]
≤ τmE

[
1{ξ̂Tτ1θτ1<1} · · · 1{ξ̂Tτm−1

θτm−1<1}|F
′
]

= τm

m−1∏
i=1

E
[
1{ξ̂Tτiθτi<1}|F

′
]

≤ τm(1− δ)m−1.

Taking expectations yields E
[
TC1{TC=τm}

]
≤ E [τm] (1 − δ)m−1 for all m ≥ 1. Now since

TC <∞ a.s. we get 1 =
∑+∞

m=1 1{TC=τm} a.s. This yields that

E[T ] ≤ E[TC ] =
∞∑
m=1

E[TC1{TC=τm}] ≤
∞∑
m=1

E[τm](1− δ)m−1.

The proof is complete.

Now, in view of Lemma 4, it suffices to bound E[τm] by a sequence which can not grow too fast in
m. Indeed, we show that (26) implies the following

E[τm] = O(m). (37)

Theorem 5 (Low Regime) Let {θk}∞k=0 be a sequence generated by Algorithm 1 such that θ0 = 0.
There exists positive constants c, b and M such that provided σ ≤ c‖µ‖ the following holds.

E[T ] ≤ 2 +
2M2

b
·
(

Φc

(
‖µ‖
σ

)
+
ασ3

‖µ‖
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
+ 1

)
. (38)

Here the constants c, b and M are defined as follows:

1. For the logistic loss,

c = 0.33, b = α‖µ‖2, and M = 501 + 640α‖µ‖2. (39)

2. For the hinge loss,

c = 1.25, b = α‖µ‖2, and M = 501 + 782α‖µ‖2. (40)

Therefore, on relatively separable data (i.e. in the low variance regime), the expected waiting time
before termination exponentially decreases as the data becomes more separable (i.e. σ → 0). We
prove Theorem 5 in Section 4.3. The next theorem shows that the expected value of the stopping
time is finite provided that the σ > c‖µ‖ and the step-size is small enough.
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Theorem 6 (High Regime) Suppose that σ > c‖µ‖ where c is defined in (39) and (40). Then there
exists a universal positive constant A such that if the step-size α satisfies

α ≤ A · ‖µ‖2

σ2(‖µ‖2 + dσ2)
, (41)

then it holds that E[T ] < +∞. In particular, the termination criterion occurs almost surely.

It remains to determine whether the classifier at termination θT , has desirable accuracy. The scale-
invariance of optimal classifiers means a classifier yields a lower probability of misclassification
the closer its direction aligns with any optimal classifier. In view of this, it suffices to bound the
absolute value of the inner product of any unit vector that is perpendicular to θ∗, v with θT . The
following theorem establishes a bound on E[|vTθT |].

Theorem 7 Let θ0 = 0. Fix any unit vector v ∈ Rd such that vTθ∗ = 0. Then the following
estimate holds

E[|vTθT |] ≤ σα
√

2

π
E[T ]. (42)

Thus, the more separable the data set is, the more accurate the classifier θT is on average. In the
high variance regime, Theorem 6 yields a very loose bound. Yet despite this, our numerical result
in Section 5 show promising accuracy of (11) in this case as well. We conjecture that the inequality
can be significantly strengthened.

4.1. Low regime, proof of Theorem 5

In this section, we investigate the low variance regime. We consider the target set C and function V
defined in (27) and (28) respectively, i.e.

C = {θ : µTθ ≥ 1}, V (θ) =
(
M − µTθ

)2
, (43)

where M is a constant to be determined. Next lemma shows that the drift equation (26) holds for
the pair (C, V ).

Lemma 8 (Drift equation) Consider the SGD algorithm and let the set C and the function V be
as in (43). Define the constants c, b,M as in (39) and (40). Then provided that σ ≤ c‖µ‖, the
function V is a drift function with respect to the set C and it satisfies the drift equation (26) with the
constant b.

Proof For simplicity we write F−1 := σ ({θ0 = θ}). Fix k ≥ 1 and write ξk = µ + σψk with
ψk ∼ N(0, Id). Denote ψk := µTψk

‖µ‖ , thus ψk ∼ N(0, 1). In order to show that the function V
satisfies the drift equation (26), it suffices to assume θk−1 6∈ C; in particular, this means θTk−1µ < 1.

Logistic loss. By expanding out the term using the update formula, we get the following

V (θk) = V (θk−1)− 2αµT ξk(M − µTθk−1)

1 + exp(ξTk θk−1)
+

α2(µT ξk)
2

(1 + exp(ξTk θk−1))2
. (44)
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We have

Eξk

[
µT ξk

1 + exp(ξTk θk−1)
|Fk−1

]
= ‖µ‖2Eξk

[
1

1 + exp(ξTk θk−1)
|Fk−1

]
+ σ‖µ‖Eξk,ψk

[
ψk

1 + exp(ξTk θk−1)
|Fk−1

]
≥ ‖µ‖2Eξk

[
1

1 + exp(ξTk θk−1)
|Fk−1

]
+ σ‖µ‖Eψk

[
ψk1{ψk<0}

]
= ‖µ‖2Eξk

[
1

1 + exp(ξTk θk−1)

(
1{µT θk−1≥ξTk θk−1} + 1{µT θk−1<ξ

T
k θk−1}

)
|Fk−1

]
− σ‖µ‖

√
1

2π

≥ ‖µ‖2

1 + exp(µTθk−1)
Eξk

[
1{µT θk−1≥ξTk θk−1}|Fk−1

]
− σ‖µ‖

√
1

2π

≥ ‖µ‖2

2(1 + e)
− σ‖µ‖

√
1

2π

≥ 0.001‖µ‖2.

Here the first inequality follows from E[X] ≥ E[X1{X<0}] and 1 + exp(ξTk θk−1) ≥ 1, the second
equation from (5), and the second to last from the observation that for any X normally distributed,
P(E[X] ≥ X) = 1/2 and ξTk θk−1 ∼ N(µTθk−1, σ

2 ‖θk−1‖2) and µTθk−1 < 1. The last inequal-
ity uses the assumption σ ≤ 0.33 ‖µ‖. By taking the conditional expectations of (44) combined
with the above sequence of inequalities, we deduce the following bound

E [V (θk)− V (θk−1)|Fk−1]

= Eξk

[
−2αµT ξk(M − µTθk−1)

1 + exp(ξTk θk−1)
|Fk−1

]
+ Eξk

[
α2(µT ξk)

2

(1 + exp(ξTk θk−1))2
|Fk−1

]
≤ −0.002(M − 1)α‖µ‖2 + α2‖µ‖2

(
‖µ‖2 + σ2

)
= α‖µ‖2

[
−0.002(M − 1) + α

(
‖µ‖2 + σ2

)]
.

Here the first inequality follows from µTθk−1 < 1 and by upper bounding (µT ξk)2

(1+exp(ξTk θk−1))2
with

(µT ξk)
2 and then applying (5). A quick computation after plugging in the value of M and the

bound σ ≤ 0.33‖µ‖ from (39) yields the drift equation (26) with b = α‖µ‖2.

