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Abstract

Finite-sum minimization, i.e., problems where the objective may be written as the sum over a
collection of instantaneous costs, are ubiquitous in modern machine learning and data science. Ef-
ficient numerical techniques for their solution must trade off per-step complexity with the number
of steps required for convergence. Incremental Quasi-Newton methods (IQN) achieve a favorable
balance of these competing attributes in the sense that their complexity is independent of the sam-
ple size, while their convergence rate can be faster than linear. This local superlinear behavior,
to date, however, is known only asymptotically. In this work, we put forth a new variant of IQN,
specifically of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) type, that incorporates a greedy ba-
sis vector selection step, and admits a non-asymptotic explicit local superlinear rate. To the best of
our knowledge, this is the first time an explicit superlinear rate has been given for Quasi-Newton
methods in the incremental setting.

1. Formulation and Context

Consider the finite-sum minimization problem, where the objective is the sum of a set of loss func-
tions. That is, denote as x € RP the decision variable in p-dimensions and f;(x) : RP — R for
1 = 1,...,n as the constituent costs, which are assumed convex [19]. The goal is to compute the
minimizer x* of the cumulative function f =), fi, i.e.,

1 n
min f(x) = min — ZEZ;fl(x) . (1)
This problem subsumes numerous machine learning problems such as maximum likelihood and
a posteriori estimation (MLE and MAP) [4], support vector machines [9], and various forms of
unsupervised learning when given a fixed finite training data set [18]. Specifically, in empirical
risk minimization for supervise learning, we have access to the training set {(z;,y;)}!"_; and f;(x)
represents the model fitness of x at (z;, y;). The training loss is then the average performance over
training samples.

In this work, we focus on instances of (1) when n may be large-scale, which makes computing
the objective f(x), the gradient V f(x), and the Hessian V2 f(x) computationally intensive. In such
cases, online or incremental algorithms are of interest which are able to operate on only subsets of
functions [3] per step. In particular, a generic incremental method to solve (1) is one in which the
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update takes the form
= xt 4 otdt

where o' > 0 is a scalar step-size and d’ is a (approximate) descent direction on the aggregate cost
f(x) that is computed using only a mini-batch of 1 < B < n samples/functions. In incremental
gradient methods, d’ is selected as the negative gradient direction associated with f;; where the
index is selected uniformly at random from the training indices i’ ~ U{1,...,n} or cyclically.
Doing so, however, results in slow (sublinear) convergence [2] [13]. Efforts to ameliorate this issue
by recursive averaging exist — one may either average the gradient [14, 16] or the decision-variable
[22, 25] in order to achieve faster convergence, specifically, at up to a linear rate.

This behavior is far-surpassed by methods that incorporate second-order information, specifi-
cally Newton’s method. Newton’s method exhibits quadratic convergence in a region, although the
O(n?) computational effort required per step to compute the Hessian (second-derivative matrix)
renders it inoperable when 7 is large. Quasi-Newton schemes in the batch setting approximate the
Hessian inverse in Newton steps [7, 20], which reduces the per-step complexity to O(np?), where
p is the dimension of function variable, and can achieve a rate that is locally superlinear [7, 11].

Germaine to this paper specifically are efforts to alleviate the dependence on the sample size n
entirely via incremental updates [15, 23]. That is, incremental Quasi-Newton schemes can achieve
convergence that is locally superlinear, while having per-step complexity O(p?), which is notably
independent of sample size n. It is for this reason that interest in this family of methods has been
spiking in recent years [1, 8, 17, 21, 27-29]. Their convergence behavior in the incremental setting,
to date, however, is known only in an asymptotic sense, that is, to satisfy the Dennis-Moré condition
[10], which is sufficient for local superlinear convergence [6]. This fact belies superior performance
in practice. In this work, by incorporating a greedy basis vector selection step into incremental
Quasi-Newton updates, we develop a method whose local superlinear rate may be characterized in
an explicit non-asymptotic sense. This greedy step was developed in [24] for batch settings. Here
we generalize it to the incremental setting, and is thus applicable to large-scale ERM (1). All proofs
are deferred to the forthcoming journal version.

2. Incremental Greedy BFGS

We propose the Incremental Greedy BFGS (IGS) method to address (1) for large n. The key as-
pects of that distinguish IGS from its non-incremental (batch) variant is that it is incremental and
aggregated. It is incremental since it only updates the information of a single function selected at
each iteration [2], and it is aggregated since the information of all functions is aggregated and used
to update decision variable [14]. The former saves the cost per iteration, and the latter improves the
variable update progress. We formally state the IGS in the following.

Initialization: Let x" be the initial decision variable, z{ = ... = 2 = xq be initial local variables

associated with loss functions { fi(x)}?_;, and {V f;(z?) }"_, be gradients of { f;(x)}"_; at {z0}™;.
Let also {BY}"_, be initial Hessian approximations satisfying BY = VZ2f;(z}) fori = 1,...,n.
Proceeding from this initialization, the IGS is divided into two steps: variable update and Hessian
approximation update.

