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Abstract
Gradient compression is a recent and increasingly polular technique for reducing the communication
cost in distributed training of large-scale machine learning models. In this work we focus on devel-
oping efficient distributed methods that can work for any compressor satisfying a certain contraction
property, which includes both unbiased (after appropriate scaling) and biased compressors such as
RandK and TopK. Applied naively, gradient compression introduces errors that either slow down
convergence or lead to divergence. A popular technique designed to tackle this issue is error com-
pensation/error feedback. Due to the difficulties associated with analyzing biased compressors, it is
not known whether gradient compression with error compensation can be combined with Nesterov’s
acceleration. In this work, we show for the first time that error compensated gradient compression
methods can be accelerated. In particular, we propose and study the error compensated loopless
Katyusha method, and establish an accelerated linear convergence rate under standard assumptions.
We show through numerical experiments that the proposed method converges with substantially
fewer communication rounds than previous error compensated algorithms.

1. Introduction

In this work we consider the composite finite-sum optimization problem

min
x∈Rd

[
P (x) := 1

n

n∑
τ=1

f (τ)(x) + ψ(x)

]
, (1)

where f(x) := 1
n

∑
τ f

(τ)(x) is an average of n smooth1 convex functions f (τ) : Rd → R distributed
over n nodes (devices, computers), and ψ : Rd → R ∪ {+∞} is a proper closed convex function
representing a possibly nonsmooth regularizer. On each node, f (τ)(x) is an average of m smooth
convex functions

f (τ)(x) = 1
m

m∑
i=1

f
(τ)
i (x), (2)

representing the average loss over the training data stored on node τ . While we specifically focus on
the case when m = 1, our results are also new in the m = 1 case, and hence this regime is relevant
as well. We assume throughout that problem (1) has at least one optimal solution x∗. We denote the

1. We say that a function φ : Rd → R is smooth if it is differentiable, and has Lφ Lipschitz gradient: ‖∇φ(x)−φ(y)‖ ≤
Lφ‖x− y‖ for all x, y ∈ Rd. We say that Lφ is the smoothness constant of φ.
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smoothness constants of functions f , f (τ) and f (τ)
i using symbols Lf , L̄ and L, respectively. These

constants are in general related as follows:

Lf ≤ L̄ ≤ nLf , L̄ ≤ L ≤ mL̄. (3)

When training very large scale supervised machine learning problems, such as those arising
in the context of federated learning [13, 14, 20] (see also recent surveys [10, 16]), distributed
algorithms need to be used. In such settings, communication is generally much slower than (local)
computation, which makes communication the key bottleneck in the design of efficient distributed
systems. There are several ways to tackle this issue, including reliance on large mini-batches [7, 33],
asynchronous learning [1, 18, 23], local updates [8, 12, 19, 27, 31] and communication compression
(e.g., quantization and sparsification) [2, 4, 21, 24, 30]. In this work we focus on the last of these
techniques: communication compression.

1.1. Communication compression

Contraction and unbiased compressors. We say that a randomized map Q : Rd → Rd is a
contraction compressor if there exists a constant 0 < δ ≤ 1 such that

E
[
‖x−Q(x)‖2

]
≤ (1− δ)‖x‖2, ∀x ∈ Rd. (4)

Further, we say that a randomized map Q̃ : Rd → Rd is an unbiased compressor if there exists a
constant ω ≥ 0 such that

E[Q̃(x)] = x and E‖Q̃(x)‖2 ≤ (ω + 1)‖x‖2, ∀x ∈ Rd. (5)

It is well known that (see, e.g., [5]) after appropriate scaling, any unbiased compressor satisfying
(5) becomes a contraction compressor. Indeed, for any Q̃ satisfying (5), 1

ω+1Q̃ is a contraction
compressor satisfying (4) with δ = 1

ω+1 , as shown here:

E
[∥∥∥ 1

ω+1Q̃(x)− x
∥∥∥2
]

= 1
(ω+1)2E

[
‖Q̃(x)‖2

]
+ ‖x‖2 − 2

ω+1E
[
〈Q̃(x), x〉

]
≤ 1

ω+1‖x‖
2 + ‖x‖2 − 2

ω+1‖x‖
2 =

(
1− 1

ω+1

)
‖x‖2.

Since compressors are typically applied in a scaled fashion, using a scaling stepsize, this means
that for all practical purposes, the class of unbiased compressors is included in the class of contraction
compressors. For examples of contraction and unbiased compressors, we refer the reader to [5].

1.2. Error compensation

While compression reduces the communicated bits in each communication round, it introduces errors,
which generally leads to an increase in the number of communication rounds needed to find a solution
of any predefined accuracy. Still, compression has been found useful in practice, as the trade-off
often seems to prefer compression to no compression. In order to deal with the errors introduced by
compression, some form of error compensation/error feedback is needed.

If we assume that the accumulated error is bounded, and in the case of unbiased compressors,
the convergence rate of error compensated SGD was shown to be the same as that of vanilla SGD
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[28]. However, if we only assume bounded second moment of the stochastic gradients, in order to
guarantee the boundedness of the accumulated quantization error, some decaying factor needs to be
involved in general, and error compensated SGD is proved to have some advantage over QSGD in
some perspective for convex quadratic problem [32]. On the other hand, for contraction compressors
(for example, the TopK compressor [3]), error compensated SGD actually has the same convergence
rate as vanilla SGD [25, 26, 29]. Since SGD only has a sublinear convergence rate, the current error
compensated methods could not get linear convergence rate. If f is non-smooth and ψ = 0, error
compensated SGD was studied in [11] in the single node case, and the convergence rate is of order
O (1/

√
δk).

For variance-reduced methods, QSVRG [2] handles the smooth case (ψ ≡ 0) and VR-DIANA
[9] handles the composite case (general ψ). However, the compressors of both algorithms need to be
unbiased. Error compensation in VR-DIANA does not need to be used since this method successfully
employs variance reduction (of the variance introduced by the compressor) instead. In this paper,
we study error compensation in conjunction with the acceleration mechanism employed in loopless
Katyusha (L-Katyusha) [15], for any contraction compressor.

1.3. Contributions

We now summarize the main contributions of our work.

Acceleration for error compensation. We develop a new communication efficient algorithm for
solving the distributed optimization problem (1)–(2) which we call Error Compensated Loopless
Katyusha (ECLK); see Algorithm 1. ECLK is the first accelerated error compensated SGD method,
and can be seen as an EC variant of the Loopless Katyusha method developed in [15].

Iteration complexity. We obtain the first accelerated linear convergence rate for error compen-
sated methods using contraction operators. The iteration complexity of ECLK is

O

((
1
δ + 1

p +
√

Lf
µ +

√
L
µpn + 1

δ

√
(1−δ)L̄
µp +

√
(1−δ)L
µpδ

)
log 1

ε

)
,

where p ∈ (0, 1] is a parameter of the method described later. This is an improvement over
the previous best known result for error compensated SGD by Beznosikov et al. [5], who obtain
nonaccelerated linear rate. Moreover, they only consider the special case when ψ ≡ 0, and for their
linear rate, they need to assume that∇f (τ)(x∗) = 0 for all τ , and that full gradients are computed by
all nodes.

If we invoke additional assumptions (Assumption 2.1 or Assumption 2.2) on the contraction
compressor, the iteration complexity is improved to

O

((
1
δ + 1

p +
√

Lf
µ +

√
L
µpn + 1

δ

√
(1−δ)Lf

µp +
√

(1−δ)L
µpδn

)
log 1

ε

)
.