Hinge loss. By expanding out the term using the update formula, we get the following

V (θk) = V (θk−1)− 2α(M − µTθk−1)µT ξk1{ξTk θk−1≤1} + α2(µT ξk)
21{ξTk θk−1≤1}. (45)

We have

Eξk [1{ξTk θk−1≤1}µ
T ξk|Fk−1] = ‖µ‖2Eξk [1{ξTk θk−1≤1}|Fk−1] + σ‖µ‖Eξk,ψk [1{ξTk θk−1≤1}ψk|Fk−1]

≥ 1

2
‖µ‖2 + σ‖µ‖Eψk [ψk1{ψk<0}]

=
1

2
‖µ‖2 − σ‖µ‖

√
1

2π

≥ 0.001‖µ‖2.
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Here the first inequality follows from 1{ξTk θk−1≤µT θk−1} ≤ 1{ξTk θk−1≤1} and Eξk [1{ξTk θk−1≤µT θk−1}] =
1
2 , and the second from (5). The last inequality uses the assumption σ ≤ 1.25‖µ‖. By taking condi-
tional expectations of (45) combined with the above sequence of inequalities, we deduce the bound

E[V (θk)− V (θk−1)|Fk−1] = Eξk
[
−2α(M − µTθk−1)1{ξTk θk−1≤1}|Fk−1

]
+ Eξk

[
α2(µT ξk)

21{ξTk θk−1≤1}|Fk−1

]
≤ α‖µ‖2

[
−0.002(M − 1) + α

(
‖µ‖2 + σ2

)]
.

A quick computation after plugging in the value of M and the bound σ ≤ 1.25‖µ‖ yields the
desired result.

Recall, the stopping times τm denote the mth time that the SGD iterates enter the target set C. We
show that E[τm] = O(m). To do so, we begin by stating a lemma that gives a bound on the stopping
time τ̃1 starting from any θ0. In other words, for an arbitrary starting θ0, we define

τ̃1 := inf{k > 0 : θk ∈ C}.

Lemma 9 ([20], Theorem 11.3.4) Suppose that V : Rd → [0,+∞) is a drift function with respect
to some target set C i.e. for some constant b ∈ (0,+∞) the drift equation (26) holds. The following
is true

E[τ̃1|θ0 = θ] ≤ 1
bV (θ). (46)

We establish upper bounds on E[τm] for m ≥ 1 in the following proposition.

Proposition 10 (Bound on E[τm]) Let θ0 = 0 and assume the notation and assumptions of Lemma
8 hold. The following is true for all m ≥ 1

E[τm] ≤ (m− 1)

(
1 +

M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

))
+
M2

b
. (47)

Proof First, the result for m = 1 follows immediately by combining Lemmas 8 and 9 with θ0 = 0.
We now assume that τm−1 < ∞ a.s. for some m ≥ 2. Fix an integer n ≥ 1. We decompose the
space to yield the following bounds

E
[
(τm − τm−1)∧n|Fτm−1+1

]
= E

[
((τm − τm−1) ∧ n)|Fτm−1+1

]
1{µT θτm−1+1≥1}

+ E
[
((τm − τm−1) ∧ n)|Fτm−1+1

]
1{µT θτm−1+1<1}

= 1{µT θτm−1+1≥1} + E
[
((τm − τm−1) ∧ n)|Fτm−1+1

]
1{µT θτm−1+1<1}

= 1{µT θτm−1+1≥1} +

∞∑
i=1

E
[
(τm − τm−1) ∧ n|Fτm−1+1

]
1{i−1<1−µT θτm−1+1≤i}

= 1 +

∞∑
i=1

E
[
τ̃1 ∧ n|θ0 = θτm−1+1

]
1{i−1<1−µT θτm−1+1≤i}.

(48)

16



Here the first equality follows because ((τm − τm−1) ∧ n)1{µT θτm−1+1≥1} = 1{µT θτm−1+1≥1}
and the last equality by the strong Markov property. We consider the logistic and hinge loss case
separately to show that the following is true

1{i−1<1−µT θτm−1+1≤i} ≤ 1{µT ξτm−1+1<
1−i
α
}. (49)

For clarity, in the next few inequalities, we write 1{.} instead of 1{.}. In case of logistic loss, for
each i ≥ 1, we observe the bound

1{i− 1 < 1− µTθτm−1+1 ≤ i} ≤ 1{i− 1 < 1− µTθτm−1+1}

= 1

{
i− 1 < 1− µTθτm−1 −

αµT ξτm−1+1

1 + exp(ξTτm−1+1θτm−1)

}

≤ 1

{
i− 1 < −

αµT ξτm−1+1

1 + exp(ξTτm−1+1θτm−1)

}
≤ 1

{
i− 1 < −αµT ξτm−1+1

}
,

where the second inequality follows because µTθτm−1 ≥ 1 and the last inequality because

In case of hinge loss, for each i ≥ 1, similar as above, we observe the bound

1
{
i− 1 < 1− µTθτm−1+1 ≤ i

}
≤ 1

{
i− 1 < 1− µTθτm−1+1

}
≤ 1

{
i− 1 < 1− µTθτm−1 − αµT ξτm−1+11{ξTτm−1+1θτm−1≤1}

}
≤ 1

{
i− 1 < −αµT ξτm−1+11{ξTτm−1+1θτm−1≤1}

}
= 1

{
i− 1 < −αµT ξτm−1+1

}
.

(50)
Therefore we have shown that (49) holds. Setting θ0 = θτm−1+1 , by Lemma 9 for each i ≥ 1, we
deduce

E
[
τ̃1 ∧ n|θ0 = θτm−1+1

]
1{i−1<1−µT θτm−1+1≤i} ≤

(M − µTθτm−1+1)2

b
1{i−1<1−µT θτm−1+1≤i}

≤ (M + i− 1)2

b
1{µT ξτm−1+1<

1−i
α
}.

(51)
Finally we observe that

E
[
1{µT ξτm−1+1<

1−i
α
}

]
= E

[ ∞∑
k=1

1{µT ξk+1<
1−i
α
}1{τm−1=k}

]

=

∞∑
k=1

E
[
1{µT ξk+1<

1−i
α
}

]
E
[
1{τm−1=k}

]
= Φ

(
1−i
α − ‖µ‖

2

σ‖µ‖

) ∞∑
k=1

E
[
1{τm−1=k}

]
= Φ

(
1−i
α − ‖µ‖

2

σ‖µ‖

)
.

(52)
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The second equality is by independence and the third equality becauseµT ξk+1 ∼ N(‖µ‖2 , σ2 ‖µ‖2).
By combining (48), (51), and (52), we obtain the following

E
[
(τm−τm−1) ∧ n

]
≤ 1 +

M2

b
· Φ
(
−‖µ‖

σ

)
+
∞∑
i=2

(M + i− 1)2

b
· Φ

(
1−i
α − ‖µ‖

2

σ‖µ‖

)

= 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
∞∑
i=2

(M + i− 1)2

b
· Φc

(
‖µ‖2 + i−1

α

σ‖µ‖

)

≤ 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
ασ‖µ‖
b
√

2π
·
∞∑
i=2

(M + i− 1)2

α‖µ‖2 + i− 1
· exp

−1

2

(
‖µ‖2 + i−1

α

σ‖µ‖

)2
 ,

(53)
where we used the inequality Φc(t) < 1

t
√

2π
exp(− t2

2 ) for all t > 0. Next, note that M+i−1
α‖µ‖2+i−1

≤
M

α‖µ‖2 holds for all i ≥ 2. Using this we obtain the following bound

∞∑
i=2

(M + i− 1)2

α‖µ‖2 + i− 1
· exp

−1

2

(
‖µ‖2 + i−1

α

σ‖µ‖

)2


≤ σM2

α‖µ‖3
·
∞∑
i=2

α‖µ‖2 + i− 1

ασ‖µ‖
· exp

(
−1

2

(
α‖µ‖2 + i− 1

ασ‖µ‖

)2
)

≤ σM2

α‖µ‖3
· ασ‖µ‖ ·

∫ +∞

‖µ‖
σ

t exp

(
− t

2

2

)
dt

=
σ2M2

‖µ‖2
· exp

(
−‖µ‖

2

2σ2

)
.

