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Abstract
The early phase of training has been shown to be important in two ways for deep neural net-

works. First, the degree of regularization in this phase significantly impacts the final generalization.
Second, it is accompanied by a rapid change in the local loss curvature influenced by regularization
choices. Connecting these two findings, we show that the trace of the Fisher Information Matrix
(FIM) plays a crucial role in the implicit regularization effect of SGD. Specifically, smaller values
of the trace of FIM during the early phase through implicit or explicit regularization significantly
improves generalization. On the other hand, the absence of regularization leads to an increase of
the trace of FIM during early phase and degrades generalization. We refer as catastrophic Fisher
explosion. Finally, to gain intuition behind the regularization effect of penalizing the trace of FIM,
we show that it limits memorization by reducing the learning speed on noisy labels.

1. Introduction

Implicit regularization in gradient-based training of deep neural networks (DNNs) remains rel-
atively poorly understood despite being considered a critical component in their empirical suc-
cess [15, 21, 28]. Recent work suggests that the early phase of training of DNNs might hold the
key to understanding these implicit regularization effects. [1, 8, 17, 23] show that by introducing
regularization later, a drop in performance due to lack of regularization in this phase is hard to re-
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Figure 1: The catastrophic Fisher explosion phenomenon demonstrated for Wide ResNet trained
using stochastic gradient descent on the TinyImageNet dataset. Training is done with
either a learning rate optimized using grid search (η1 = 0.0316, red), or a small learning
rate (η2 = 0.001, blue). Training with η2 leads to large overfitting (left) and a sharp
increase in Tr(F) (middle). Tr(F) is closely related to the gradient norm (right).

cover from, while on the other hand, removing regularization after the early phase has a relatively
small effect on the final performance. Other works show that the early phase of training also has a
dramatic effect on the trajectory in terms of properties such as the local curvature of the loss sur-
face or the gradient norm [7, 14]. These observations lead to a question: what is the mechanism
by which regularization in the early phase impacts the optimization trajectory and generalization?
We investigate this question mainly through the lens of the Fisher Information Matrix (FIM), a ma-
trix that can be seen as approximating the local curvature of the loss surface in DNNs [20, 25].
Fisher Information Matrix can be also used to define complexity measures such as the Fisher-Rao
norm [16, 19].

Our main contribution is to show that the implicit regularization effect of using a large learning
rate or a small batch size can be modeled as an implicit penalization of the trace of the FIM (Tr(F))
from the very beginning of training. We show evidence that explicitly regularizing Tr(F) (which
we call Fisher penalty) significantly improves generalization in scenarios when using a sub-optimal
learning rate. On the other hand, growth of Tr(F) early in training, which may occur in practice
when using a relatively small learning rate, coincides with poor generalization. We call this phe-
nomenon the catastrophic Fisher explosion. Figure 1 illustrates this effect on the TinyImageNet
dataset [18]. Our second contribution is to provide an intuition behind the regularization effect of
Tr(F). We show that penalizing Tr(F) discourages memorizing noisy labels.

2. Implicit and explicit regularization of the FIM

Fisher Information Matrix Consider a probabilistic classification model pθ(y|x), where θ de-
notes its parameters. Let `(x, y;θ) be the cross-entropy loss function calculated for input x and
label y. Let g(x, y;θ) = ∂

∂θ `(x, y;θ) denote the gradient computed for an example (x, y). The
central object that we study is the Fisher Information Matrix F defined as

F(θ) = Ex∼X ,ŷ∼pθ(y|x)[g(x, ŷ)g(x, ŷ)
T ]

, where the expectation is often approximated using the empirical distribution X̂ induced by the
training set. We denote its trace by Tr(F). Later, we also look into the Hessian H(θ) = ∂2

∂θ2
`(x, y;θ).

We denote its trace by Tr(H). The FIM can be seen as an approximation to the Hessian [20]. In
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Table 1: Using a 10-30x smaller learning rate (Baseline) results in up to 9% degradation in test
accuracy on popular image classification benchmarks (c.f. to optimal η∗). Adding Fisher
penalty (FP) substantially improves generalization and closes the gap to η∗. We do not use
data augmentation with CIFAR-10 and CIFAR-100 to ensure that using a small learning
rate does not lead to under-fitting.