Variable update: At iteration ¢, denote as {z}, V f;(z}), B{}? , the local variables, gradients and
Hessian approximations of loss functions { f;(x)}7_,. We update the decision variable x! by jointly
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Figure 1: Incremental greedy BFGS (IGS): At iteration ¢ with a selected index !, local variables, gradients
and Hessian approximations of all functions are aggregated to update the variable x‘** (red arrows). The Hes-
sian approximation B! is updated using the greedy BFGS (blue arrows). The terms z/;"" and V f;: (z/;"!)
are updated as x**1 and V fir (x"1), whereas all other /™" and V f;(z["") are untouched (black arrows).

using such information. In particular, the second order approximation of f;(x) at z! is given by

fi(x) = fil2}) + V filz) " (x —2) + ;(X —2§) "V fi(2) (x — 2}). 2)

By approximating the Hessian V2 f;(z!) with B! and aggregating all loss functions {f;}!_;, the
objective function f(x) is approximated with a second order Taylor’s expansion

0= DU + VA (o) ) PR -]
=1

We define the updated variable x'*! as the minimizer of the quadratic function (3)

n —1 n n
b <711 ; Bg) [711 > Bl - S SAIAC) ®

where local variables, gradients and Hessian approximations of all functions are used for the vari-
able update, in order to reduce the stochastic approximation error. While the update in (4) looks
computationally prohibitive, it can be implemented with complexity independent of n, as we detail
later in this section. We then use x*™! to update local variables {z}. Let i’ be the selected func-
tion index at iteration ¢ in a cyclic scheme. We only update the information of this function while
keeping the others simply unchanged

zf;"l xitL zf*’l = zf for all § # ¢*. &)
Hessian approximation update: We continue to update Hessian approximations following the
same scheme as local variables [cf. (5)]. In other words, the Hessian approximation Bﬁt of the
selected function f;:(x) is updated with the greedy BFGS, while the others are kept as their previous
values. To do so, we first define d' = Hzt'H z;, ||V2ft ‘) and compute Btt =(1+Cyd")B, =

V2fi(z t+1) to well define the greedy BFGS update [24], ‘where - N2y, (2!) is the operator norm
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Algorithm 1: Incremental Greedy BFGS (IGS) Method

Input: Loss functions { f;(x)}!" ;, initial decision vector x, initial Hessian approximations

{BY}7_,, and initial local variables z{ = x° fori = 1,...,n
fort=0,1,...,7 do
Compute gradlents V fi(z!) fori = 1,...,n and update the decision variable

-1
- (Ezileg) [%Zileg ﬁ—aZi:Nfi(ZD];
Select the index i’ and update

f“ = x!*1, t“ = z! for all i # i’;

Compute dt— Hz”1 zl ||, B! =(1+ Cyd")B! and V2 f;e(25);
Select the greedy variable variation
" <Bt u,u>
U = argmaXycfe, ... e,} <V2f;, (2 t“)u =’
Update the Hessian matrix [cf. (7)]

B!/l = BFGS (Bgt,ut,w fu(z u ) B!t = B! forall i £ it ;

end
return :UT;

and C'; is strongly self-concordant constant [cf. (14) in Lemma 1]. We then select the variable
variation u’ greedily

<BLuu>
( t+1) (6)

uu>

ul = argmax 5
uefer,..en} < V2 fit

and compute the corresponding gradient variation y' = V2f(z 1“rl)u This is the key departure
from existing incremental Quasi-Newton schemes which do not employ basis vector selections.
Here {ey,...,e,} denote the coordinate orthogonal basis, that is, e, = [0;---0;1;0---0] € R,

with the k-th entry as the only non-zero. By substituting greedy u’ and y? into the BFGS update
originally defined in [5, 12, 26], we update the Hessian estimate as

mrrio gy, B (W) By V(i (o) T () e
t () TBlu (u) T2 fir (2 u! Z

=Bl foralli #i'. (7)

Thus far we have completed updating zﬁ“ and BEH, and iteration ¢ + 1 follows similarly. Figure 1
shows the processing architecture defined by IGS, which is formally summarized as Algorithm 1.

Efficient implementation: The IGS can be implemented in an efficient manner. In particular, the
IGS requires the computation of (31 ; BY)~1, > | Blz! and Y"1,V f;(z!) to perform the update
(4). Suppose that at iteration ¢, only the information of function f;:(x) is updated such that the latter
two variables can be evaluated for iteration ¢t 4 1 as

> Bif'z" =) Bizj+ Bzl —BlLzl, > Vfi(z)) vaz )+ Vfu (25 —Vfa(2h) (8)
V= =1 =1

such that only Bff Land Vf; (sz 1) are required for computation corresponding to the cost on the
order of O(p?) and O(p), respectively. With respect to evaluating (327, BY1) =1, we first update
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S, Bt similarly as (8)

ZBH ZBt 1B tt_z":Bt,_B;u%ut)TE; | Ve @) Vi )
B P B () TV (2 u!