(54)
Here we have used that t 7→ t exp(− t2

2 ) is decreasing over [1,+∞). Combining (53) and (54), we
obtain that

E [(τm − τm−1) ∧ n] ≤ 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
. (55)

Taking the limit as n→ +∞, we observe that

E[τm] ≤ 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
+ E[τm−1].

We then iterate the above inequality yielding

E[τm] ≤ (m− 1)

(
1 +

M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

))
+ E[τ1].

The result follows by plugging in the bound from Lemma 9 for the base case m = 1.

We are now ready to prove Theorem 5.
Proof [Proof of Theorem 5] In order to simplify the subsequent argument, we define the quantity,

M ′ := 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
.
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It is easy to see that Pξ̂∼N(µ,σ2Id)

(
ξ̂Tθ ≥ 1

)
≥ 1

2 for any θ ∈ C. Therefore δ = 1
2 satisfies (25).

By Proposition 10 with Lemma 4, we conclude that

E[T ] ≤ E[TC ] =

∞∑
m=1

E[TC1{TC=τm}] ≤
∞∑
m=1

E[τm]

2m−1
≤
∞∑
m=1

(m− 1)M ′ + M2

b

2m−1
= 2M ′ +

2M2

b
.

4.2. High regime, proof of Theorem 6

In this section, we consider the high variance regime. We consider the target set C and the function
V defined in (29) and (30), respectively, i.e.

C :=
{
θ : |ρ− ρ∗| < 1

2ρ
∗ and σ‖θ̃‖ ≤ c′

}
and V (θ) :=

1

2α
‖θ − θ∗‖2, (56)

where the minimizer θ∗ = ρ∗µ is defined in Lemma 2 and the constant c′ is to be determined. We
first aim to show that V is a drift function with respect to the set C under the high variance regime
assumption, meaning σ ≥ c‖µ‖. We next state a standard SGD convergence result applied to the
logistic and hinge loss functions.

Lemma 11 Consider the optimization problem (8) where ` : R×R→ R is either the logistic or
hinge loss function. Denote the vector θ∗ as the unique minimizer of f in (8). Let θ0 ∈ Rd. The
sequence {θk}∞k=0 generated by SGD satisfies the following for all k ≥ 1,

f(θk−1)− f(θ∗) ≤ 1

2α

(
‖θk−1 − θ∗‖2 − E

[
‖θk − θ∗‖2 |Fk−1

])
+
α

2

(
‖µ‖2 + dσ2

)
. (57)

Proof Define the quantity

gk :=
1

α
(θk−1 − θk) = ∇θ`

(
ξTk θk−1, 1

)
.

Here, it is easy to check that the derivative with respect to θ and the expectation over ξk are inter-
changeable, thus yielding

Eξk [gk|Fk−1] = ∇θf(θk−1).

By convexity of the function f , we have the following

‖θk − θ∗‖2 = ‖θk−1 − θ∗‖2 − 2αgTk (θk−1 − θ∗) + α2 ‖gk‖2

= ‖θk−1 − θ∗‖2 − 2α(gk − Eξk [gk|Fk−1])T (θk−1 − θ∗)− 2αEξk [gk|Fk−1]T (θk−1 − θ∗) + α2 ‖gk‖2

≤ ‖θk−1 − θ∗‖2 − 2α(gk − Eξk [gk|Fk−1])T (θk−1 − θ∗)− 2α(f(θk−1)− f(θ∗)) + α2 ‖gk‖2 .

By taking conditional expectations with respect to Fk−1 and rearranging the above inequality, we
obtain that

f(θk−1)− f(θ∗) ≤ 1

2α

(
‖θk−1 − θ∗‖2 − E

[
‖θk − θ∗‖2 |Fk−1

])
+
α

2
Eξk

[
‖∇θ`(ξTk θk−1, 1)‖2

]
.

(58)
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We next observe the following bound

Eξk [‖∇θ`
(
ξTk θk−1, 1

)
‖2 | Fk−1] ≤ Eξk [‖ξk‖2|Fk−1] = ‖µ‖2 + dσ2. (59)

Combining (58) and (59), the result follows.

By Lemma 11 for each k ≥ 1, we deduce

E[V (θk)|Fk−1]− V (θk−1) ≤ − (f(θk−1)− f(θ∗)) +
α

2
(‖µ‖2 + dσ2). (60)

Therefore, in order to show that the pair (C, V ) in (56) satisfies the drift equation (26), it suffices
to lower bound the quantity f(θk−1) − f(θ∗) whenever θk−1 6∈ C. To do so, we orthogonally
decompose θk−1 = ρk−1µ+ θ̃k−1, i.e. µT θ̃k−1 = 0 and ρk−1 ∈ R and write

f(θk−1)− f(θ∗) = f(θk−1)− f(ρk−1µ)︸ ︷︷ ︸
(a)

+ f(ρk−1µ)− f(θ∗)︸ ︷︷ ︸
(b)

.
(61)

The assumption θk−1 6∈ C yields that either σ‖θ̃k−1‖ ≥ c′ or |ρk−1 − ρ∗| ≥ 1
2ρ
∗. In Lemma 12

(resp. 14), we show that (a) (resp. (b)) in (61) are both non-negative and they are lower bounded by
some positive constant provided that σ‖θ̃k−1‖ ≥ c′ and |ρk−1 − ρ∗| ≤ 1

2ρ
∗ (resp. |ρk−1 − ρ∗| ≥

1
2ρ
∗).

Lemma 12 (Lower bound for (a) in (61)) Fix θ ∈ Rd and orthogonally decompose θ = ρµ + θ̃
where µT θ̃ = 0 and ρ ∈ R. Then the following are true

1. f(θ)− f(ρµ) ≥ 0.

2. f(θ)−f(ρµ) ≥ 1 provided that |ρ−ρ∗| ≤ 1
2ρ
∗, σ‖θ̃‖ ≥ c′ and σ ≥ c‖µ‖ where c is defined

in (39) and (40). Here ρ∗ is defined in Lemma 2 and the constant c′ is defined by 436 and
8 + 10ρ∗σ2 for the logistic and hinge loss respectively.

Proof We consider the logistic and hinge loss separately.