This is indeed an improvement since Lf ≤ L̄ (see (3)), and because of the extra scaling factor of n
in the last term. If δ = 1, i.e., if no compression is used, we recover the iteration complexity of the
accelerated method L-Katyusha [22].
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Communication complexity. Considering the communication complexity, the optimal choice of p
is O(r(Q)), where r(Q) is the compression ratio for the compressor Q defined in (12). In particular,
when Lf = L̄ = L, by choosing the optimal p, the communication complexity becomes

O

(
∆1

(
r(Q)
δ +

(
r(Q) +

√
r(Q)√
n

+

√
(1−δ)r(Q)

δ

)√
L
µ

)
log 1

ε

)
,

where ∆1 is the communication cost of the uncompressed vector x ∈ Rd.

2. Gradient Compression Methods

2.1. TopK and RandK

We now give two canonical examples of contraction and unbiased compression operators.

Example 1 (TopK compressor) For a parameter 1 ≤ K ≤ d, the TopK compressor is defined as

(TopK(x))π(i) =

{
(x)π(i) if i ≤ K,

0 otherwise,

where π is a permutation of {1, 2, ..., d} such that (|x|)π(i) ≥ (|x|)π(i+1) for i = 1, ..., d− 1, and if
(|x|)π(i) = (|x|)π(i+1), then π(i) ≤ π(i+ 1).

The definition of TopK compressor is slightly different with that of [26]. In this way, TopK
compressor is a deterministic operator (well-defined when there are equal dimensions).

Example 2 (RandK compressor) Given 1 ≤ K ≤ d, the RandK compressor is defined as

(RandK(x))i =

{
(x)i if i ∈ S,
0 otherwise,

where S is chosen uniformly from the set of allK element subsets of {1, 2, ..., d}. RandK can be used
to define an unbiased compressor via scaling. Indeed, it is easy to see that E

(
d
KRandK(x)

)
= x

for all x ∈ Rd.

For the TopK and RandK compressors, we have the following property.

Lemma 1 (Lemma A.1 in [26]) For the TopK and RandK compressors with 1 ≤ K ≤ d, we have

E
[
‖TopK(x)− x‖2

]
≤
(
1− K

d

)
‖x‖2, E

[
‖RandK(x)− x‖2

]
≤
(
1− K

d

)
‖x‖2.

2.2. Further assumptions

We will optionally use the following additional assumptions for the contraction compressor. These
assumptions are not necessary, but when used, they will lead to better complexity.

Assumption 2.1 E[Q(x)] = δx and all x ∈ Rd.

It is easy to verify that RandK compressor satisfies Assumption 2.1 with δ = K
d , and 1

ω+1Q̃,
where Q̃ is any unbiased compressor, also satisfies Assumption 2.1 with δ = 1

ω+1 .
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Assumption 2.2 For xτ = η
L1
gkτ + ekτ ∈ Rd, τ = 1, ..., n and k ≥ 0 in Algorithm 1, there exist

δ′ > 0 such that E[Q(xτ )] = Q(xτ ), and
∥∥∥∥ n∑
τ=1

(Q(xτ )− xτ )

∥∥∥∥2

≤ (1− δ′)
∥∥∥∥ n∑
τ=1

xτ

∥∥∥∥2

.

Since TopK is deterministic, we have E[Q(x)] = Q(x) for any x ∈ Rd. If Q(xτ ) is close
to xτ , then δ′ could be larger than K

d . Whenever Assumption 2.2 is needed, if δ > δ′, we could
decrease δ such that δ = min{δ, δ′}. In this way, we have the uniform parameter δ for the contraction
compressor.

3. Error Compensated L-Katyusha

3.1. Description of the method

In this section we describe our method: error compensated L-Katyusha (see Algorithm 1). The
search direction in L-Katyusha in the distributed setting (n ≥ 1) at iteration k is

1
n

n∑
τ=1

(
∇f (τ)

iτk
(xk)−∇f (τ)

iτk
(wk) +∇f (τ)(wk)

)
, (6)

where iτk is sampled uniformly and independently from [m] := {1, 2, ...,m} on the τ -th node for
1 ≤ τ ≤ n, xk is the current iteration, and wk is the current reference point. Whenever ψ is
nonzero in problem (1), ∇f(x∗) is nonzero in general, and so is ∇f (τ)(x∗). Thus, compressing
the direction ∇f (τ)

iτk
(xk) − ∇f (τ)

iτk
(wk) + ∇f (τ)(wk) directly on each node would cause nonzero

noise even if xk and wk converged to the optimal solution x∗. On the other hand, since f (τ)
i is

L-smooth, gkτ = ∇f (τ)
iτk

(xk)−∇f (τ)
iτk

(wk) could be small if xk and wk are close enough. Thus, we

compress the vector η
L1
gkτ + ekτ on each node instead. The accumulated error ek+1

τ is equal to the
compression error at iteration k for each node. On each node, a scalar ukτ is also maintained, and
only uk1 will be updated. The summation of ukτ is uk, and we use uk to control the update frequency
of the reference point wk. All nodes maintain the same copies of xk, wk, yk, zk, g̃k, and uk. Each
node sends their compressed vector g̃kτ = Q( η

L1
gkτ + ekτ ) and uk+1

τ to the other nodes. If uk = 1,
each node also sends ∇f (τ)(wk) to the other nodes. After the compressed vector g̃kτ is received,
we add η

L1
∇f(wk) to it as the search direction. We also need the following standard proximal

operator: proxηψ(x) := arg miny
{

1
2‖x− y‖

2 + ηψ(y)
}
. The reference point wk will be updated

if uk+1 = 1. It is easy to see that wk will be updated with propobility p at each iteration.

3.2. Convergence analysis: preliminaries

We now introduce some perturbed vectors which will be used in the convergence analysis. In
Algorithm 1, let ek = 1

n

∑n
τ=1 e

k
τ , gk = 1

n

∑n
τ=1 g

k
τ , and x̃k = xk − 1

1+ησ1
ek, z̃k = zk − 1

1+ησ1
ek
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Algorithm 1: Error Compensated Loopless Katyusha (ECLK)

Parameters: stepsize parameters η = 1
3θ1

> 0, L1 > 0, σ1 =
µf
2L1
≥ 0, θ1, θ2 ∈ (0, 1);

probability p ∈ (0, 1]
Initialization: x0 = y0 = z0 = w0 ∈ Rd; e0

τ = 0 ∈ Rd; u0 = 1 ∈ R
for k = 0, 1, 2, ... do

for τ = 1, ..., n do
Sample iτk uniformly and independently in [m] on each node
gkτ = ∇f (τ)

iτk
(xk)−∇f (τ)

iτk
(wk), g̃kτ = Q( η

L1
gkτ + ekτ ), ek+1

τ = ekτ + η
L1
gkτ − g̃kτ

uk+1
τ = 0 for τ = 2, ..., n , uk+1

1 =

{
1 with probability p
0 with probability 1− p

Send g̃kτ and uk+1
τ to the other nodes. Send∇f (τ)(wk) to the other nodes if uk = 1

Receive g̃kτ and uk+1
τ from the other nodes. Receive∇f (τ)(wk) from the other nodes if

uk = 1
end
g̃k = 1

n

∑n
τ=1 g̃

k
τ , uk+1 =

∑n
τ=1 u

k+1
τ

zk+1 = prox η
(1+ησ1)L1

ψ

(
1

1+ησ1

(
ησ1x

k + zk − g̃k − η
L1
∇f(wk)

