
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Retrospective Approximation for Smooth Stochastic Optimization

author names withheld

Under Review for OPT 2020

Abstract
We consider stochastic optimization problems where a smooth (and potentially nonconvex) ob-

jective is to be minimized using a stochastic first-order oracle. These type of problems arise in many
settings from simulation optimization to deep learning. We present Retrospective Approximation
(RA) as a universal sequential sample-average approximation (SAA) paradigm where during each
iteration k, a sample-path approximation problem is implicitly generated using an adapted sample
size Mk, and solved (with prior solutions as “warm start”) to an adapted error tolerance εk, using
a “deterministic method” such as the line search quasi-Newton method. The principal advantage
of RA is that decouples optimization from stochastic approximation, allowing the direct adoption
of existing deterministic algorithms without modification, thus mitigating the need to redesign al-
gorithms for the stochastic context. A second advantage is the obvious manner in which RA lends
itself to parallelization. We identify conditions on {Mk, k ≥ 1} and {εk, k ≥ 1} that ensure almost
sure convergence and convergence in L1-norm, along with optimal iteration and work complexity
rates. We illustrate the performance of RA with line-search quasi-Newton on an ill-conditioned
least squares problem, as well as an image classification problem using a deep convolutional neural
net.

1. Introduction

We consider unconstrained smooth stochastic optimization problems of the form:

min: f(x) := E[F (x, Y)] =

∫
F (x, Y) dP (Q)

where F (·, Y) : Rd×Y → R and Y is a random variable with distribution P . In the standard context
of parameter estimation, x represents the vector of model parameters to be fitted, Y represents the
“random input-output data pairs,” and F (·, ·) is a composition of the model and loss functions.
The expected function f and its gradient, ∇f cannot be observed but can be estimated by making
observations of the random function F (·, Y) and its derivative∇F (·, Y) at any given x. The random
variable Y is “realized” either by drawing an observation from an existing dataset or by using Monte
Carlo.

Stochastic Approximation (SA) [13], also known as Stochastic Gradient Descent (SGD), and its
variants [5, 7, 8, 11, 12, 14], form the popular class of methods that are used for solving problems
of the type (Q). Over the past few years, there has been an increased interest in stochastic quasi-
Newton methods [1, 4, 6, 9, 10, 15–17] that incorporate curvature information within stochastic
gradient based methods. While it has been observed that these methods are competitive [1, 3,
4, 6], they pose continuing challenges in terms of building and updating quasi-Newton matrices

c© .

RETROSPECTIVE APPROXIMATION

using observed stochastic gradients computed. In general, such methods entail a careful redesign
of various components, e.g., line search and curvature updates, of classical deterministic nonlinear
optimization algorithms, to make them suitable for stochastic settings. In this paper, we deviate
from such attempts and instead consider an alternate approach called Retrospective Approximation
(RA) that aims to strategically incorporate existing deterministic algorithms as is, that is, without
any modifications, for use within a stochastic setting.

RA is a general purpose iterative “stochastic framework” that repeats the following three steps:
(i) during outer iteration k, implicitly construct a sample-path approximation to the true problem
using a sample size Mk that is adapted to past data represented by a filtration Fk−1; (ii) using a
weighted average of past solutions as “warm start,” employ any deterministic iterative solver on the
sample-path approximation to obtain a solution Xk to within a specified error tolerance εk, again
adapted to past data represented by a filtration Fk−1; (iii) update the weighted average of solutions
obtained.

The main advantage of RA is that the framework’s structure naturally decouples optimization
from stochastic approximation. Such decoupling allows the use of any deterministic method for
solving the “inner” approximate problems, thereby avoiding the need to redesign algorithms for the
stochastic context and retaining the performance of established deterministic algorithms. Second,
the decoupling forms the basis for a clear trade-off between computational effort and statistical
accuracy, leading to theoretical guidance on the choice of sample sizes and error tolerances. Third,
RA’s structure lends itself to trivial parallelization where the computations required on samples Mk

for solving the inner problem can be performed in parallel.
The difference in computation effort exerted by RA versus traditional stochastic gradient meth-

ods is rooted in what constitutes an iteration. Each iteration in a typical stochastic gradient method
is computationally cheap in that it involves one gradient call after which the iterate is updated. By
contrast, each (outer) iteration of RA can be more computationally expensive since it invokes the
deterministic solver to identify an iterate satisfying the stipulated error tolerance. (The iterations
performed by the deterministic solver will be called inner iterations.) Each outer iteration of RA is
thus likely to be more productive than each iteration in stochastic gradient methods, but such gains
come at an increased computational cost incurred during many inner iterations. A fair comparison
of RA and SGD should thus involve a comparison of the total computational work as opposed to a
measure such as iteration complexity.