1. Logistic loss. The two normal random variables, θ̃T ξ ∼ N(0, σ2‖θ̃‖2) andµT ξ ∼ N(‖µ‖2, σ2‖µ‖2),
are independent by (3). Since we have Eξ[log(exp(−θ̃T ξ))] = Eξ[log(exp(θ̃T ξ))] = 0, it
holds

f(θ) = Eξ
[
log
(
1 + exp(−θT ξ)

)]
= Eξ

[
log
(

1 + exp(−θ̃T ξ) exp(−ρµT ξ)
)]

= Eξ
[
log
(

exp(θ̃T ξ) + exp(−ρµT ξ)
)]

= Eξ
[
log
(

exp(−θ̃T ξ) + exp(−ρµT ξ)
)]
,

where the last equality is true because θ̃T ξ ∼ −θ̃T ξ. Therefore we obtain

Eξ
[
log
(
1 + exp(−θT ξ)

)]
=

1

2
Eξ
[
log
(

exp(θ̃T ξ) + exp(−ρµT ξ)
)]

+
1

2
Eξ
[
log
(

exp(−θ̃T ξ) + exp(−ρµT ξ)
)]

=
1

2
Eξ
[
log
(

(exp(θ̃T ξ) + exp(−ρµT ξ))(exp(−θ̃T ξ) + exp(−ρµT ξ))
)]

=
1

2
Eξ
[
log
(

1 + exp(−θ̃T ξ − ρµT ξ) + exp(θ̃T ξ − ρµT ξ) + exp(−2ρµT ξ)
)]
.
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By the equality exp(θ̃T ξ) + exp(−θ̃T ξ) = 2 + 4 sinh2( θ̃
T ξ
2 ), we have

Eξ
[
log
(
1 + exp(−θT ξ)

)]
=

1

2
Eξ
[
log
(

1 + 2 exp(−ρµT ξ) + exp(−2ρµT ξ) + 4 sinh2( θ̃
T ξ
2 ) exp(−ρµT ξ)

)]
.

Therefore, we have

2Eξ
[
log

(
1 + exp(−θT ξ)

1 + exp(−ρµT ξ)

)]
= 2Eξ

[
log(1 + exp(−θT ξ))

]
− Eξ

[
log
(
1 + exp(−ρµT ξ)

)2]
= Eξ

[
log

(
1 +

4 sinh2( θ̃
T ξ
2 ) exp(−ρµT ξ)

(1 + exp(−ρµT ξ))2

)]
≥ 0.

(62)
Thereby, we showed that f(θ) − f(ρµ) ≥ 0. Now we establish the positive lower bound.
First, we note the following 1 + exp(−ρµT ξ) = 2 exp(−ρµT ξ

2 ) cosh(ρµ
T ξ
2 ). Fix a constant

r > 0 and consider the set {ξ : |θT ξ| > r}. Applying the inequality x2 + y2 ≥ 2|xy| and
(62), we obtain that

2Eξ
[
log

(
1 + exp(−θT ξ)

1 + exp(−ρµT ξ)

)]
= Eξ

[
log

(
1 +

4 sinh2( θ̃
T ξ
2 ) exp(−ρµT ξ)

(1 + exp(−ρµT ξ))2

)]

= Eξ

[
log

(
1 +

sinh2( θ̃
T ξ
2 )

cosh2(ρ2µ
T ξ)

)]

≥ Eξ

[
log

(
1 +

sinh2( θ̃
T ξ
2 )

cosh2(ρ2µ
T ξ)

)
· 1{ξ:|θ̃T ξ|≥r}

]
(63)

≥ Eξ

[(
log 2 + log

(
| sinh( θ̃

T ξ
2 )|

cosh(ρ2µ
T ξ)

))
· 1{ξ:|θ̃T ξ|≥r}

]
.

Here (63) follows from log

(
1 +

sinh2( θ̃T ξ
2

)

cosh2( ρ
2
µT ξ)

)
is always positive. From (2), we have µT ξ ∼

N(‖µ‖2, σ2‖µ‖2) and θ̃T ξ ∼ N(0, σ2‖θ̃‖2), so θ̃T ξ = σ‖θ̃‖ψ where ψ ∼ N(0, 1). More-
over, a simple computation shows that− log

(
cosh(ρ2µ

T ξ)
)

1{|θ̃T ξ|≥r} ≥ − log
(
cosh(ρ2µ

T ξ)
)

since cosh(ρ2µ
T ξ) ≥ 1 always holds. Using the inequality log cosh(x) ≤ |x| for x, the fol-

lowing bound holds

Eξ
[
log

(
1 + exp(−θT ξ)

1 + exp(−ρµT ξ)

)]
≥ 1

2 log(2) · Eψ
[
1{|ψ|≥ r

σ‖θ̃‖
}

]
+ 1

2Eψ
[
log
∣∣∣sinh(σ‖θ̃‖ψ2 )

∣∣∣ 1{|ψ|≥ r
σ‖θ̃‖

}

]
− 1

2Eξ
[
log(cosh(ρ2µ

T ξ))
]

≥ 1
2 log(2) · Eψ

[
1{|ψ|≥ r

σ‖θ̃‖
}

]
+ 1

2Eψ
[
log
∣∣∣sinh(σ‖θ̃‖ψ2 )

∣∣∣ 1{|ψ|≥ r
σ‖θ̃‖

}

]
− 1

2Eξ
[
|ρ2µ

T ξ|
]

≥ 1
2 log(2) · Eψ

[
1{|ψ|≥ r

σ‖θ̃‖
}

]
+ 1

2Eψ
[
log
∣∣∣sinh(σ‖θ̃‖ψ2 )

∣∣∣ 1{|ψ|≥ r
σ‖θ̃‖

}

]
− 3

4

(
‖µ‖2

σ2
+

√
2

π
· ‖µ‖
σ

)
,

(64)
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where the last inequality uses (5) and ρ ≤ 3
σ2 . Using the inequality | sinh(x)| ≥ exp( |x|2 ) for

all |x| ≥ 2 log(
√

2 + 1) and letting r = 4 log(
√

2 + 1), we obtain

1
2 log(2) · Eψ

[
1
{|ψ|≥ 4 log(

√
2+1)}

σ‖θ̃‖

]
+ 1

2Eψ
[
log
∣∣∣sinh(σ‖θ̃‖ψ2 )

∣∣∣ 1{|ψ|≥ 4 log(
√
2+1)

σ‖θ̃‖
}

]
≥ 1

2 log(2) · Eψ
[
1
{|ψ|≥ 4 log(

√
2+1)

σ‖θ̃‖ }

]
+ 1

2Eψ
[∣∣∣σ‖θ̃‖ψ4

∣∣∣ 1{|ψ|≥ 4 log(
√
2+1)

σ‖θ̃‖
}

]
≥ 1

2 log(2) · Eψ[1{|ψ|≥1}] + 1
2Eψ

[∣∣∣σ‖θ̃‖ψ4

∣∣∣ 1|ψ|≥1}

]
(65)

≥

(
1
2 log(2) +

σ‖θ̃‖
8

)
· Φc(1).

Here (65) follows from the assumption that σ‖θ̃‖ ≥ 436. Combining (64), (65) and the
bounds σ ≥ 0.33‖µ‖ and σ‖θ̃‖ ≥ 436 the result follows.

2. Hinge loss. We begin by denoting ξ1 := ξT θ̃ and ξ2 := ξTµ. Notice that ξ1 and ξ2 are
independent random variables. Recall that `(t) := `(t, 1) = max(0, 1− t). We have that

f(θ)− f(ρµ) = Eξ
[
`(ξTθ)− `(ρξTµ)

]
= Eξ1,ξ2 [`(ξ1 + ρξ2)− `(ρξ2)]

= Eξ1,ξ2 [`(−ξ1 + ρξ2)− `(ρξ2)] .