))
yk+1 = xk + θ1(zk+1 − zk), wk+1 =

{
yk if uk+1 = 1
wk otherwise

xk+1 = θ1z
k+1 + θ2w

k+1 + (1− θ1 − θ2)yk+1

end

for k ≥ 0. Then ek+1 = 1
n

∑n
τ=1

(
ekτ + η

L1
gkτ − g̃kτ

)
= ek + η

L1
gk − g̃k, and

z̃k+1 = zk+1 − 1
1+ησ1

ek+1

= 1
1+ησ1

(
ησ1x

k + zk − g̃k − η
L1
∇f(wk)

)
− η∂ψ(zk+1

(1+ησ1)L1
)− ek+1

1+ησ1

= 1
1+ησ1

(
ησ1x

k + zk − ek − η
L1
gk − η

L1
∇f(wk)

)
− η∂ψ(zk+1)

(1+ησ1)L1

= 1
1+ησ1

(
ησ1x̃

k + z̃k − η
L1
gk − η

L1
∇f(wk)

)
− η∂ψ(zk+1)

(1+ησ1)L1
. (7)

The above relation plays an important role in the convergence analysis, and allows us to follow
the analysis of original L-Katyusha. We need the following assumption in this section.

Assumption 3.1 f
(τ)
i is L-smooth, f (τ) is L̄-smooth, f is Lf -smooth and µf -strongly convex, and

ψ is µψ-strongly convex. µf ≥ 0, µψ ≥ 0, and µ = µf + µψ > 0.

We define some notations which will be used to construct the Lyapunov functions in the
convergence analysis. Define Z̃k = L1+ηµ/2

2η ‖z̃k − x∗‖2, Yk = 1
θ1

(P (yk) − P ∗), and Wk =
θ2
pqθ1

(P (wk)− P ∗). From the update rule of wk in Algorithm 1, it is easy to see that

Ek[Wk+1] = (1− p)Wk + θ2
q Y

k, (8)

for k ≥ 0. In the next lemma, we describe the evolution of the terms Z̃k and Yk.
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Lemma 2 If L1 ≥ Lf and θ1 + θ2 ≤ 1, then Ek
[
Z̃k+1 + Yk+1

]
can be upper bounded by

L1Z̃k
L1+ηµ/2 + (1− θ1 − θ2)Yk + pqWk +

(
L1
2η +

µf
2

)
‖ek‖2 +

(
L1
2η + µ

2

)
Ek‖ek+1‖2

− 1
θ1

(
θ2 − 2L

nL1

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

Because of the compression, we have the additional error terms ‖ek‖2 and ‖ek+1‖2 in the
evolution of Z̃k and Yk in Lemma 2. However, from the contraction property of the compressor, we
can obtain inequalities controlling the evolution of 1

n

∑n
τ=1 ‖ekτ‖2 and ‖ek‖2 in the following two

lemmas.

Lemma 3 Th quantity Ek
[

1
n

n∑
τ=1
‖ek+1
τ ‖2

]
is upper bounded by the expression

(
1− δ

2

)
1
n

n∑
τ=1
‖ekτ‖2 + 2(1−δ)η2

L2
1

(
2L̄
δ + L

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

Lemma 4 Under Assumption 2.1 or 2.2, the quantity Ek[‖ek+1‖2] is upper bounded by(
1− δ

2

)
‖ek‖2 + 2(1−δ)δ

n2

n∑
τ=1
‖ekτ‖2 + 2(1−δ)η2

L2
1

(
2Lf
δ + 3L

n

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

3.3. Convergence analysis: main results

From the above three lemmas, we can construct suitable Lyapunov functions which enable us to
prove linear convergence. First, we construct the Lyapunov function Ψk for the general case as
follows. Let L2 := 4L

n + 112(1−δ)L̄
9δ2 + 56(1−δ)L

9δ , and for k ≥ 0 define

Φk := Z̃k + Yk +Wk + 4L1
δη ·

1
n

n∑
τ=1
‖ekτ‖2.

We are now ready to state our main convergence theorems.

Theorem 5 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assump-
tion 3.1 holds. If L1 ≥ max{Lf , 3µη}, θ1 + θ2 ≤ 1, and θ2 ≥ L2

2L1
, then we have

E
[
Φk
]
≤
(

1−min
(

µ
µ+6θ1L1

, θ1 + θ2 − θ2
q , p(1− q),

δ
6

))k
Φ0, ∀k ≥ 0.

If Assumption 2.1 or Assumption 2.2 holds, we can define the Lyapunov function Ψk as follows.
Let L3 := 4L

n +
784(1−δ)Lf

9δ2 + 56(1−δ)L
δn , and for k ≥ 0 define

Ψk := Z̃k + Yk +Wk + 4L1
δη ‖e

k‖2 + 28L1(1−δ)
δηn · 1

n

∑n
τ=1 ‖ekτ‖2,

Theorem 6 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assump-
tion 3.1 holds. Assume Assumption 2.1 or Assumption 2.2 holds. IfL1 ≥ max{Lf , 3µη}, θ1+θ2 ≤ 1,
and θ2 ≥ L3

2L1
, then we have

E
[
Ψk
]
≤
(

1−min
(

µ
µ+6θ1L1

, θ1 + θ2 − θ2
q , p(1− q),

δ
6

))k
Ψ0, ∀k ≥ 0.

7
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In order to cast the above results into a more digestable form, we formulate the following
corollary.

Corollary 7 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assump-
tion 3.1 holds. Let L1 = max (L4, Lf , 3µη), θ2 = L4

2 max{Lf ,L4} and

θ1 =


min

(√
µ
L4p

θ2, θ2

)
if Lf ≤ L4

p

min

(√
µ
Lf
, p2

)
otherwise

.

(i) Let L4 = L2. Then with some q ∈ [2
3 , 1), E[Φk] ≤ εΦ0 for

k ≥ O
((

1
δ + 1

p +
√

Lf
µ +

√
L
µpn + 1

δ

√
(1−δ)L̄
µp +

√
(1−δ)L
µpδ

)
log 1

ε

)
. (9)

(ii) Let L4 = L3. If Assumption 2.1 or 2.2 holds, then for some q ∈ [2
3 , 1), we have E[Ψk] ≤ εΨ0

for

k ≥ O
((

1
δ + 1

p +
√

Lf
µ +

√
L
µpn + 1

δ

√
(1−δ)Lf

µp +
√

(1−δ)L
µpδn

)
log 1

ε

)
. (10)

Noticing that Lf ≤ L̄ ≤ nLf and L̄ ≤ L ≤ mL̄, the iteration complexity in (10) could be better
than that in (9). On the other hand, if Lf = L̄ = L, then both iteration complexities in (9) and (10)
become

O

((
1
δ + 1

p +
√

L
µ +

√
L
µpn + 1

δ

√
(1−δ)L
µp

)
log 1

ε

)
. (11)
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[13] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated
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Appendix A. Experiments
In this section, we experimentally study the performance of error compensated L-Katyusha used with several contraction
compressors on the logistic regression problem for binary classification:

x 7→ log
(

1 + exp(−yiATi x)
)

+
λ

2
‖x‖2,

where {Ai, yi} is the data point. We use two datasets, namely, a5a and mushrooms from the LIBSVM library [6]. The
regularization parameter λ = 10−3. The number of nodes in our experiments is 20, and the optimal solution is obtained
by running the uncompressed L-Katyusha for 105 iterations. We use the parameter setting in Corollary 7 (ii). We calculate
the theoretical Lf and L as Lthf and Lth respectively. Then we choose Lf = t · Lthf and L = t · Lth, and search the best
t for t ∈ {10−k|k = 0, 1, 2...} in each case.