Setting η∗ Baseline GPx GP FP GPr

WResNet/TinyImageNet (aug.) 54.67% 52.57% 52.79% 56.44% 56.73% 55.41%

DenseNet/C100(w/o aug.) 66.09% 58.51% 62.12% 64.42% 66.41% 66.39%
VGG11/C100 (w/o aug.) 45.86% 36.86% 45.26% 47.35% 49.87% 48.26%

WResNet/C100 (w/o aug.) 53.96% 46.38% 58.68% 57.68% 57.05% 58.15%

SimpleCNN/C10(w/o aug.) 76.94% 71.32% 75.68% 75.73% 79.66% 79.76%

particular, as p(y|x; θ) → p̂(y|x), where p̂(y|x) is the empirical label distribution, the FIM con-
verges to the Hessian. [25] showed on image classifications tasks that Tr(H) ≈ Tr(F) along the
optimization trajectory, which we also evidence in Appendix D.

Fisher Penalty Our main contribution is to propose and investigate a specific mechanism by
which using a large learning rate or a small batch size implicitly influences final generalization.
Our first insight is to shift the focus from studying the Hessian, to studying properties of the FIM.
Concretely, we hypothesize that using a large learning rate or a small batch size improves gener-
alization by implicitly penalizing Tr(F) from the very beginning of training. In order to study the
effect of implicit regularization of Tr(F), we introduce a regularizer, which we refer to as Fisher
penalty, explicitly penalizing Tr(F). We derive this regularizer in the following way. First, we note
that Tr(F) can be written as Tr(F) = Ex∼X ,ŷ∼pθ(y|x)

[
‖ ∂∂θ `(x, ŷ)‖

2
2

]
.

To regularize Tr(F), we add the following term to the loss function:

`′(x1:B, y1:B;θ) =
1

B

B∑
i=1

`(xi, yi;θ) + α

∥∥∥∥∥ 1B
B∑
i=1

g(xi, ŷi)

∥∥∥∥∥
2

, where (x1:B, y1:B) is a mini-batch, ŷi is sampled from pθ(y|xi), and α is a hyperparameter. We
refer to this regularizer as Fisher penalty. The formulation is based on the empirical observation

that
∥∥∥ 1
B

∑B
i=1 g(xi, ŷi)

∥∥∥2 and Tr(F) correlate well during training. Crucially, this allows us to
reduce the added computational cost of Fisher penalty to that of a single additional backpropagation
call [6]. Finally, we compute the gradient of the second term only every 10 optimization steps, and
in a given iteration use the most recently computed gradient. We discuss these approximations in
detail in Appendix C.

3. Fisher Penalty

Experimental setting We run experiments using Wide ResNet [27] (depth 44 and width 3, with
or without BN layers), SimpleCNN (without BN layers), DenseNet (L=40, K=12) [12] and VGG-
11 [24]. We train these models on either the CIFAR-10 or the CIFAR-100 datasets. Due to larger
computational cost, we replace ImageNet with the TinyImageNet dataset [18] in these experiments.
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Figure 2: Training with FP or GPx improves generalization and limits early peak of Tr(F). Each
subfigure shows validation accuracy (left) and Tr(F) (right) for training with η∗ or a
small learning rate (blue) and for training with either GPx or FP (red).

To investigate if Tr(F) and final generalization are related, we apply Fisher penalty in two
settings. First, we use a learning rate 10-30x smaller than the optimal one, which both incur up to 9%
degradation in test accuracy and results in large value of Tr(F). We also remove data augmentation
from the CIFAR-10 and the CIFAR-100 datasets to ensure that training with small learning rate does
not result in underfitting. In the second setting, we add Fisher penalty in training with an optimized
learning rate using grid search (η∗) and train with data augmentation.

Fisher penalty penalizes the gradient norm computed using labels sampled from pθ(y|x). We
hypothesize that a similar, but weaker, effect can be introduced by other gradient norm regular-
izers. First, we compare FP to penalizing the input gradient norm ‖gx‖ = ∂

∂x`(x, y), which we
denote by GPx [6, 22, 26]. We also note that regularizing GPx is related to regularizing the Jacobian
input-output of the network [3, 11]. We also experiment with penalizing the vanilla mini-batch gra-
dient [9], which we denote by GP. Finally, we experiment with penalizing the mini-batch gradient
computed with random labels ‖gr‖ = ∂

∂x`(x, ŷ) where ŷ is sampled from a uniform distribution
over the label set (GPr). We are not aware of any prior work using GP or GPr in supervised training,
with the exception of [2] where the authors penalized `1 norm of gradients to compress the network
towards the end of training.