The second equality follows since ξ1 ∼ −ξ1. We define the function

κ(ξ1, ξ2) := `(ξ1 + ρξ2) + `(−ξ1 + ρξ2)− 2`(ρξ2).

We therefore obtain that

2 (f(θ)− f(ρµ)) = Eξ1,ξ2 [κ(ξ1, ξ2)] .

Next we claim that
κ(ξ1, ξ2) = 0 whenever |ξ1| ≤ |1− ρξ2|. (66)

To see this, suppose that |ξ1| ≤ |1 − ρξ2| holds. We consider two cases. First, assume
that 0 ≤ 1 − ρξ2 which yields that ρξ2 − ξ1 ≤ 1 and ρξ2 + ξ1 ≤ 1. We therefore have
κ(ξ1, ξ2) = 1−ξ1−ρξ2 +1+ξ1−ρξ2−2(1−ρξ2) = 0. Second, assume that 1−ρξ2 ≤ 0. It
thus holds that 1 ≤ ρξ2−ξ1 and 1 ≤ ρξ2 +ξ1. Now it immediately follows that κ(ξ1, ξ2) = 0
and equation (66) is established. We claim the following

κ(ξ1, ξ2) = |ξ1| − |1− ρξ2| whenever |ξ1| ≥ |1− ρξ2|. (67)

To this end, we again consider two cases. First, assume that ξ1 ≤ −|1− ρξ2|. This yields that
1 ≤ −ξ1 + ρξ2 and ξ1 + ρξ2 ≤ 1, so it holds that κ(ξ1, ξ2) = 1 − ξ1 − ρξ2 − 2`(ρξ2). The
claim (67) follows from the following simple identity

2`(t) = 1− t+ |1− t|, ∀t ∈ R. (68)
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Second, assume that ξ1 ≥ |1− ρξ2|. It then holds that ξ1 + ρξ2 ≥ 1 and −ξ1 + ρξ2 ≤ 1 and
therefore κ(ξ1, ξ2) = 1 + ξ1 − ρξ2 − 2`(ρξ2). The claim (67) follows from the identity (68).
We therefore obtain

Eξ1,ξ2 [κ(ξ1, ξ2)] = 2Eξ1,ξ2 [(`(ξ1 + ρξ2) + `(−ξ1 + ρξ2)− 2`(ρξ2))1{ξ1>0}] (69)

= 2Eξ1,ξ2 [(`(ξ1 + ρξ2) + `(−ξ1 + ρξ2)− 2`(ρξ2))1{ξ1≥|1−ρξ2|}] (70)

= Eξ1,ξ2 [(ξ1 − |1− ρξ2|)1{ξ1≥|1−ρξ2|}]. (71)

Here equation (69) holds because ξ1 ∼ −ξ1 and κ(ξ1, ξ2) = κ(−ξ1, ξ2). Equation (70) is
true because of claim (66) and (71) follows from claim (67). From (71), we conclude that
Eξ1,ξ2 [κ(ξ1, ξ2)] ≥ 0. We then observe the bound

Eξ1,ξ2 [(ξ1 − |1− ρξ2|)1{ξ1≥|1−ρξ2|}] = 1
2Eξ1,ξ2 [ξ1 − |1− ρξ2|+ |ξ1 − |1− ρξ2||]

≥ −1
2Eξ2 [|1− ρξ2|] + 1

2Eξ1,ξ2 [|ξ1| − |1− ρξ2|]
= 1

2Eξ1 [|ξ1|]− Eξ2 [|1− ρξ2|].
(72)

The second inequality follows from Eξ1 [ξ1] = 0 and the triangle inequality |x| − |y| ≤
||x| − y|. On the other hand, it holds that

Eξ1 [|ξ1|] =

√
2

π
· σ‖θ̃‖, (73)

and

Eξ[|1− ρµT ξ|] ≤ 1 + ρEξ[|µT ξ|] ≤ 1 + ρ‖µ‖

(√
2

π
· σ + ‖µ‖

)
. (74)

Combing equations (66), (67), (72), (73), and (74), we deduce

f(θ)− f(ρµ) ≥ 1

2

(√
1

2π
· σ‖θ̃‖ − 1− ρ‖µ‖

(√
2

π
· σ + ‖µ‖

))
. (75)

Using the bounds σ‖θ̃‖ ≥ 8 + 10ρ∗σ2, σ ≥ 0.62‖µ‖ and ρ ≤ 3
2ρ
∗, the result follows from

(75).

We next derive a lower bound (61), Part (b). But, first we need a basic lemma from convex
analysis.

Lemma 13 Suppose that g : R≥0 → R is a convex function with a minimizer at ρ∗ > 0. Assume
that g is twice differentiable on the interval [3

4ρ
∗, 5

4ρ
∗] and there exists a constant B > 0 such that

g′′(ρ) ≥ B for all ρ ∈ [3
4ρ
∗, 5

4ρ
∗]. Then it holds that

g(ρ)− g(ρ∗) ≥ ρ∗B

8
|ρ− ρ∗| for all ρ 6∈ [1

2ρ
∗, 3

2ρ
∗]. (76)

Proof The proof follows by considering the second order Taylor series expansion of the function g.
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Lemma 14 (Lower bound for (b) in (61)) Fix θ ∈ Rd and orthogonally decompose θ = ρµ + θ̃.
Suppose that |ρ− ρ∗| ≥ 1

2ρ
∗. Then provided that σ ≥ c‖µ‖ where the constant c is defined in (39)

and (40), there exists a positive constant A such that the following is true

f(ρµ)− f(θ∗) ≥ A · ‖µ‖
2

σ2
. (77)

Proof We consider the logistic and hinge loss separately.

Logistic loss. Define the function

g(ρ) := Eξ
[
log
(
1 + exp(−ρµT ξ)

)]
, ξ ∼ N(µ, σ2Id).

By Lemma 2, we know that g is a convex function with a unique minimizer at ρ∗ := 2
σ2 . Observe

that f(ρµ) − f(θ∗) = g(ρ) − g(ρ∗); hence in order to prove (77), we instead aim to bound this
difference in the function g. From (2), we have µT ξ ∼ N(‖µ‖2, σ2‖µ‖2). It thus holds

4g′′(ρ) = E
(

(µT ξ)2

cosh(ρ2µ
T ξ)2

)
=

1

σ‖µ‖
√

2π

∫ ∞
−∞

z2

cosh2(ρz2 )
exp

(
−(z − ‖µ‖2)2

2σ2‖µ‖2

)
dz.