Compressors. In our experiments, we use two contraction compressors: TopK compressor with K = 1 and
compressor 1

ω+1
Q̃, where Q̃ is the unbiased random dithering compressor in [2] with level s = 21. For TopK compressor,

r(Q) = K(64+dlog de)
64d

. For random dithering compressor, from Theorem 3.2 in [2], we can get

r(Q) = 1
64d

((
3 +

(
3
2

+ o(1)
)

log
(

2(s2+d)

s(s+
√
d)

))
s(s+

√
d) + 64

)
.

A.1. TopK vs Random dithering vs No compression
In this subsection, we compare the uncompressed L-Katyusha with the error compensated L-Katyusha with two contraction
compressors: TopK compressor and random dithering compressor. For simplicity, we choose p = r(Q), and explore the
influence of p in the next subsection. Figure 5 and figure 6 show the iteration complexity and communication complexity
of them respectively. We can see that compared with the uncompressed L-Katyusha, the error compensated L-Katyusha
with TopK and random dithering compressors need more iterations to reach the optimal solution, but need much less
communication bits. In particular, the error compensated L-Katyusha with Top1 compressor is more than 10 times faster
than the umcompressed L-Katyusha considering the communication complexity.

A.2. Influence of p
In this subsection, we show the influence of the parameter p for the communication complexity of the error compensated
L-Katyusha with TopK and random dithering compressors respectively. We choose p = t · r(Q) for t ∈

{
3, 1, 1

3
, 1

9

}
.

Figure 1 shows that p = r(Q) or p = 1
3
r(Q) achieves the best performance, which coincides with our analysis in Section

B.

A.3. Comparison to ECSGD and ECGD
In this subsection, we compare error compensated L-Katyusha (ECLK) with error compensated SGD (ECSGD) and error
compensated GD (ECGD) for TopK compressor and random dithering compressor. ECGD is actually a special case of
ECSGD with m = 1, where the full gradient∇f (τ)(xk) is calculated on each node. Let ECLK-full be the special case
of ECLK with m = 1, where the full gradient∇f (τ)(xk) is calculated on each node. For ECLK, we choose p = r(Q).
Figure 2 and Figure 3 show that ECSGD and ECGD can only converge to a neighborhood of the optimal solution, while
ECLK and ECLK-full converge to the optimal solution, and at a linear rate.

A.4. Comparison to ADIANA
ADIANA [17] is an accelerated method for any unbiased compressor where the full gradient is used on each node. In this
subsection, we compare the EC-LKatyusha-full with ADIANA. For the unbiased compressor Q̃ for ADIANA, we use
random dithering compressor with s = 2 and s =

√
d. For the contraction compressor, we use TopK compressor with

K = 1 and 1
ω+1

Q̃ where Q̃ is the random dithering compressor with s = 2 and s =
√
d. Figure 4 shows that for the

communication complexity, the EC-LKatyusha-full with Top1 compressor is the best. For the random dithering compressor
with s = 2 or s =

√
d, the communication complexity of EC-LKatyusha-full is also better than that of ADIANA.

12



ERROR COMPENSATED DISTRIBUTED SGD CAN BE ACCELERATED

0 5 10 15 20 25 30
communication bits (unit: 1 × 105 bits)

10 15

10 12

10 9

10 6

10 3

100

f(x
k )

f(x
* )

Top k=1 (a5a)
data: a5a

p = 3r(Q)
p = r(Q)
p = r(Q)/3
p = r(Q)/9

0 20 40 60 80 100 120
communication bits (unit: 1 × 105 bits)

10 15

10 12

10 9

10 6

10 3

100

f(x
k )

f(x
* )

Random dithering 1-bit (a5a)
data: a5a

p = 3r(Q)
p = r(Q)
p = r(Q)/3
p = r(Q)/9

0 5 10 15 20 25 30
communication bits (unit: 1 × 105 bits)

10 16

10 13

10 10

10 7

10 4

10 1

f(x
k )

f(x
* )

Top k=1 (mushrooms)
data: mushrooms

p = 3r(Q)
p = r(Q)
p = r(Q)/3
p = r(Q)/9

0 10 20 30 40 50 60 70
communication bits (unit: 1 × 105 bits)

10 16

10 13

10 10

10 7

10 4

10 1

f(x
k )

f(x
* )

Random dithering 1-bit (mushrooms)
data: mushrooms

p = 3r(Q)
p = r(Q)
p = r(Q)/3
p = r(Q)/9

Figure 1: The influence of p for the communication complexity performance of Top k=1 and Random
dithering 1-bit for the error compensated L-Katyusha on a5a and mushrooms datasets.
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Figure 2: The communication complexity performance of ECSGD vs ECGD vs EC-LKatyusha vs
EC-LKatyusha-full for Top k=1 on a5a and mushrooms datasets.

Appendix B. Communication Cost
Optimal choice of p. In Algorithm 1, when wk is updated, the uncompressed vector ∇f (τ)(wk) need to be
communicated. We denote ∆1 as the communication cost of the uncompressed vector x ∈ Rd. Define the compress ratio
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Figure 3: The communication complexity performance of ECSGD vs ECGD vs EC-LKatyusha vs
EC-LKatyusha-full for Random dithering 1-bit on a5a and mushrooms datasets.
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Figure 4: The communication complexity performance of EC-LKatyusha-full vs ADIANA on a5a
and mushrooms datasets.

r(Q) for the contraction compressor Q as

r(Q) := sup
x∈Rd

{
E
[

communication cost of Q(x)

∆1

]}
. (12)

Denote the total expected communication cost for k iterations as Tk. The expected communication cost at iteration k ≥ 1
is bounded by ∆1r(Q) + 1 + p∆1, where 1 bit is needed to communicate uk+1

τ , and the expected communication cost at
iteration k = 0 is bounded by ∆1r(Q) + 1 + ∆1. Hence,

Tk ≤ ∆1r(Q) + 1 + ∆1 + (∆1r(Q) + 1 + p∆1)k

≤ ∆1r(Q) + 1 + ∆1 + (∆1r(Q) + 1)
(

1 + p
r(Q)

)
k. (13)

Next, we discuss how to choose p to minimize the total expected communication cost. From Corollary 7 (i) and (13),
we have E[Φk] ≤ εΦ0 for

Tk = O
(

(∆1r(Q) + 1)
(

1 + p
r(Q)

)(
a+ 1

p
+ b√

p

)
log 1

ε

)
= O

(
(∆1r(Q) + 1)

(
a+ pa

r(Q)
+ 1

p
+ 1

r(Q)
+ b√

p
+

b
√
p

r(Q)

)
log 1

ε

)
,
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Figure 5: The iteration complexity performance of Top k=1 vs Random dithering 1-bit vs No
compression for the error compensated L-Katyusha on a5a and mushrooms datasets.
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Figure 6: The communication complexity performance of TopK (with K = 1) vs Random dithering
1-bit vs No compression for the error compensated L-Katyusha on a5a and mushrooms datasets.

where we denote a = 1
δ

+
√

Lf
µ

and b =
√

L
µn

+ 1
δ

√
(1−δ)L̄
µ

+
√

(1−δ)L
µδ

. Noticing that b√
p

+
b
√
p

r(Q)
≥ 2b√

r(Q)
, we have

O
(
a+ pa

r(Q)
+ 1

p
+ 1

r(Q)
+ b√

p
+

b
√
p

r(Q)

)
≥ O

(
a+ 1

r(Q)
+ b√

r(Q)

)
,

and the above lower bound holds for p = O(r(Q)). Hence, in order to minimize the total expected communication cost,
the optimal choice of p is O(r(Q)).