We tune the hyperparameters on the validation set. More specifically for α, we test 10 differ-
ent values spaced uniformly between 10−1 × v to 101 × v on a logarithmic scale with v ∈ R+.
For TinyImageNet we test 5 alternatives instead. To pick the optimal learning rate, we evaluate 5
values spaced equally on a logarithmic scale. We include the remaining experimental details in the
Appendix E.1.

Fisher Penalty improves generalization Table 1 summarizes the results of the main experiment.
First, we observe that a suboptimal learning rate (10-30x lower than the optimal) leads to dramatic
overfitting. We observe a degradation of up to 9% in test accuracy, while achieving perfect training
accuracy (see Table 5 in the Appendix).

Fisher penalty closes the gap in test accuracy between the small and optimal learning rate,
and even achieves better performance than the optimal learning rate. A similar performance was
observed when minimizing ‖gr‖. We will come back to this observation in the next section.
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Figure 3: Left: Wide ResNet CIFAR-100 (w/o aug.), Middle left: VGG-11 CIFAR-100 (w/o aug.),
Middle right: Simple CNN CIFAR-10 (w/o aug.), Right: DenseNet CIFAR-100 (w/o
aug.). Each subplot summarizes an experiment in which we apply Fisher Penalty starting
from a certain epoch (x axis) and measure the final test accuracy (y axis). Fisher Penalty
has to be applied from the beginning of training to close the generalization gap to the
optimal learning rate (c.f. the red horizontal line to the blue horizontal line).

GP and GPx reduce the early value of Tr(F) (see Table 3 in the Appendix). They, however,
generally perform worse than Tr(F) or GPr and do not fully close the gap between small and
optimal learning rate. We hypothesize they improve generalization by a similar but less direct
mechanism than Tr(F) and GPr.

In the second experimental setting, we apply FP to a network trained with the optimal learning
rate η∗. According to Table 6 (Appendix), FP improves generalization in 4 out of 5 settings. The
gap between the baseline and FP is small in 3 out of 5 settings (below 1%), which is natural given
that we already regularize training implicitly by using the optimal η and data augmentation.

Geometry and generalization in the early phase of training Here, we investigate the tempo-
ral aspect of Fisher Penalty on CIFAR-10 and CIFAR-100. In particular, we study whether early
penalization of Tr(F) matters for final generalization. First, we observe that all gradient-norm reg-
ularizers reduce the early value of Tr(F) closer to Tr(F) achieved when trained with the optimal
learning rate η∗. We show this effect with Wide ResNet and VGG-11 on CIFAR-100 in Figure 2,
and for other experimental settings in the Appendix. We also tabulate the maximum achieved values
of Tr(F) over the optimization trajectory in Appendix A.1.

To test the importance of explicitly penalizing Tr(F) early in training, we start applying it after a
certain number of epoch E ∈ {1, 2, 4, 8, 16, 32, 64, 128}. We use the best hyperparameter set from
the previous experiments. Figure 3 summarizes the results. For both datasets, we observe a con-
sistent pattern. When FP is applied starting from a later epoch, final generalization is significantly
worse, and the generalization gap arising from a suboptimal learning rate is not closed.

3.1. Fisher Penalty Reduces Memorization

It is not self-evident how regularizing Tr(F) influences generalization. In this section, we provide
evidence that regularizing Tr(F) slows down learning on data with noisy labels. We expect FP
to reduce memorization. When the predictive distribution pθ(y|x) and the true label distribution
p∗(y|x) are both uniform, Tr(F) of the specific example x is equivalent to the squared loss gradient
norm of the sample example. The proposed Fisher penalty thus minimizes the contribution of the
loss gradient from the training examples whose labels were sampled uniformly. In other words,
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Table 2: Fisher Penalty (FP) and GPr both reduce memorization competitively to mixup. We mea-
sure test accuracy at the best validation point in training with either 25% or 50% examples
with noisy labels in the CIFAR-100 dataset.

Noise Setting Baseline Mixup GPx FP GPr

25% VGG-11/C100 41.74% 52.31% 45.94% 60.18% 58.46%
ResNet-52/C100 53.30% 61.61% 52.70% 58.31% 57.60%

50% VGG-11/C100 30.05% 39.15% 34.26% 51.33% 50.33%
ResNet-52/C100 43.35% 51.71% 42.99% 47.99% 50.08%

the Fisher penalty implicitly suppresses learning noisy examples, under the assumption that clean
examples’ label distributions are not uniform.