Upper bounding cosh2(ρz2 ) by exp(|ρz|), we next obtain

4g′′(ρ) ≥ 1

σ‖µ‖
√

2π

∫ ∞
−∞

z2 exp (−|ρz|) exp

(
−(z − ‖µ‖2)2

2σ2‖µ‖2

)
dz

=
1

σ‖µ‖
√

2π

∫ ∞
−∞

z2 exp

(
−(z − ‖µ‖2)2 + 2σ2‖µ‖2|ρz|

2σ2‖µ‖2

)
dz,

=
1

σ‖µ‖
√

2π
· exp

(
−‖µ‖

2

2σ2

)∫ ∞
−∞

z2 exp

(
−z

2 − 2‖µ‖2z + 2σ2‖µ‖2|ρz|
2σ2‖µ‖2

)
dz

=
σ2‖µ‖2√

2π
· exp

(
−‖µ‖

2

2σ2

)∫ +∞

−∞
z2 exp

(
−
z2 − 2‖µ‖σ z + 2|ρz|σ‖µ‖

2

)
dz

≥ σ2‖µ‖2√
2π

· exp

(
−‖µ‖

2

2σ2

)∫ +∞

0
z2 exp

(
−z

2

2

)
exp

(
z

(
‖µ‖
σ
− ρσ‖µ‖

))
dz

≥ σ2‖µ‖2√
2π

· exp

(
−‖µ‖

2

2σ2
− 1

2
−
∣∣∣∣‖µ‖σ − ρσ‖µ‖

∣∣∣∣) ∫ 1

0
z2dz.

Here the second to last inequality follows from the change of variables z → zσ‖µ‖. The last
inequality follows from restricting the integral’s domain to [0, 1] and also lower bounding − z2

2 and

z
(
‖µ‖
σ − ρσ‖µ‖

)
by −1

2 and −
∣∣∣‖µ‖σ − ρσ‖µ‖∣∣∣ respectively. We see that, for ρ ∈ [3

4ρ
∗, 5

4ρ
∗], the

term exp
(
−‖µ‖

2

2σ2 − 1
2 −

∣∣∣‖µ‖σ − ρσ‖µ‖∣∣∣) is lower bounded by exp
(
− 1

2c2
− 1

4c −
1
2

)
. By Lemma

13, the result follows with the constant A computed as follows

A =
1

12
√

2π
· exp

(
− 1

2c2
− 1

4c
− 1

2

)
.

Hinge loss. We begin by defining the function h(ρ) = f(ρµ). Therefore

f(ρµ) = Eξ[`(ρξTµ)] = Eξ[(1− ρξTµ)1{ρξTµ≤1}].
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Hence, it holds that
h′(ρ) = µT∇f(ρµ) = −Eξ[ξTµ1{ρξTµ≤1}].

From (2), we obtain that µT ξ ∼ N(‖µ‖2, σ2‖µ‖2). For ρ > 0, therefore, it holds that

h′(ρ) =
−1

σ‖µ‖
√

2π

∫ 1
ρ

−∞
z exp

(
−1

2
·
(

z

σ‖µ‖
− ‖µ‖

σ

)2
)
dz. (78)

Applying chain rule thus yields

h′′(ρ) =
1

ρ3σ‖µ‖
√

2π
exp

(
−1

2
·
(

1

ρσ‖µ‖
− ‖µ‖

σ

)2
)

for all ρ > 0.

Hence, for all ρ ∈ [3
4ρ
∗, 5

4ρ
∗] it holds that

h′′(ρ) ≥ 64

125ρ∗3σ‖µ‖
√

2π
exp

(
−1

2
· Γ2

)
,

where Γ := max
{∣∣∣ 4

3ρ∗σ‖µ‖ −
‖µ‖
σ

∣∣∣ , ∣∣∣ 4
5ρ∗σ‖µ‖ −

‖µ‖
σ

∣∣∣}. Therefore, by Lemma 13 and |ρ − ρ∗| ≥
1
2ρ
∗, it holds that

f(ρµ)− f(θ∗) ≥ 4

125
√

2π
· σ

r‖µ‖
· exp

(
−1

2
· Γ2

)
. (79)

Here r = ρ∗σ2. Note that r > 0 by Lemma 2. We aim to lower bound the right-hand side of (79).
We denote by w = σ

r‖µ‖ −
‖µ‖
σ the quantity defined in Lemma 2. In particular, by Lemma 2, the

following holds
1√
2π
· σ

‖µ‖
= Φ(w) · exp(1

2w
2). (80)

We consider two cases. First suppose that w ≥ 1
(3
√

2−4)c
. Along with the assumption σ

‖µ‖ ≥ c

this implies that w ≥ 1
3
√

2−4
· ‖µ‖σ . A simple computation shows that w2 ≥ 1

2 · Γ
2 for all w ≥

1
3
√

2−4
· ‖µ‖σ . On the other hand, by (80) for w ≥ 0, we obtain that 2

π ·
σ2

‖µ‖2 ≥ exp(w2). Plugging in

the bounds w2 ≥ 1
2 ·Γ

2, exp(−w2) ≥ π
2 ·
‖µ‖2
σ2 , and σ

r‖µ‖ ≥ w ≥
1

(3
√

2−4)c
into the right-hand-side

of (79), we obtain that

f(ρµ)− f(θ∗) ≥
√

2π

125(3
√

2− 4)c
· ‖µ‖

2

σ2
.

Next, suppose that w < 1
(3
√

2−4)c
. In this case, the two factors σ

r‖µ‖ and exp
(
−1

2 · Γ
2
)

in (79) are

lower bounded separately. Note that it always holds that w ≥ −‖µ‖σ as r > 0. Therefore, it is easy

to see that the latter factor is lower bounded by exp

(
−1

2

(
4

3(3
√

2−4)c
+ 1

3c

)2
)

. Hence, it remains

to bound the factor σ
r‖µ‖ in (79). To this end, we show that w ≥ −‖µ‖2σ for all σ

‖µ‖ ≥ c. Note that a
chain of change of variables gives

Φ(w) · exp

(
w2

2

)
=

1√
2π
·
∫ +∞

0
exp(−1

2
t2) · exp(wt) dt.
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The right-hand side of (80) is an increasing function with respect to w. Therefore it suffices to show
that the following holds

1√
2π
· σ

‖µ‖
≥ Φ

(
−‖µ‖

2σ

)
· exp

(
‖µ‖2

8σ2

)
whenever

σ

‖µ‖
≥ c. (81)

However, it can be verified by a plot that 1√
2π
≥ t · Φ

(
− t

2

)
· exp

(
t2

8

)
holds for all t ∈ (0, 1

c ).

Therefore, we have shown that w ≥ −‖µ‖2σ which implies that σ
r‖µ‖ ≥

‖µ‖
2σ . Finally we lower bound

the quantity σ
r‖µ‖ by c · ‖µ‖

2

2σ2 . We have concluded (77) in case of hinge loss function where the
constant A can be computed as follows

A = min

{
c

2
· exp

(
−1

2

(
4

3(3
√

2− 4)c
+

1

3c

)2
)
,

√
2π

125(3
√

2− 4)c

}
.