RA’s efficiency crucially depends on correctly balancing the sampling effort during each itera-
tion with the stipulated error tolerance for the deterministic algorithm. Our analysis in this context
leads to sufficient conditions that guarantee the consistency of RA’s iterates, and the identification
of the relationship between the adapted sample sizes and the error tolerances that result in optimal
iteration and work complexity rates within RA. We are also able to establish central limit theorems,
strong invariance principles, and stopping theorems, but we do not detail them here.

2. Retrospective Approximation

We now outline RA more precisely. Define the sample-path problem (Sm) having sample size m.

minimize: fm(x) := m−1
m∑
j=1

F (x, Yj) =

∫
F (x, Y) dPm, x ∈ Rd. (Sm)

2

RETROSPECTIVE APPROXIMATION

The random function fm(·) is said to be a sample-path approximation to f(·) constructed with
sample size m, and Pm is the empirical measure associated with iid copies of Y . We define the
corresponding sample-path derivative function∇fm(·) in an analogous manner.

We assume that we have at our disposal a method to globally solve (Sm) to any specified accu-
racy ε > 0. In the smooth (potentially nonconvex) case, this means we have a deterministic solver
capable of identifying a point, say Xm(ε) ∈ Rd, that satisfies ‖∇fm(Xm(ε))‖ ≤ ε.

The RA algorithm framework, presented in Algorithm 1 is an iterative framework that is or-
ganized into outer and inner iterations. Assuming the existence of a filtered probability space
(Ω,F , {Fk}k≥1, P), during the k-th outer iteration, RA uses a specified deterministic solver to
solve the sample-path problem (SMk

),Mk ∈ Fk−1 to within accuracy εk ∈ Fk−1. The solution
Xk obtained at the end of the k-th outer iteration is appropriately averaged with past solutions, and
the resulting average X̄k is used as a “warm start” (or “initial guess”) when solving the (k + 1)-th
sample-path problem (SMk+1

).

Algorithm 1: Retrospective Approximation
input : (i) initial guess X0; (ii) procedure to update sample sizes {Mk, k ≥ 1}; (iii) procedure

to update error tolerances {εk, k ≥ 1}; (v) procedure to update weights {Wk, k ≥ 1};
(iv) solver-S, e.g., line search L-BFGS.

for k = 1, 2, ... do
1. Set sample size and error tolerance: Choose Mk ∈ Fk−1 and εk ∈ Fk−1.
2. Solve k-th sample-path problem to accuracy εk: with Solver-S and X̄k−1 as
“warm-start,” obtain Xk satisfying ‖∇fMk

(Xk)‖ ≤ εk.
3. Update solution: Compute X̄k :=

∑k
j=1WjXj/

∑k
j=1Wj .

end

3. Main Results

In this section, we present our main results which demonstrate consistency and characterize the
associated convergence rates of the RA algorithm. For brevity, we defer a number of other results
to a later more detailed manuscript. These include statements about central limit theorem, strong
invariance law, sequential stopping, the effect of averaging, and “warm starts.”

3.1. Assumptions

In what follows, we list four standing assumptions which touch upon the structure of the random
function F (·, Y), the finiteness of second moment of the estimator, the growth rate of sample path
functions and conditions on the sample size and error tolerance. For convenience, we define the
attractor set as the set of critical points of f : X ∗ := {x ∈ Rd : ∇f(x) = 0}.

Assumption 1 (Structure of the Integrand) The random function F (·, Y) : Rd → R is L(Y)-
smooth, that is, ‖∇F (x, Y)−∇F (y, Y)‖ ≤ L(Y)‖x− y‖, ∀x, y ∈ Rd, where E[L2(Y)] <∞.

Assumption 2 (Finite Variance) Recall the sample-path gradient∇fMk
(x) := M−1k

∑Mk
j=1∇F (x, Yj),

x ∈ Rd, where Mk ∈ Fk−1. The variance of the sample-path gradient over the attractor set X ∗ is
bounded, that is, there exists σ2 such that supx∈X ∗ E[‖∇fMk

(x)‖2 | Fk−1] ≤ σ2M−1k a.s.