To study whether the above happens in practice, we compare FP to GPx, GPr, and mixup [29].
For gradient norm based regularizers, we evaluate 6 different hyperparameter values spaced uni-
formly on a logarithmic scale, and for mixup we evaluate β ∈ {0.2, 0.4, 0.8, 1.6, 3.2, 6.4}. We
experiment with the Wide ResNet and VGG-11 models. We describe remaining experimental de-
tails in the Appendix E.2.

Results We begin by studying the learning dynamics on data with noisy labels through the lens
of training accuracy and mini-batch gradient norm. We show the results for VGG-11 and ResNet-
50 in Figure 5 and Figure 6 in the Appendix. We observe that FP limits the ability of the model
to memorize data more strongly than it limits its ability to learn from clean data. We can further
confirm our interpretation of the effect Tr(F) has on training by studying the gradient norms. As
visible in Figure 5, the gradient norm on examples with noisy labels is larger than on clean examples,
and the ratio is closer to 1 when large regularization is applied.

We report test accuracy (at the best validation point) in Table 2. We observe that Tr(F) reduces
memorization competitively to mixup. Furthermore, FP performs similarly to GPr, which agrees
with our interpretation of why FP limits learning on examples with noisy labels.

4. Conclusion

We proposed and investigated a hypothesis that SGD influences generalization by implicitly pe-
nalizing the trace of the Fisher Information Matrix (Tr(F)) from the very beginning of training.
We show that (1) the value of early Tr(F) correlates with final generalization, and (2) explicitly
regularizing Tr(F) can substantially improve generalization.

To gain further insight into the mechanism by which penalizing Tr(F) improves generalization,
we investigated training on noisy data. We found that penalizing Tr(F) reduces memorization by
penalizing examples with noisy labels more strongly than clean ones.
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Table 3: The maximum value of Tr(F) along the optimization trajectory for experiments on
CIFAR-10 or CIFAR-100 included in Table 1.

Setting η∗ Baseline GPx GP FP GPr

DenseNet/C100 (w/o aug.) 24.68 98.17 83.64 64.33 66.24 73.66
VGG11/C100 (w/o aug.) 50.88 148.19 102.95 58.53 64.93 62.96

WResNet/C100 (w/o aug.) 26.21 91.39 41.43 40.94 56.53 39.31

SCNN/C10 (w/o aug.) 24.21 52.05 47.96 25.03 19.63 25.35

Table 4: Time per epoch (in seconds) for experiments in Table 1.
Setting η∗ Baseline GPx GP FP GPr

WResNet/TinyImageNet (aug.) 214.45 142.69 233.14 143.78 208.62 371.74

DenseNet/C100 (w/o aug.) 78.88 57.40 77.89 78.66 97.25 75.96
VGG11/C100 (w/o aug.) 30.50 35.27 31.54 32.52 43.41 42.40

WResNet/C100 (w/o aug.) 49.64 47.99 71.33 61.36 76.93 53.25

SCNN/C10 (w/o aug.) 18.64 19.51 26.09 19.91 21.21 20.55

Apppendix

Appendix A. Additional results

A.1. Fisher Penalty

We first show additional metrics for experiments summarized in Table 1. In Table 5 we show the
final training accuracy. Table 3 confirms that generally all gradient norm regularizers reduce the
maximum value of Tr(F) (we measure Tr(F) starting from after one epoch of training because
Tr(F) explodes in networks with batch normalization layers at initialization). Finally, Table 4
confirms that the regularizers incurred a relatively small additional computational cost.

Figure 4 is a counterpart of Figure 2 for the other two models on the CIFAR-10 and the CIFAR-
100 datasets.

Table 5: The final epoch training accuracy for experiments shown in Table 1. Experiments with
small learning rate reach no lower accuracy than experiments corresponding to a large
learning rate η∗.

Setting η∗ Baseline GPx GP FP GPr

WResNet/TinyImageNet (aug.) 99.84% 99.96% 99.97% 93.84% 81.05% 86.46%

DenseNet/C100 (w/o aug) 99.98% 99.97% 99.96% 99.91% 99.91% 99.39%
VGG11/C100 (w/o aug) 99.98% 99.98% 99.85% 99.62% 97.73% 86.32%

WResNet/C100 (w/o aug) 99.98% 99.98% 99.97% 99.96% 99.99% 99.94%

SCNN/C10 (w/o aug) 100.00% 100.00% 97.79% 100.00% 93.80% 94.64%
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Figure 4: Same as Figure 2, but for DenseNet on CIFAR-100 (top), and SimpleCNN on CIFAR-10
(below). Curves were smoothed for visual clarity.
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Table 6: Fisher penalty (FP) improves generalization in 4 out of 5 settings when applied with the
optimal learning rate η∗ and trained using standard data augmentation. In 3 out of 5 set-
tings the difference between FP and η∗ is small (below 1%), which is expected given that
FP is aimed at reproducing the regularization effect of large η.