We now have the ingredients to prove Theorem 6.
Proof [Proof of Theorem 6] Consider the set C and function V defined in (56):

C :=
{
θ : |ρ− ρ∗| < 1

2ρ
∗ and σ‖θ̃‖ ≤ c′

}
and V (θ) =

1

2α
‖θ − θ∗‖2. (82)

We let c′ to be defined as in Lemma 12. This means that c′ equals to 436 and 8 + 10ρ∗σ2 in case of
logistic and hinge loss respectively. We next show that there exists a positive constant δ such that
the following is true

Pξ
(
ξTθ ≥ 1

)
≥ δ for all θ ∈ C. (83)

Let θ ∈ C and orthogonally decompose it into θ = ρµ + θ̃. We have that ξTθ = ρξTµ + ξT θ̃.
Note that ρ > 0 as θ ∈ C. By (3), we see that ξTθ and ξT θ̃ are independent normal random
variables. It thus holds that

Pξ
(
ξTθ ≥ 1

)
≥ Pξ

(
ρξTµ ≥ 1

)
· Pξ

(
ξT θ̃ ≥ 0

)
=

1

2
· Pξ

(
ξTµ ≥ 1

ρ

)
. (84)

Rewrite the inequality ξTµ ≥ 1
ρ by z := ξTµ−‖µ‖2

σ‖µ‖ ≥
1
ρ
−‖µ‖2

σ‖µ‖ . Noting that z ∼ N(0, 1) and using
the inequality 2

ρ∗ ≥
1
ρ , we obtain that

Pξ
(
ξTθ ≥ 1

)
≥ δ :=

1

2
· Φc

(
2
ρ∗ − ‖µ‖

2

σ‖µ‖

)
. (85)

We next show that the pair (C, V ) satisfies the drift equation (26). Let us rewrite (61):

f(θk−1)− f(θ∗) = f(θk−1)− f(ρk−1µ)︸ ︷︷ ︸
(a)

+ f(ρk−1µ)− f(θ∗)︸ ︷︷ ︸
(b)

.
(86)

By Lemmas 12 and 14, both terms in (a) and (b) in (86) are non-negative . Assume that θk−1 6∈ C.
Therefore, either σ‖θ̃k−1‖ ≥ c′ or |ρk−1 − ρ∗| ≥ 1

2ρ
∗; this implies that the quantity (a) is at least 1
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or the quantity (b) is at leastA· ‖µ‖
2

σ2 respectively. The constantA in Lemma 14 satisfies 1 ≥ A· ‖µ‖
2

σ2

for all σ
‖µ‖ ≥ c. Hence it holds that

A · ‖µ‖
2

σ2
≤ f(θk−1)− f(θ∗) for all θk−1 6∈ C. (87)

We use (57) next to establish the drift equation (26). Recall that the following holds

f(θk−1)− f(θ∗) ≤ 1

2α

(
‖θk−1 − θ∗‖2 − E

[
‖θk − θ∗‖2 |Fk−1

])
+
α

2

(
‖µ‖2 + dσ2

)
. (88)

Combining the last two displayed inequalities and using the definition of function V , we obtain that

(E [V (θk)|Fk−1]− V (θk−1)) · 1{θk−1 6∈C} ≤
(
α

2
(‖µ‖2 + dσ2)−A · ‖µ‖

2

σ2

)
· 1{θk−1 6∈C}. (89)

Therefore, by choosing α < A · ‖µ‖2
σ2(‖µ‖2+dσ2)

, we obtain the drift equation (26) holds with b :=

A
2 ·
‖µ‖2
σ2 . Next, we obtain bounds on E[τm] for m ≥ 1. By Lemma 9 and a simple induction, we

obtain that
E[τm] ≤ 1

bV (0) + 1
b (m− 1) sup

θ∈C
V (θ). (90)

Compactness of set C yields that, supθ∈C V (θ) < +∞. Therefore, for some constant γ, the
following is true

E[τm] ≤ γ ·m. (91)

Combining (91), (85) and Lemma 4, the proof immediately follows.

4.3. Angle bound, proof of Theorem 7

Proof [Proof of Theorem 7] Recall the SGD algorithm for logistic regression uses the update

θk = θk−1 +
αξk

1 + exp(ξTk θk−1)

and for hinge regression
θk = θk−1 + α1{ξTk θk−1≤1}ξk−1

where θ0 = 0 and ξ1, ξ2, · · ·
i.i.d∼ N(µ, σ2Id). It clearly holds in both cases that∣∣|vTθk| − |vTθk−1|

∣∣ ≤ α|vT ξk−1|. (92)

We define a new random variable Xk := |vTθk| − kσα
√

2
π . Observe that E [|X0|] = 0 and for all

k ≥ 1, it holds that

E [|Xk|] ≤ α
k∑
i=1

E
[∣∣vT ξk∣∣]+ kσα

√
2

π
<∞,
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i.e., Xk ∈ L1 for all k ≥ 1. Next, we have for any k ≥ 1

E [|Xk −Xk−1| | Fk−1] ≤ E
[∣∣|vTθk| − |vTθk−1|

∣∣ | Fk−1

]
+ σα

√
2

π
≤ 2σα

√
2

π
.

Here we used that vT ξk ∼ N(0, σ2) along with (5). We also see that

E
[
|vTθk| | Fk−1

]
≤ |vTθk−1|+ σα

√
2

π
⇒ E [Xk | Fk−1] ≤ Xk−1.

Therefore, we have shown thatX0, X1, · · · is a super-martingale. By Theorem 1, we have E [XT ] ≤
0. The result follows.

5. Numerical Experiments

We investigate the performance of our termination test on two popular data sets, MNIST [15] and
CIFAR-10 [13], as well as synthetic data generated from Gaussians and heavy-tailed student t-
distributions. All tests were performed using our zero overhead stopping criteria outlined in (12);
experiments using our test which required an extra sample (11) are not presented since the behaviors
of the two criteria were indistinguishable on all data sets.

Comparison with a popular stopping criterion. We include as a baseline a popular termination
test, the small validation set (SVS) [14]. The SVS termination test is as follows. One fixes a
validation set of p instances (ζV

1 , y
V
1 ), . . . , (ζV

p , y
V
p ) drawn from the same distribution as the training

data. Then for m = 1, 2, . . ., one checks the fraction correct of the current classifier θml, where ml
is the iteration index, on the p instances. In other words, the SVS test is run once every l iterations.
If the fraction correct fails to increase compared to the last run of the SVS, then the SGD iterations
are terminated.

Note the computational overhead of running the small validation set is about p times the cost
of one SGD iteration. Therefore, in order to make the overhead only a constant factor, we choose
l = 2p, meaning an approximately 50% overhead for SVS. In contrast, the overhead for (12) is 0.
The value of p is a tuning parameter for SVS; we exhibit results for three different p values (see
Figs. 2, 3, 4, 5 ).

Measuring the accuracy. In all the experiments, we measure the performance of a method with
a score, generally known as “accuracy,” that is the fraction correct on a large validation set drawn
from the same distribution as the training data. Thus, 1.0 is perfect accuracy, while 0.5 means that
θk is no better at classifying than random guessing. It is important to note that even on data for
which the means µ0,µ1 are known a priori (e.g., synthetic data), the score of the optimal θ∗ will
not be 1.0 because the large validation set itself is noisy.