3

RETROSPECTIVE APPROXIMATION

Assumption 3 (Sample-path Growth Condition) Define the sample-path growth rate

ΛMk
:= inf{λ : ‖∇fMk

(x)−∇fMk
(x∗)‖ ≥ λ ‖x− x∗‖ ∀x∗ ∈ X ∗}.

There exists Λ > 0 such that E[Λ−2Mk
| Fk−1] ≤ Λ−2 a.s.

Assumption 4 (Sample Sizes and Error Tolerances) The sample sizeMk and the error tolerance
εk used within the k-th iteration of RA are adapted to the filtrationFk−1, and satisfy, with probability
one,

∑∞
k=1Mk

−1/2 <∞ and
∑∞

k=1

(
E[ε2k | Fk−1]

)1/2
<∞.

3.2. Main Theorems

We start with a fundamental theorem which asserts that RA’s iterates almost surely get “trapped”
within a fixed bounded region (not depending on ω) after a large enough number of iterations.

Theorem 1 Suppose Assumptions 1, 2, 3, and 4 hold. Then, given any ε > 0, the sequence
{Xk, k ≥ 1} satisfies, for k ≥ K(ε), Xk ∈ H(ε) a.s., whereH(ε) := {x : ‖∇f(x)‖ ≤ ε}.

A corollary of Theorem 1 is the strong consistency of RA’s iterates.

Theorem 2 (Almost Sure Consistency and L1 convergence of RA) Let the postulates of Theo-
rem 1 hold. Then the iterates {Xk, k ≥ 1} generated by RA satisfy, as k →∞,

‖∇f(Xk)‖ → 0 a.s.; E[‖∇f(Xk)‖]→ 0.

Furthermore, as k →∞, dist(Xk,X ∗) := inf{‖x∗ −Xk‖ : x∗ ∈ X ∗} → 0 a.s.

The following theorem gives a non-asymptotic rate result in the L1 norm.

Theorem 3 (Non-Asymptotic Rate in L1) Suppose Assumptions 1, 2 and 3 hold. Furthermore, let
Mk := C1,kMk−1 for k ≥ 2 where C1,k ∈ Fk−1 such that C1,k ∈ [c1, c̄1], with 1 < c1 ≤ c̄1 < ∞
and M1 = m1. Also, suppose εk := C2,kM

−1/2
k for k ≥ 2 where C2,k ∈ Fk−1 such that C2,k ∈

[c2, c2], with 0 < c2 ≤ c2 <∞. Then,

E [‖∇f(Xk)‖] ≤
(

1
√
c1

)k−1(E[L](c2 + σ)

Λm1

)
.

Considering brevity, we have omitted a number of other results including: (i) an optimal work
complexity result; (ii) the effect of “warm starts” and “iterate averaging”; (iii) a strong invariance
law on the empirical process {

√
Mk(∇fMk

(x)−∇f(x)) : x ∈ H(ε0)}; (iv) a central limit theorem
on the sequence {‖∇f(Xk)‖, k ≥ 1} of true gradient norms at RA’s iterates; and (v) a sequential
stopping theorem that uses (iii) and (iv) to construct a sequential confidence interval on ‖∇f(Xk)‖.

4. Experiments

To investigate the performance of RA, we ran a setting of RA alongside Adam and SGD (two highly
popular stochastic gradient methods) in the context of least-squares and image classification. Both
experiments were implemented in Python. The Tensorflow library was used in constructing models
and computing gradients. We used Tensorflow’s implementations of Adam and SGD, using the
default settings (though we did explore various choices of step size in the first experiment). For
brevity, complete implementation details are provided in the supplementary materials.

4

RETROSPECTIVE APPROXIMATION

4.1. Poorly-Conditioned Least-Squares

Our first experiment consists of a quadratic (least-squares) minimization problem of dimension
1, 000 using a simulated dataset, where the condition number of the observed covariance matrix
is approximately 106. We ran RA alongside SGD, where SGD was run with various choices of
(constant) step size in negative powers of 10. Results from this experiment are displayed in the top
row of figure 1. Notably, SGD’s performance is highly dependent on the choice of step size with
10−6 exhibiting the best performance. RA, on the other hand, descends and appears to converge,
importantly without requiring any hyper-parameter tuning.