Setting η∗ FP

DenseNet/C100 (aug.) 74.41±0.47% 74.19±0.51%
VGG11/C100 (aug.) 59.82±1.23% 65.08±0.53%
WResNet/C100 (aug.) 69.48±0.30% 71.53±1.22%

SimpleCNN/C10 (aug.) 87.16±0.16% 87.52±0.50%

WResNet/TinyImageNet (aug.) 54.70±0.04% 60.00±0.07%
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Figure 5: Fisher penalty slows down training on data with noisy labels more strongly than it slows
down training on clean data for VGG-11 on CIFAR-100. This likely happens because
FP penalizes more strongly gradient norm on data with noisy labels. Left plot shows the
training accuracy on examples with clean/noisy labels (solid/dashed line). Middle plot
shows the gradient norm evaluated on examples with clean/noisy labels (solid/dashed).
Right plot shows the ratio of gradient norm on clean to noisy data. Red to blue color
represents the regularization coefficient (from 10−2 to 101).

A.2. Fisher Penalty Reduces Memorization

In this section, we describe additional experimental results for Section 3.1. Figure 6 is the same as
Figure 5, but for ResNet-50.
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Figure 6: Same as Figure 5, but for ResNet-50.
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Appendix B. Computation of Tr(H)

We computed Tr(H) in our experiments using the Hutchinson’s estimator [13],

Tr(H) = Tr(H · I)
= Tr(H · E[zzT ])
= E[Tr(H · zzT )]
= E[zTH · z]

≈ 1

M

M∑
i=1

zTi H · zi

=
1

M

M∑
i=1

zTi
∂

∂θ

(
∂`

∂θT

)
· zi

=
1

M

M∑
i=1

zTi
∂

∂θ

(
∂`

∂θ

T

zi

)
,

where I is the identity matrix, z is a multi-variate standard Gaussian random variable, and zi’s are
i.i.d. instances of z. The larger the value of M , the more accurate the approximation is. We used
M = 30. To make the above computation efficient, note that the gradient ∂`

∂θ only needs to be
computed once and it can be re-used in the summation over the M samples.

Appendix C. Approximations in Fisher penalty

In this section, we describe the approximations made in Fisher penalty in detail. Recall, that Tr(F)
can be expressed as

Tr(F) = Ex∼X ,ŷ∼pθ(y|x)
[
‖ ∂
∂θ
`(x, ŷ)‖22

]
. (1)

In the preliminary experiments, we found empirically that we can use the norm of the expected
gradient rather than the expected norm of the gradient, which is a more direct expression of Tr(F):

∇Ex∼X ,ŷ∼pθ(y|x)

[∥∥∥∥ ∂∂θ`(x, ŷ)
∥∥∥∥2
2

]
≈ 1

N

N∑
n=1

1

M

M∑
m=1

∇
∥∥∥∥ ∂∂θ`(xn, ŷnm)

∥∥∥∥2
2

≥ ∇

∥∥∥∥∥ 1

NM

N∑
n=1

M∑
m=1

∂

∂θ
`(xn, ŷnm)

∥∥∥∥∥
2

2

,

where N and M are the minibatch size and the number of samples from pθ(y|xn), respectively.
This greatly improves the computational efficiency. With N = B and M = 1, we end up with the
following learning objective function:

`′(x1:B, y1:B;θ) =
1

B

B∑
i=1

`(xi, yi;θ) + α

∥∥∥∥∥ 1B
B∑
i=1

g(xi, ŷi)

∥∥∥∥∥
2

. (2)
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Figure 7: Correlation between Tr(F) and Tr(FB) for SimpleCNN trained on the CIFAR-10
dataset. Blue to red color denotes learning rates from 10−3 to 10−1. The value of Tr(F)
and Tr(FB) correlate strongly for the most of the training trajectory. Using large learning
rate reduces both Tr(F) and Tr(FB).

We found empirically that
∥∥∥ 1
B

∑B
i=1 g(xi, ŷi)

∥∥∥2, which we denote by Tr(FB), and Tr(F) cor-
relate well during training. To demonstrate this, we train SimpleCNN on the CIFAR-10 dataset with
5 different learning rates (from 10−3 to 10−1). The outcome is shown in Figure 7. We see that for
most of the training, with the exception of the final phase, Tr(FB) and Tr(F) correlate extremely
well. Equally importantly, we find that using a large learning affects both Tr(FB) and Tr(F), which
further suggests the two are closely connected.