With (>, BY) ! given at iteration ¢, we can compute (Y1 ; Bﬁ“) ! by applying the Sherman-
Morrison formula twice to (9) as

S B+ . S'(B!,u’)(B,u’)S!
e~ B (ut)TBfut — (Bl,ut)TS{(B,ut)

10)

with

S'—(3"B) - (X5 BY) " Vur (i u' (0) TV (2 (S, BY)
= @)Vl () TV () (S BY) VR (e !

an

Here, (10) and (11) use the preliminary knowledge ( >_7; B}) ~! to update (X, B ~! which
avoids computing the matrix inverse and results in the computation cost O(p?). Together with (8)
and (10), the overall cost of IGS is then O(p?), which is substantially reduced compared to its
O(np?) batch counterpart. Next we shift gears to presenting our convergence results.

3. Convegence Analysis

We shift to presenting our main contribution: the explicit local superlinear convergence of the IGS.
To develop these results, some conditions on the functions { f;(x)}?_; are required, as stated next.

Assumption1 Consider the loss functions { f;(x)}7"_, in (1). There exist positive constants 0 <
w < L such that, foralli =1,...,n and any x,x € RP, it holds that

pllx—%|? < (Vfi(x) = V(%) T (x—%) < L]|x—%]°. (12)

Assumption2 Consider the loss functions {fj(x)}?_, in (1). There exists a positive constant
Cr, > Osuch that, foralli = 1,...,n and any x,%x € RP, it holds that

IV2fi(x) = V2fi(%)]| < Crlx — x]. (13)

Assumption 1 indicates that each loss function f;(x) is strongly convex with respect to p and its
gradient V f;(x) is Lipschitz continuous with respect to L. Assumption 2 implies that the Hessian
V2 f;(x) is Lipschitz continuous with respect to C.. Furthermore, with Assumptions 1-2, we can
refer that the functions { f;(x)}/", are strongly self-concordant formally stated as follows.

Lemma 1 Consider the loss function f(x) satisfying Assumptions 1-2. Then f(x) is strongly self-
concordant, i.e., there exists a constant Cyy >0 such that for any x,X,y,z € RP, it holds that

V2f(x) = V2 f(%) 2 Cullx — X2y V2 S (2). (14)

where || - ||v2f(y) is the the operator norm.
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Lemma 1 states that a strongly convex function with Lipschitz Hessian is strongly self-concordant,
ensuring losses evaluated at distinct variables x and X are smooth.

With these preliminaries addressed, we shift to discussing the convergence. We do so in terms
of the standard criterion ||x! — x*||, where x* is the optimal solution of (1). Our goal is to show the
error sequence ||x! — x*|| generated by the IGS converges to zero at an explicit superlinear rate. We
start by showing a linear convergence rate in the following theorem, based on which we proceed to
prove the non-asymptotic superlinear convergence.

Theorem 2 Consider the IGS method. If Assumptions 1-2 hold, then for any r € (0, 1), there exist
positive constants €(r) > 0 and o(r) > 0 such that if the initialization satisfies |x° — x*|| < e(r)

and tr (szi(z?)_l (B?—Vin(z?))) < o(r)foralli =1,...,n, the error sequence satisfies
It — x| < L5 R0 - (15)

where tr (Vin(z?)_l (B?—Vin(z?))) is the sum of eigenvalues of the Hessian approximation error

BY —V2f,(2)) with respect to the inverse Hessian V*f;(z?) L and |-] is the floor function.

Theorem 2 shows that the error sequence ||x' — x*|| generated by the IGS converges at a linear rate
after each pass over all functions. This is a local linear convergence, i.e., the conditions ||x? —x*|| <
e(r) and tr(V2f; (z9)7 (BY-V2fi(2)))) < o(r) assume that the initialization is close to the optimal.
We employ induction to establish the explicit superlinear rate.

Theorem 3 Consider the same settings as Theorem 2. Let T be the linear rate in (15), D be the
constant depending on loss function properties, and kg be such that (1 — ﬁ)kOD < 1. Then, the
error sequence satisfies

k(k+1)
ot =5 < (=) 75 R — x| (16)
p

where k = | =L ] — ko with || the floor function.

Theorem 3 establishes that the sequence of variables of the IGS converges to the optimal solu-
tion at an explicit superlinear rate after each pass over all functions. Consequently, we obtain that
subsequences { ||z} — x*[|}3¢, for i = 1,...,n converge to zero at explicit superlinear rates.
This extends the results in [24], i.e., the explicit superlinear rate of greedy Quasi-Newton methods,
to the incremental (stochastic) setting in large-scale optimization problems, and establishes that the
stochasticity does not harm its non-asymptotic superlinear convergence nature. It further contrasts

the asymptotic-only incremental superlinear rates presented in [15, 23].
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