Figure 1: Numerical Experiments. The top row displays results from the least-squares experi-
ment; the bottom row displays results from fitting the LeNet model using the MNIST
dataset. Training loss is shown as a function of cumulative oracle work (left column)
and as a function of cumulative gradient evaluations (right column). The paths represent
median loss, while the shaded regions represent the inter-quartile range.

4.2. LeNet on MNIST

For our second experiment, we used a variant of the LeNet Convolutional Neural Network applied
to the MNIST dataset. In the bottom row of Figure 1, we see that RA and Adam show similar per-
formance in terms of oracle work (SGD shows worse performance), but RA lags behind Adam and
SGD in terms of the total number of gradient computations. Thus RA may be most advantageous
when computation is cheap relative to sampling, as may be the case when parallel architecture is
available.

5

RETROSPECTIVE APPROXIMATION

References

[1] A. S. Berahas, J. Nocedal, and M. Takác. A multi-batch l-bfgs method for machine learning.
In Advances in Neural Information Processing Systems, pages 1055–1063, 2016.

[2] Patrick Billingsley. Probability and Measure. John Wiley and Sons, third edition, 1995.

[3] Raghu Bollapragada, Jorge Nocedal, Dheevatsa Mudigere, Hao-Jun Shi, and Ping Tak Peter
Tang. A progressive batching l-BFGS method for machine learning. volume 80 of Proceedings
of Machine Learning Research, pages 620–629. PMLR, 2018.

[4] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-Newton method for
large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.

[5] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. NIPS, 2014.

[6] M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting.
SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

[7] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. NIPS, 2013.

[8] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] A. Mokhtari and A. Ribeiro. Global convergence of online limited memory bfgs. Journal of
Machine Learning Research, 16(1):3151–3181, 2015.

[10] Philipp Moritz, Robert Nishihara, and Michael I. Jordan. A linearly-convergent stochastic
l-bfgs algorithm. arXiv:1508.02087, 2016.

[11] B. T. Polyak. Some methods of speeding up the convergnce of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[12] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal of Control and Optimization, 30(4):838–855, 1992.

[13] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

[14] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv:1309.2388, 2016.

[15] N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-newton method for online convex
optimization. In International Conference on Artificial Intelligence and Statistics, pages 436–
443, 2007.

[16] J. Sohl-Dickstein, B. Poole, and S. Ganguli. Fast large-scale optimization by unifying stochas-
tic gradient and quasi-Newton methods. In International Conference on Machine Learning,
pages 604–612, 2014.

6

RETROSPECTIVE APPROXIMATION

[17] C. Zhou, W. Gao, and D. Goldfarb. Stochastic adaptive quasi-Newton methods for minimizing
expected values. In International Conference on Machine Learning, pages 4150–4159, 2017.

7

RETROSPECTIVE APPROXIMATION

5. Supplementary Materials

5.1. Proofs of Theorems 1, 2, and 3

5.1.1. PROOF OF THEOREM 1

Before proving Theorem 1, we state a necessary lemma that follows from Assumption 1.

Lemma 4 (Smooth Objective) Suppose Assumption 1 holds. Then the function f(x) = E[F (x, Y)],
x ∈ Rd is E[L]-smooth, that is,

‖∇f(x)−∇f(y)‖ ≤ E[L(Y)]‖x− y‖, x, y ∈ Rd.

We now move to theorem 1.

Theorem 1 Suppose Assumptions 1, 2, 3, and 4 hold. Then, given any ε > 0, the sequence
{Xk, k ≥ 1} satisfies, for k ≥ K(ε), Xk ∈ H(ε) a.s., whereH(ε) := {x : ‖∇f(x)‖ ≤ ε}.

Proof Fix a point x∗ ∈ X ∗ and recall that Mk ∈ Fk−1. Observe that for any t > 0,

∞∑
k=1

P (‖∇f(Xk)‖ > t | Fk−1) ≤
∞∑
k=1

1

t
E [‖∇f(Xk)‖ |Fk−1]

≤
∞∑
k=1

1

t
E [E[L] ‖Xk − x∗‖ |Fk−1]

≤ E[L]

t

∞∑
k=1

E
[
Λ−1Mk
‖∇fMk

(Xk)−∇fMk
(x∗)‖ |Fk−1

]
≤ E[L]

t

∞∑
k=1

E
[
Λ−1Mk

(‖∇fMk
(x∗)‖+ εk) | Fk−1

]
≤ E[L]