Under Assumption 2.1 or 2.2, from Corollary 7 (ii), by the same analysis, in order to minimize the total expected
communication cost for E[Ψk] ≤ εΨ0, the optimal choice of p is also O(r(Q)).

Comparison to the uncompressed L-Katyusha. For simplicity, we assume Lf = L̄ = L and ∆1r(Q) ≥
O(1). From (11) and (13), by choosing p = O(r(Q)), we have

Tk = O

(
∆1

(
r(Q)
δ

+

(
r(Q) +

√
r(Q)
√
n

+

√
(1−δ)r(Q)

δ

)√
L
µ

)
log 1

ε

)
. (14)

For uncompressed L-Katyusha, by choosing p = 1, we have

Tk = O
(

∆1

√
L
µ

log 1
ε

)
. (15)

If
√
r(Q)

δ
< 1, then the communication cost in (14) is less than that in (15). For TopK compressor, r(Q) = K(64+dlog de)

64d
,

and in practice δ can be much larger than K
d

, sometimes even in order O(1).

Appendix C. Lemmas
We bound the varaince of gk in the following lemma.

15



ERROR COMPENSATED DISTRIBUTED SGD CAN BE ACCELERATED

Lemma 8 We have

Ek
[
‖gk +∇f(wk)−∇f(xk)‖2

]
≤ 2L

n

(
f(wk)− f(xk)− 〈∇f(xk), wk − xk〉

)
. (16)

Proof
Since f (τ)

i is L-smooth, we have

‖∇f (τ)
i (x)−∇f (τ)

i (y)‖2 ≤ 2L(f
(τ)
i (x)− f (τ)

i (y)− 〈∇f (τ)
i (y), x− y〉),

for any x, y ∈ Rd. Therefore,

Ek
[
‖gk +∇f(wk)−∇f(xk)‖2

]
= Ek‖gk‖2 − ‖∇f(xk)−∇f(wk)‖2

= Ek

∥∥∥∥∥ 1

n

n∑
τ=1

gkτ

∥∥∥∥∥
2

− ‖∇f(xk)−∇f(wk)‖2

=
1

n2
Ek

〈
n∑
τ=1

gkτ ,

n∑
τ=1

gkτ

〉
− ‖∇f(xk)−∇f(wk)‖2

=
1

n2

n∑
τ1,τ2=1

Ek
〈
gkτ1 , g

k
τ2

〉
− ‖∇f(xk)−∇f(wk)‖2

=
1

n2

n∑
τ=1

Ek‖gkτ ‖2 − ‖∇f(xk)−∇f(wk)‖2

+
1

n2

∑
τ1 6=τ2

〈
∇f (τ1)(xk)−∇f (τ1)(wk),∇f (τ2)(xk)−∇f (τ2)(wk)

〉
=

1

n2

n∑
τ=1

Ek‖gkτ ‖2 −
1

n2

n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2

≤ 1

n2

n∑
τ=1

Ek‖gkτ ‖2

≤ 2L

n2

n∑
τ=1

Ek
(
f

(τ)
iτ
k

(wk)− f (τ)
iτ
k

(xk)− 〈∇f (τ)
iτ
k

(xk), wk − xk〉
)

=
2L

n

(
f(wk)− f(xk)− 〈∇f(xk), wk − xk

)
.

Lemma 9 If L1 ≥ Lf , then we have

L1

4η
‖zk+1−zk‖2 +〈gk+∇f(wk), zk+1−zk〉 ≥ 1

θ1

(
f(yk+1)− f(xk)

)
− 1

L1θ1
‖gk+∇f(wk)−∇f(xk)‖2. (17)

Proof
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Since zk+1 − zk = 1
θ1

(yk+1 − xk), we have

L1

4η
‖zk+1 − zk‖2 + 〈gk +∇f(wk), zk+1 − zk〉 =

L1

4ηθ2
1

‖yk+1 − xk‖2 +
1

θ1
〈gk +∇f(wk), yk+1 − xk〉

=
1

θ1
〈∇f(xk), yk+1 − xk〉+

3L1

4θ1
‖yk+1 − xk‖2

+
1

θ1
〈gk +∇f(wk)−∇f(xk), yk+1 − xk〉

≥ 1

θ1

(
f(yk+1)− f(xk)

)
+

(
3L1

4θ1
− Lf

2θ1

)
‖yk+1 − xk‖2

+
1

θ1
〈gk +∇f(wk)−∇f(xk), yk+1 − xk〉

≥ 1

θ1

(
f(yk+1)− f(xk)

)
+
L1

4θ1
‖yk+1 − xk‖2

+
1

θ1
〈gk +∇f(wk)−∇f(xk), yk+1 − xk〉

≥ 1

θ1

(
f(yk+1)− f(xk)

)
− 1

L1θ1
‖gk +∇f(wk)−∇f(xk)‖2,

where the first inequality comes from Lf -smoothness of f , and the last inequality comes from Young’s inequality.

Lemma 10 We have

〈gk +∇f(wk), x∗ − zk+1〉+
µf
2
‖xk − x∗‖2 ≥ L1

4η
‖zk − zk+1‖2 + Z̃k+1 − L1Z̃k

L1 + ηµ/2
−
(
L1

2η
+
µf
2

)
‖ek‖2

−
(
L1

2η
+
µ

2

)
‖ek+1‖2 + ψ(zk+1)− ψ(x∗). (18)

Proof
First, from (7) and σ1 =

µf
2L1

, we have

gk +∇f(wk) =
L1

η
(z̃k − z̃k+1) + L1σ1(x̃k − z̃k+1)− ∂ψ(zk+1)

=
L1

η
(z̃k − z̃k+1) +

µf
2

(x̃k − z̃k+1)− ∂ψ(zk+1),
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which implies that

〈gk +∇f(wk), zk+1 − x∗〉 =
µf
2
〈zk+1 − x∗, x̃k − z̃k+1〉+

L1

η
〈zk+1 − x∗, z̃k − z̃k+1〉

−〈zk+1 − x∗, ∂ψ(zk+1)〉

≤ µf
2
〈zk+1 − x∗, x̃k − z̃k+1〉+

L1

η
〈zk+1 − x∗, z̃k − z̃k+1〉

+ψ(x∗)− ψ(zk+1)− µψ
2
‖zk+1 − x∗‖2

=
µf
2
〈z̃k+1 − x∗, x̃k − z̃k+1〉+

L1

η
〈z̃k+1 − x∗, z̃k − z̃k+1〉

+ψ(x∗)− ψ(zk+1)− µψ
2
‖zk+1 − x∗‖2

+
µf
2
〈zk+1 − z̃k+1, x̃k − z̃k+1〉+

L1

η
〈zk+1 − z̃k+1, z̃k − z̃k+1〉

=
µf
4

(
‖x̃k − x∗‖2 − ‖z̃k+1 − x∗‖2 − ‖x̃k − z̃k+1‖2

)
+
L1

2η

(
‖z̃k − x∗‖2 − ‖z̃k+1 − x∗‖2 − ‖z̃k − z̃k+1‖2

)
+
µf
4

(
‖zk+1 − z̃k+1‖2 + ‖x̃k − z̃k+1‖2 − ‖x̃k − zk+1‖2

)
+
L1

2η

(
‖zk+1 − z̃k+1‖2 + ‖z̃k − z̃k+1‖2 − ‖z̃k − zk+1‖2

)
+ψ(x∗)− ψ(zk+1)− µψ

2
‖zk+1 − x∗‖2

≤ −
(
L1

2η
+
µf
4

)
‖z̃k+1 − x∗‖2 +

L1

2η
‖z̃k − x∗‖2 +

µf
4
‖x̃k − x∗‖2

+

(
L1

2η
+
µf
4

)
‖zk+1 − z̃k+1‖2 − L1

2η
‖z̃k − zk+1‖2

+ψ(x∗)− ψ(zk+1)− µψ
2
‖zk+1 − x∗‖2.