We center the data so that the linear classifier is homogeneous. In a preliminary phase, 100
samples are drawn from the training set. From this, µ0 and µ1 are estimated, and then the average
of these estimates is used to offset training instances during SGD.
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Figure 1: Performance of stopping criterion (12) on a mixture of Gaussians as σ is varied. Plots
(a), (b) are logistic and (c), (d) are hinge. All plots show tests for values of σ equally
spaced from 0.05 to 2.0. For each value of σ, ten trials were run. Plots (a), (c) show the
relationship between σ and k, the iteration number when (12) first holds. Plots (b), (d)
show the accuracy as red asterisks. The green asterisks show the accuracy of the optimal
classifier. The black curve on the right is the ratio of the average accuracy (over 10 trials)
of the classifier when (12) holds to the accuracy of the optimal classifier.
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Figure 2: Each plot shows 10 random runs of SGD applied to normally distributed data with in-
dicated values of σ and for a fixed dimension d = 500. For each of the ten runs,
five termination tests corresponding to five colors were applied. SVS was tried with
p = 32, 128, 512, depicted as red, magenta and cyan circles respectively. Test (12) is in-
dicated with a blue asterisk. A green ‘+’ corresponds to termination after 1.5k iterations,
where k is the iteration index that (12) first holds. The notation (l/200) means logistic
loss with α̃ = 1/200; simillarly (h/10) means hinge loss with α̃ = 1/10, and so on.

Parameter settings. After centering, the vectors θ and ξ scale inversely, so the step-size param-
eter α should scale as 1/σ2. Therefore, we take the step-size to be α̃/σ̃2. Here, σ̃2 is the average
of
∥∥ζj − µ̃yj∥∥2, and µ̃i (i = 0 or i = 1) is the estimate of µi, averaged over the two classes.

We compute the quantities σ̃2 and µ̃i using the 100 samples described in the preceding paragraph.
Note that for the Gaussian mixture model, the expected value of σ̃2 is σ2d. For the synthetic data,
the means and variances are known exactly a priori, so the estimation procedures described in the
previous two paragraphs are unnecessary. However, we used them anyway in order to be consistent
with the tests on the realistic data.

The parameter α̃ described in the last paragraph is a scale-free tuning parameter. It is known
(see, e.g., [1]) that a smaller α̃ corresponds to more iterations but greater ultimate accuracy under
a reasonable model of the data. Our termination test is obviously sensitive to the choice of α̃: the
condition ξTk+1θk ≥ 1 cannot hold unless ‖θk‖ ≥ 1/ ‖ξk+1‖, but E [‖θk‖] ≤ O(αk). See also
Theorems 5 and 6. On the other hand, SVS is only mildly sensitive to α̃, according to our testing.
Indeed, there is an upper bound of pl on the total number of iterations possible before termination
using the SVS condition, independent of α̃ and of all other aspects of the problem. The dependence
of the termination test on α̃ is evidently desirable because the user is presumably seeking greater
accuracy when a smaller value of α̃ is selected.
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Figure 3: Tests on the student-t distribution (heavy tailed) with two degrees of freedom and the
indicated value of parameter β. See the caption of Fig. 2 for explanation of the plots.

5.1. Experiments with synthetic data

Normal distribution. We generated test and training data using a mixture of Gaussians given by
N(0, σ2I) for the 0-class and N(e1, σ

2I) for the 1-class, where e1 = (1, 0, . . . , 0)T ∈ Rd.
In Fig. 1, we present the running time and accuracy (fraction correct) of our termination test for

a fixed dimension d = 500 and σ ranging from 0.05 to 2. We record 10 runs for each value of σ.
The performance of the classifier when our termination test (12) holds almost matches the optimal
classifier; in particular, the averaged accuracy of our classifier/accuracy of the optimal classifier
over the 10 runs, black curve in Fig. 5, never dips below 0.95.

In Fig. 2, we compare performance of (12) against SVS termination. One axis shows accuracy
while the other shows iteration count. We continued to run SGD for an additional 1.5k iterations
where k is the first iteration at which (12) holds (green ’+’) to test whether accuracy improves after
termination. The tests (for several values of σ, both hinge and logistic, and two values of α̃) in
Fig. 2 indicate that (12) is more accurate than SVS, more predictable (i.e., there is less spread in the
scatter plot), and that running until 1.5k iterations does not significantly improve the solution. As
expected, for a large α̃, (12) requires fewer iterations than SVS with p = 512, while the opposite
relationship holds for a small α̃.

Heavy-tailed distribution. We consider the student t-distribution with two degrees of freedom.
This distribution is heavy-tailed since some of its higher moments are infinite.

The two classes were generated as follows. For ζ in the 0-class, each of the d entries of ζ is
chosen as βη, where β is varied in the experiments and η is drawn from the student t-distribution
with two degrees of freedom. For the 1-class, ζ is chosen in the same way except that the first
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Figure 4: Tests on the MNIST handwritten digit data set for discerning “1” from “8” and “7” from
“9” for both hinge and logistic, and for both α̃ = 1/10 and α̃ = 1/200. Refer to the
caption of Fig. 2 for the key to the plots.

entry is incremented by 1. Fig. 3 shows our performance against SVS. The results in this table show
similar trends as in the normally distributed case. One difference is that the accuracy achieved by
our termination test (12) is more spread out presumably because of the heavy-tailed nature of the
data set.

5.2. Experiments with real data

MNIST handwritten digits. We compared our termination test on the MNIST handwritten digit
set [15] (d = 784, no preprocessing of the data other than centering between the two means). Two
trials are shown: distinguishing 1 from 8 (easy case) and distinguishing 7 from 9 (more difficult
case). The test runs are obtained by running through the training data in different randomized
orders. The plots in Fig. 4 show similar trends as before. As expected, the accuracy is overall higher
for α̃ = 1/200 than for α̃ = 1/10.

CIFAR-10 image set. We compared our termination test on the CIFAR-10 [13] (d = 3072, no
preprocessing of the data other than centering between the two means as described earlier). Two
trials are shown: distinguishing deer from airplanes and frogs from trucks. As in MNIST, test runs
are obtained by running through the training data in different randomized orders.

6. Conclusions

We have proposed a simple and computationally free termination test for SGD for binary classifi-
cation, supported by both theoretical and experimental results. The theoretical results show that the
test will stop SGD after a finite time with a bound on the expected accuracy of the resulting classi-
fier. The bounds that we proved are weaker than what we observed in our experiments. Therefore,
the first obvious question left open by this work is whether the theoretical bounds can be improved.

In our experimental results, the plots in Figs. 2 through 5 show a consistent pattern that (12)
achieves low accuracy but is faster than SVS for α̃ = 1/10, while it achieves higher accuracy with
more iterations when α̃ = 1/200. This is useful behavior in practice, compared to SVS, since it puts
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Figure 5: Tests on the CIFAR-10 image set for two tasks, for logistic and hinge losses, and for
α̃ = 1/10 and α̃ = 1/200. Refer to the caption of Fig. 2 for the key to the plots. The
plot in the first row, right, does not include cyan circles because the training data was
exhausted before the SVS test could activate for p = 512.

the accuracy/iterations tradeoff in the hands of the user who selects the stepsize α̃. Another benefit
of (12) apparent from all plots is that the number of iterations is more consistent across random
trials, which is beneficial in the case that SGD is used as a subproblem of a larger computation.

This work did not explore regularization via early stopping. As mentioned in the introduction,
experiments showed that as SGD iterations continued, the accuracy on the test set eventually levels
off but does not decrease significantly, i.e., SGD for binary classification is not prone to overfitting.
Because the test accuracy never shows marked decline, there is no opportunity for early stopping to
regularize. However, we know of other settings in which early stopping has a strong regularizing
effect (e.g., conjugate gradient iterations for image deconvolution, already known in [30]), so if (12)
is extended beyond binary classification in future work, there will likely also be an opportunity to
explore regularization.
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