√
2

t

∞∑
k=1

(
E
[
Λ−2Mk
| Fk−1

])1/2 (
E
[
‖∇fMk

(x∗)‖2 + ε2k | Fk−1
])1/2

≤ E[L]
√

2

tΛ

∞∑
k=1

(
E
[
‖∇fMk

(x∗)‖2 + ε2k | Fk−1
])1/2

≤ E[L]
√

2

tΛ

∞∑
k=1

(
σ2

Mk
+ E

[
ε2k | Fk−1

])1/2

≤ E[L]
√

2

tΛ

(∞∑
k=1

σ√
Mk

+

∞∑
k=1

(
E[ε2k | Fk−1]

)1/2)
<∞ a.s., (1)

where the first inequality in (1) is due to Markov [2], the second follows since the function f is E[L]-
smooth by Lemma 4, the third due to the definition of the sample-path growth-rate in Assumption 3,
the fourth inequality due to the definition of Xk, the fifth due to the Cauchy-Schwarz [2] inequality,
the sixth due to applying the minimum sample-path growth assumption in Assumption 3, the seventh

8

RETROSPECTIVE APPROXIMATION

due to the estimator assumption in Assumption 2, the eighth holds since (a + b)1/2 ≤ a1/2 + b1/2

for non-negative a, b, and the last due to Assumption 4. Conclude from (1) and the filtered Borel-
Cantelli’s lemma [2] that for any t,

P (‖∇f(Xk)‖ > t i.o.) = 0, (2)

implying in turn that
P (Xk /∈ H(ε) i.o.) = 0, (3)

thus proving the assertion of the theorem.

5.1.2. PROOF OF THEOREM 2

Theorem 2 (Almost Sure Consistency and L1 convergence of RA) Let the postulates of Theo-
rem 1 hold. Then the iterates {Xk, k ≥ 1} generated by RA satisfy, as k →∞,

‖∇f(Xk)‖ → 0 a.s.; E[‖∇f(Xk)‖]→ 0.

Furthermore, the iterates {Xk, k ≥ 1} also satisfy, as k →∞,

dist(Xk,X ∗)→ 0 a.s.

.

Proof Since Theorem 1 holds for arbitrary ε > 0, ‖∇f(Xk)‖ → 0 a.s. holds trivially as a conse-
quence. Also, E[‖∇f(Xk)‖] → 0 holds from the assertion ‖∇f(Xk)‖ → 0 a.s. and the uniform
integrability of {∇f(Xk), k ≥ 1} evident from the bound on the tail probability of ∇f(Xk) in the
proof of Theorem 1. Finally, the assertion dist(Xk,X ∗)→ 0 a.s. holds as well due to the definition
of the set X ∗.

5.1.3. PROOF OF THEOREM 3

Theorem 3 (Non-Asymptotic Rate in L1) Suppose Assumptions 1, 2 and 3 hold. Let Mk :=
C1,kMk−1 for k ≥ 2 where C1,k ∈ Fk−1 such that C1,k ∈ [c1, c̄1], with 1 < c1 ≤ c̄1 < ∞ and
M1 = m1. Also, suppose εk := C2,kM

−1/2
k for k ≥ 2 where C2,k ∈ Fk−1 such that C2,k ∈ [c2, c2],

with 0 < c2 ≤ c2 <∞. Then,

E [‖∇f(Xk)‖] ≤
(

1
√
c1

)k−1(E[L](c2 + σ)

Λm1

)
.

9

RETROSPECTIVE APPROXIMATION

Proof Consider any point x∗ ∈ X ∗, we have that

E [‖∇f(Xk)‖] ≤ E[L]E [‖Xk − x∗‖]

≤ E[L]E
[
‖∇fMk

(Xk)−∇fMk
(x∗)‖

ΛMk

]
≤ E[L]E

[
‖∇fMk

(Xk)‖
ΛMk

+
‖∇fMk

(x∗)‖
ΛMk

]
= E[L]

(
E
[
E
[
‖∇fMk

(Xk)‖
ΛMk

| Fk−1
]]

+ E
[
E
[
‖∇fMk

(x∗)‖
ΛMk

| Fk−1
]])

≤ E[L]E
[
E
[
Λ−2Mk

| Fk−1
]1/2

E
[
‖∇fMk

(Xk)‖2 | Fk−1
]1/2]

+ E[L]E
[
E
[
Λ−2Mk

| Fk−1
]1/2

E
[
‖∇fMk

(x∗)‖2 | Fk−1
]1/2]