For ‖x̃k − x∗‖2, ‖z̃k − zk+1‖2, and ‖zk+1 − x∗‖2, from Young’s inequality, we have

‖x̃k − x∗‖2 ≤ 2‖x̃k − xk‖2 + 2‖xk − x∗‖2, ‖z̃k − zk+1‖2 ≥ 1

2
‖zk − zk+1‖2 − ‖zk − z̃k‖2,

and
‖zk+1 − x∗‖2 ≥ 1

2
‖z̃k+1 − x∗‖2 − ‖zk+1 − z̃k+1‖2.

18
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Hence, we arrive at

〈gk +∇f(wk), zk+1 − x∗〉 ≤ −
(
L1

2η
+
µf
4

+
µψ
4

)
‖z̃k+1 − x∗‖2 +

L1

2η
‖z̃k − x∗‖2 +

µf
2
‖xk − x∗‖2

+
µf
2
‖x̃k − xk‖2 +

(
L1

2η
+
µf
4

+
µψ
2

)
‖zk+1 − z̃k+1‖2

−L1

4η
‖zk − zk+1‖2 +

L1

2η
‖zk − z̃k‖2 + ψ(x∗)− ψ(zk+1)

= −
(
L1

2η
+
µ

4

)
‖z̃k+1 − x∗‖2 +

L1

2η
‖z̃k − x∗‖2 +

µf
2
‖xk − x∗‖2

+

(
L1

2η
+
µf
2

)
‖ek‖2 +

(
L1

2η
+
µ

2

)
‖ek+1‖2

−L1

4η
‖zk − zk+1‖2 + ψ(x∗)− ψ(zk+1)

= −Z̃k+1 +
L1Z̃k

L1 + ηµ/2
+
µf
2
‖xk − x∗‖2 +

(
L1

2η
+
µf
2

)
‖ek‖2

+

(
L1

2η
+
µ

2

)
‖ek+1‖2 − L1

4η
‖zk − zk+1‖2 + ψ(x∗)− ψ(zk+1).

Appendix D. Proofs of Lemmas 2, 3, and 4

D.1. Proof of Lemma 2
Since θ1 + θ2 ≤ 1, and f is µf -strong convex, we have

f(x∗) ≥ f(xk) + 〈∇f(xk), x∗ − xk〉+
µf
2
‖xk − x∗‖2

= f(xk) +
µf
2
‖xk − x∗‖2 + 〈∇f(xk), x∗ − zk + zk − xk〉

= f(xk) +
µf
2
‖xk − x∗‖2 + 〈∇f(xk), x∗ − zk〉+

θ2

θ1
〈∇f(xk), xk − wk〉+

1− θ1 − θ2

θ1
〈∇f(xk), xk − yk〉

≥ f(xk) +
θ2

θ1
〈∇f(xk), xk − wk〉+

1− θ1 − θ2

θ1
(f(xk)− f(yk))

+Ek
[µf

2
‖xk − x∗‖2 + 〈gk +∇f(wk), x∗ − zk+1〉+ 〈gk +∇f(wk), zk+1 − zk〉

]
,

where the last inequality follows from the convexity of f and Ek[gk +∇f(wk)] = ∇f(xk). For the last term in the above
inequality, we have

Ek
[µf

2
‖xk − x∗‖2 + 〈gk +∇f(wk), x∗ − zk+1〉+ 〈gk +∇f(wk), zk+1 − zk〉 − ψ(zk+1) + ψ(x∗)− Z̃k+1

]
(18)

≥ − L1Z̃k

L1 + ηµ/2
+ Ek

[
〈gk +∇f(wk), zk+1 − zk〉+

L1

4η
‖zk − zk+1‖2

]
−
(
L1

2η
+
µf
2

)
‖ek‖2 −

(
L1

2η
+
µ

2

)
Ek‖ek+1‖2

(17)

≥ − L1Z̃k

L1 + ηµ/2
−
(
L1

2η
+
µf
2

)
‖ek‖2 −

(
L1

2η
+
µ

2

)
Ek‖ek+1‖2

+Ek
[

1

θ1
(f(yk+1)− f(xk))− 1

L1θ1
‖gk +∇f(wk)−∇f(xk)‖2

]
(16)

≥ − L1Z̃k

L1 + ηµ/2
−
(
L1

2η
+
µf
2

)
‖ek‖2 −

(
L1

2η
+
µ

2

)
Ek‖ek+1‖2

+Ek
[

1

θ1
(f(yk+1)− f(xk))− 2L

nL1θ1
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

]
.
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Therefore,

Ek
[
f(x∗)− ψ(zk+1) + ψ(x∗)− Z̃k+1

]
+

(
L1

2η
+
µf
2

)
‖ek‖2 +

(
L1

2η
+
µ

2

)
Ek‖ek+1‖2

≥ − L1Z̃k

L1 + ηµ/2
− 1− θ1 − θ2

θ1
f(yk) +

1

θ1
Ek[f(yk+1)]− θ2

θ1

(
f(xk) + 〈∇f(xk), wk − xk〉

)
− 2L

nL1θ1
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

= − L1Z̃k

L1 + ηµ/2
− 1− θ1 − θ2

θ1
f(yk) +

1

θ1
Ek[f(yk+1)]− θ2

θ1
f(wk)

+
1

θ1

(
θ2 −

2L

nL1

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

From the convexity of ψ, and

yk+1 = xk + θ1(zk+1 − zk) = θ1z
k+1 + θ2w

k + (1− θ1 − θ2)yk,

we have
ψ(zk+1) ≥ 1

θ1
ψ(yk+1)− θ2

θ1
ψ(wk)− 1− θ1 − θ2

θ1
ψ(yk).

Hence, we can obtain

P (x∗) +

(
L1

2η
+
µf
2

)
‖ek‖2 +

(
L1

2η
+
µ

2

)
Ek‖ek+1‖2 ≥ Ek[Z̃k+1]− L1Z̃k

L1 + ηµ/2
− 1− θ1 − θ2

θ1
P (yk)

+
1

θ1
Ek[P (yk+1)]− θ2

θ1
P (wk)

+
1

θ1

(
θ2 −

2L

nL1

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

After rearranging we can get the result.