≤ E[L]Λ−1
(
E
[
E
[
ε2k | Fk−1

]1/2]
+ E

[
E
[
‖∇fMk

(x∗)‖2 | Fk−1
]1/2])

≤ E[L]Λ−1
(
E
[

c2√
Mk

+
σ√
Mk

])
≤
(

1
√
c1

)k−1(E[L](c2 + σ)

Λ
√
m1

)
,

where the first inequality is due to Lemma 4, the second inequality is due to Assumption 3, the third
inequality is due to the fact that ‖a − b‖ ≤ ‖a‖ + ‖b‖, the fifth inequality follows from Cauchy-
Schwarz [2], the sixth inequality follows from ‖∇fMK

(XK)‖ ≤ εk and Assumption 3, the seventh
inequality follows since εk ≤ c2/

√
Mk and Assumption 2, and the last inequality is due to the fact

that Mk ≥ c1Mk−1.

5.2. Full Implementations Details of Experiments

5.2.1. RA SPECIFICS

For the least-squares and logistic regression experiments, we used the following sampling schedule
for RA: qk := 1+7k−1.7,Mk := qkMk−1, andM1 = 2. The multiplicative factor qk for the sample
size was defined so that Mk increases rapidly at first, but then slows as the sample sizes become
large. Due to the high variance in sample path objective functions for CNNs when using a small
batch size, we set M1 := 100 for the two CNN experiments (while adjusting qk accordingly).

For the deterministic solver, L-BFGS with backtracking line search was used across all experi-
ments. Importantly, the stored gradient and iterate differences used in L-BFGS were carried across
outer iterations (instead of restarting L-BFGS from scratch for every new sample-path problem).

5.2.2. DEFINING εk

To define the threshold εk for terminating L-BFGS during the kth iteration, let Sk be the set of Mk

of iid copies of Y queried by the oracle at iteration k. Furthermore, let Sσk be a random subset of Sk

10

RETROSPECTIVE APPROXIMATION

with size mσ < Mk. We estimate the variance of the gradient norm at xk as

σ̂2k :=
1

mσ − 1

∑
Yi∈Sσk

(
‖G(xk−1, Yi)‖ − ‖G(xk−1, Yi)‖

)2
.

and set
εk :=

σ̂k√
Mk

.

Although the computational burden of calculating σ̂2k is relatively low for small mσ, we can further
reduce its cost by only re-computing σ̂2k every m iterations.

5.2.3. IMPLEMENTATION OF ADAM AND SGD

In the first experiment, we ran SGD with various choices of step-sizes. This was done to investigate
the sensitivity of step size on the algorithms’ performance. For the remaining experiments we used
the Tensorflow default (constant) step sizes for SGD and Adam of 0.01 and 0.001, respectively (and
the same for Adam’s other hyper-parameters). In each plot, the paths represent median values of
the vertical axis variable across 3 runs, and the shaded regions represent the interquartile range. For
each experiment, all replications of each algorithm begin from the same initial solution.

5.2.4. POORLY-CONDITIONED LEAST-SQUARES

The first experiment consists of a standard least-squares minimization on a simulated dataset:

minimize
β∈Rp

f(β) := E[||Y −XTβ||2]

where Xi ∼ N(0, Ip), Yi|Xi ∼ N(XT
i β, Ip), and the true solution β is set as β := (1, 2, ..., p)T .

For this problem we set p := 1, 000 andN = 30, 000. The condition number of the observed matrix
n−1XTX was approximately 106.

5.2.5. LENET ON MNIST

For our second experiment we use a variant of the LeNet CNN applied to the MNIST dataset.
This neural net has 2 convolutional layers with max pooling followed by a fully-connected layer.
The convolutional layers have 5x5 kernels with 20 and 50 output channels respectively. The fully
connected layer has 500 neurons with ReLU activations. Parameters are initialized using Kaiming
Uniform initializion.

11

	Introduction
	Retrospective Approximation
	Main Results
	Assumptions
	Main Theorems

	Experiments
	Poorly-Conditioned Least-Squares
	LeNet on MNIST

	Supplementary Materials
	Proofs of Theorems 1, 2, and 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Full Implementations Details of Experiments
	RA Specifics
	Defining k
	Implementation of Adam and SGD
	Poorly-Conditioned Least-Squares
	LeNet on MNIST