D.2. Proof of Lemma 3
First, we have

Ek[‖ek+1
τ ‖2] = Ek

∥∥∥∥ekτ +
η

L1
gkτ − g̃kτ

∥∥∥∥2

≤ (1− δ)Ek
∥∥∥∥ekτ +

η

L1
gkτ

∥∥∥∥2

= (1− δ)
∥∥∥∥ekτ +

η

L1
(∇f (τ)(xk)−∇f (τ)(wk))

∥∥∥∥2

+
η2

L2
1

(1− δ)Ek‖gkτ − (∇f (τ)(xk)−∇f (τ)(wk))‖2

≤ (1− δ)(1 + β)‖ekτ‖2 + (1− δ)
(

1 +
1

β

)
η2

L2
1

‖∇f (τ)(xk)−∇f (τ)(wk)‖2

+
η2

L2
1

(1− δ)Ek‖gkτ − (∇f (τ)(xk)−∇f (τ)(wk))‖2

≤
(

1− δ

2

)
‖ekτ‖2 +

2(1− δ)η2

δL2
1

‖∇f (τ)(xk)−∇f (τ)(wk)‖2

+
η2

L2
1

(1− δ)Ek‖gkτ − (∇f (τ)(xk)−∇f (τ)(wk))‖2,

where we choose β = δ
2(1−δ) when δ < 1. When δ = 1, it is easy to see the above inequality also holds. Since

Ek‖gkτ − (∇f (τ)(xk)−∇f (τ)(wk))‖2 ≤ Ek‖gkτ ‖2

≤ 2LEk(f
(τ)
iτ
k

(wk)− f (τ)
iτ
k

(xk)− 〈∇f (τ)
iτ
k

(xk), wk − xk〉)

= 2L(f (τ)(wk)− f (τ)(xk)− 〈∇f (τ)(xk), wk − xk〉),
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and
‖∇f (τ)(xk)−∇f (τ)(wk)‖2 ≤ 2L̄(f (τ)(wk)− f (τ)(xk)− 〈∇f (τ)(xk), wk − xk〉),

we arrive at

Ek[‖ek+1
τ ‖2] ≤

(
1− δ

2

)
‖ekτ‖2 +

2(1− δ)η2

L2
1

(
2L̄

δ
+ L

)
(f (τ)(wk)− f (τ)(xk)− 〈∇f (τ)(xk), wk − xk〉).

Therefore,

Ek

[
1

n

n∑
τ=1

‖ek+1
τ ‖2

]
≤

(
1− δ

2

)
1

n

n∑
τ=1

‖ekτ‖2

+
2(1− δ)η2

L2
1

(
2L̄

δ
+ L

)
1

n

n∑
τ=1

(f (τ)(wk)− f (τ)(xk)− 〈∇f (τ)(xk), wk − xk〉)

=

(
1− δ

2

)
1

n

n∑
τ=1

‖ekτ‖2 +
2(1− δ)η2

L2
1

(
2L̄

δ
+ L

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

D.3. Proof of Lemma 4
Under Assumption 2.1, we have E[Q(x)] = δx, and

Ek‖ek+1‖2 = Ek

∥∥∥∥∥ 1

n

n∑
τ=1

ek+1
τ

∥∥∥∥∥
2

=
1

n2

∑
i,j

Ek〈ek+1
i , ek+1

j 〉

=
1

n2

n∑
τ=1

Ek‖ek+1
τ ‖2 +

1

n2

∑
i 6=j

Ek〈ek+1
i , ek+1

j 〉

≤ 1− δ
n2

n∑
τ=1

Ek
∥∥∥∥ekτ +

η

L1
gkτ

∥∥∥∥2

+
(1− δ)2

n2

∑
i 6=j

Ek
〈
eki +

η

L1
gki , e

k
j +

η

L1
gkj

〉

=
(1− δ)2

n2
Ek

∥∥∥∥∥
n∑
τ=1

(ekτ +
η

L1
gkτ )

∥∥∥∥∥
2

+
(1− δ)δ
n2

n∑
τ=1

Ek
∥∥∥∥ekτ +

η

L1
gkτ

∥∥∥∥2

≤ (1− δ)Ek
∥∥∥∥ek +

η

L1
gk
∥∥∥∥2

+
(1− δ)δ
n2

n∑
τ=1

Ek
∥∥∥∥ekτ +

η

L1
gkτ

∥∥∥∥2

.

Under Assumption 2.2, we have

Ek‖ek+1‖2 = Ek

∥∥∥∥∥ 1

n

n∑
τ=1

ek+1
τ

∥∥∥∥∥
2

= Ek

∥∥∥∥∥ 1

n

n∑
τ=1

(
ekτ +

η

L1
gkτ −Q

(
η

L1
gkτ + ekτ

))∥∥∥∥∥
2

Assumption2.2

≤ (1− δ′)Ek
∥∥∥∥ek +

η

L1
gk
∥∥∥∥2

≤ (1− δ)Ek
∥∥∥∥ek +

η

L1
gk
∥∥∥∥2

.

Overall, under Assumption 2.1 or Assumption 2.2, we have

Ek‖ek+1‖2 ≤ (1− δ)Ek
∥∥∥∥ek +

η

L1
gk
∥∥∥∥2

+
(1− δ)δ
n2

n∑
τ=1

Ek
∥∥∥∥ekτ +

η

L1
gkτ

∥∥∥∥2

≤ (1− δ)Ek
∥∥∥∥ek +

η

L1
gk
∥∥∥∥2

+
2(1− δ)δ

n2

n∑
τ=1

‖ekτ‖2 +
2(1− δ)δη2

n2L2
1

n∑
τ=1

Ek‖gkτ ‖2.
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The first term on the right hand side above can be bounded as

(1− δ)Ek
∥∥∥∥ek +

η

L1
gk
∥∥∥∥2

= (1− δ)Ek
∥∥∥∥ek +

η

L1
(∇f(xk)−∇f(wk)) +

η

L1
gk − η

L1
(∇f(xk)−∇f(wk))

∥∥∥∥2

= (1− δ)Ek
∥∥∥∥ek +

η

L1
(∇f(xk)−∇f(wk))

∥∥∥∥2

+ (1− δ) η
2

L2
1

Ek‖gk − (∇f(xk)−∇f(wk))‖2

≤
(

1− δ

2

)
‖ek‖2 +

2(1− δ)η2

δL2
1

‖∇f(xk)−∇f(wk)‖2

+(1− δ) η
2

L2
1

Ek‖gk − (∇f(xk)−∇f(wk))‖2

(16)

≤
(

1− δ

2

)
‖ek‖2 +

2(1− δ)η2

δL2
1

‖∇f(xk)−∇f(wk)‖2

+(1− δ)2Lη2

nL2
1

(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

≤
(

1− δ

2

)
‖ek‖2 +

2(1− δ)η2

L2
1

(
2Lf
δ

+
L

n

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

Moreover,

1

n

n∑
τ=1

Ek‖gkτ ‖2 ≤ 2L

n

n∑
τ=1

Ek(f
(τ)
iτ
k

(wk)− f (τ)
iτ
k

(xk)− 〈∇f (τ)
iτ
k

(xk), wk − xk〉)

= 2L(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

Hence,

Ek‖ek+1‖2 ≤
(

1− δ

2

)
‖ek‖2 +

2(1− δ)δ
n2

n∑
τ=1

‖ekτ‖2

+
2(1− δ)η2

L2
1

(
2Lf
δ

+
L

n
+

2Lδ

n

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

≤
(

1− δ

2

)
‖ek‖2 +

2(1− δ)δ
n2

n∑
τ=1

‖ekτ‖2

+
2(1− δ)η2

L2
1

(
2Lf
δ

+
3L

n

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).
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Appendix E. Proof of Theorem 5
From ‖ek‖2 ≤ 1

n

∑n
τ=1 ‖e

k
τ‖2, Equation (8), and Lemma 2, we can obtain

Ek
[
Z̃k+1 + Yk+1 +Wk+1

]
≤ L1Z̃k

L1 + ηµ/2
+ (1− θ1 − θ2 +

θ2

q
)Yk + (1− p+ pq)Wk

+

(
L1

2η
+
µf
2

)
1

n

n∑
τ=1

‖ekτ‖2 +

(
L1

2η
+
µ

2

)
Ek

1

n

n∑
τ=1

‖ek+1
τ ‖2

− 1

θ1

(
θ2 −

2L

nL1

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

Lemma 3

≤ L1Z̃k

L1 + ηµ/2
+ (1− θ1 − θ2 +

θ2

q
)Yk + (1− p+ pq)Wk

+

(
L1

η
+ µ

)
1

n

n∑
τ=1

‖ekτ‖2

−
(

1

θ1

(
θ2 −

2L

nL1

)
− 2(1− δ)η2

L2
1

(
2L̄

δ
+ L

)(
L1

2η
+
µ

2

))
·(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

≤ L1Z̃k

L1 + ηµ/2
+ (1− θ1 − θ2 +

θ2

q
)Yk + (1− p+ pq)Wk

+
4L1

3η

1

n

n∑
τ=1

‖ekτ‖2 −
1

θ1

(
θ2 −

1

L1

(
2L

n
+

8(1− δ)L̄
9δ

+
4(1− δ)L

9

))
·(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

Therefore, from Lemma 3, we have

Ek

[
Z̃k+1 + Yk+1 +Wk+1 +

4L1

δη
· 1

n

n∑
τ=1

‖ek+1
τ ‖2

]

≤ L1Z̃k

L1 + ηµ/2
+ (1− θ1 − θ2 +

θ2

q
)Yk + (1− p+ pq)Wk

+

(
1− δ

6

)
4L1

δη
· 1

n

n∑
τ=1

‖ekτ‖2 −
1

θ1

(
θ2 −

1

L1

(
2L

n
+

56(1− δ)L̄
9δ2

+
28(1− δ)L

9δ

))
·(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

=
L1Z̃k

L1 + ηµ/2
+ (1− θ1 − θ2 +

θ2

q
)Yk + (1− p+ pq)Wk +

(
1− δ

6

)
4L1

δη
· 1

n

n∑
τ=1

‖ekτ‖2

− 1

θ1

(
θ2 −

L2

2L1

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

When θ2 ≥ L2
2L1

we can get the result.

Appendix F. Proof of Theorem 6
From Lemma 2 and (8), we have
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Ek
[
Z̃k+1 + Yk+1 +Wk+1

]
≤ L1Z̃k

L1 + ηµ/2
+

(
1− θ1 − θ2 +

θ2

q

)
Yk + (1− p+ pq)Wk

+

(
L1

2η
+
µf
2

)
‖ek‖2 +

(
L1

2η
+
µ

2

)
Ek‖ek+1‖2

− 1

θ1

(
θ2 −

2L

nL1

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

Lemma 4

≤ L1Z̃k

L1 + ηµ/2
+

(
1− θ1 − θ2 +

θ2

q

)
Yk + (1− p+ pq)Wk

+

(
L1

η
+ µ

)
‖ek‖2 +

(
L1

2η
+
µ

2

)
2(1− δ)δ

n
· 1

n

n∑
τ=1

‖ekτ‖2

−
(

1

θ1

(
θ2 −

2L

nL1

)
− 4(1− δ)η

3L1

(
2Lf
δ

+
3L

n

))
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

≤ 6θ1L1Z̃k

6θ1L1 + µ
+

(
1− θ1 − θ2 +

θ2

q

)
Yk + (1− p+ pq)Wk +

4L1

3η
‖ek‖2

+
4L1(1− δ)δ

3ηn
· 1

n

n∑
τ=1

‖ekτ‖2

− 1

θ1

(
θ2 −

2L

nL1
− 4(1− δ)

9L1

(
2Lf
δ

+
3L

n

))
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉).

Therefore, from Lemma 3 and Lemma 4, we can get

Ek

[
Z̃k+1 + Yk+1 +Wk+1 +

4L1

δη
‖ek+1‖2 +

28L1(1− δ)
δηn

· 1

n

n∑
τ=1

‖ek+1
τ ‖2

]

≤ 6θ1L1Z̃k

6θ1L1 + µ
+ (1− θ1 − θ2 +

θ2

q
)Yk + (1− p+ pq)Wk

+

(
1− δ

6

)
4L1

δη
‖ek‖2 +

(
1− δ

6

)
28L1(1− δ)

δηn
· 1

n

n∑
τ=1

‖ekτ‖2

− 1

θ1

(
θ2 −

2L

nL1
− 28(1− δ)

9δL1

(
2Lf
δ

+
3L

n

)
− 56(1− δ)

3δL1

(
2L̄

δn
+
L

n

))
·(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

≤ 6θ1L1Z̃k

6θ1L1 + µ
+ (1− θ1 − θ2 +

θ2

q
)Yk + (1− p+ pq)Wk

+

(
1− δ

6

)
4L1

δη
‖ek‖2 +

(
1− δ

6

)
28L1(1− δ)

δηn
· 1

n

n∑
τ=1

‖ekτ‖2

− 1

θ1

(
θ2 −

2L

nL1
− 392(1− δ)Lf

9δ2L1
− 28(1− δ)L

δL1n

)
·(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

=
6θ1L1Z̃k

6θ1L1 + µ
+ (1− θ1 − θ2 +

θ2

q
)Yk + (1− p+ pq)Wk

+

(
1− δ

6

)
4L1

δη
‖ek‖2 +

(
1− δ

6

)
28L1(1− δ)

δηn
· 1

n

n∑
τ=1

‖ekτ‖2

− 1

θ1

(
θ2 −

L3

2L1

)
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉),

24



ERROR COMPENSATED DISTRIBUTED SGD CAN BE ACCELERATED

where we use L̄ ≤ nLf in the second inequality. When θ2 ≥ L3
2L1

we can get the result.

Appendix G. Proof of Corollary 7
(i) First, we have 1

2
≥ θ2 ≥ L2

2L1
. Form the definition of θ1, we know θ1 ≤ 1

2
. Hence θ1 + θ2 ≤ 1. Next we discuss

two cases:

– Case 1: 3µη < L1. In this case, we have L1 = max{L4, Lf}. Then from Theorem 5 and same as the
proof of Theorem 3.2 in [22], we have E[Φk] ≤ εΦ0 as long as

k ≥ O
(

1

δ
+

1

p
+

√
Lf
µ

+

√
L4

µp

)
.

Since L4 = L2, we can get the result.

– Case 2: 3µη = L1. In this case, we have

µ

µ+ 6θ1L1
=

µ

µ+ 6µ
=

1

7
≥ p

7
.

Hence, from Theorem 5 and same as the proof of Theorem 3.2 in [22], we also have E[Φk] ≤ εΦ0 for

k ≥ O
(

1

δ
+

1

p
+

√
Lf
µ

+

√
L4

µp

)
.

Since L4 = L2, we can get the result.

(ii) By using Theorem 6, same as (i), we can get the result.
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