We also update the gradient of Tr(FB) only every 10 optimization steps. We found empirically
it does not affect generalization performance nor the ability to regularize Tr(F) in our setting.
However, we acknowledge that it is plausible that this choice would have to be reconsidered in
training with very large learning rates or with larger models.

Figure 8 compares learning curves of training with FP recomputed every optimization step, or
every 10 optimization steps. For each, we tune the hyperparameter α, checking 10 values equally
spaced between 10−2 and 100 on a logarithmic scale. We observe that for the optimal value of α,
both validation accuracy and Tr(F) are similar between the two runs. Both experiments achieve
approximately 80% test accuracy.

Appendix D. Tr(H) and Tr(F) correlate strongly

We demonstrate a strong correlation between Tr(H) and Tr(F) for DenseNet, ResNet-56 and Sim-
pleCNN in Figure 9. We calculate Tr(F) using a mini-batch. We see that Tr(F) has a smaller
magnitude (because we use the mini-batch gradient which has lower variance), but correlates ex-
tremely well with Tr(H).
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Figure 8: A comparison between the effect of recomputing Fisher penalty gradient every 10 itera-
tions (left) or every iteration (right), with respect to validation accuracy and Tr(F). We
denote by f the frequency with which we update the gradient (top: f = 10, bottom:
f = 1). Both experiments result in approximately 80% test accuracy of the best configu-
ration.
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Figure 9: Correlation between Tr(F) and Tr(H). Left: DenseNet on CIFAR-100, Middle: Sim-
pleCNN on CIFAR-10, Right: ResNet-56 on CIFAR-100
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Appendix E. Additional Experimental Details

E.1. Fisher Penalty

Here, we describe the remaining details for the experiments in Section 3. We first describe how
we tune hyperparameters in these experiments. In the remainder of this section, we describe each
setting used in detail .

Tuning hyperparameters In all experiments, we refer to the optimal learning rate η∗ as the learn-
ing rate optimized using grid search. In most experiments we check 5 different learning rate values
uniformly spaced on a logarithmic scale, usually between 10−2 and 100. In some experiments we
adapt the range to ensure that the range includes the optimal learning rate. We tune the learning rate
only once for each configuration (i.e. we do not repeat it for different random seeds).

In the first setting, for most experiments involving gradient norm regularizers, we use 10×
smaller learning rate than η∗. For TinyImageNet, we use 30× smaller learning rate than η∗. To pick
the regularization coefficient α, we evaluate 10 different values uniformly spaced on a logarithmic
scale between 10−1×v to 101×v with v ∈ R+. We choose the best performing α according to best
validation accuracy. We pick the value of v manually with the aim that the optimal α is included in
this range. We generally found that v = 0.01 works well for GP, GPr, and FP. For GPx we found
in some experiments that it is necessary to pick larger values of v.

Measuring Tr(F) We measure Tr(F) using the number of examples equal to the batch size used
in training. For experiments with Batch Normalization layers, we use Batch Normalization in eval-
uation mode due to the practical reason that computing Tr(F) uses batch size of 1, and hence Tr(F)
is not defined for a network with Batch Normalization layers in training mode.

DenseNet on the CIFAR-100 dataset We use the DenseNet (L=40, k=12) configuration from
[12]. We largely follow the experimental setting in [12]. We use the standard data augmentation
(where noted) and data normalization for CIFAR-100. We hold out random 5000 examples as the
validation set. We train the model using SGD with momentum of 0.9, a batch size of 128, and weight
decay of 0.0001. Following [12], we train for 300 epochs and decay the learning rate by a factor
of 0.1 after epochs 150 and 225. To reduce variance, in testing we update Batch Normalization
statistics using 100 batches from the training set.

Wide ResNet on the CIFAR-100 dataset We train Wide ResNet (depth 44 and width 3, without
Batch Normalization layers). We largely follow experimental setting in [10].We use the standard
data augmentation and data normalization for CIFAR-100. We hold out random 5000 examples as
the validation set. We train the model using SGD with momentum of 0.9, a batch size of 128, weight
decay of 0.0010. Following [10], we train for 300 epochs and decay the learning rate by a factor of
0.1 after epochs 150 and 225. We remove Batch Normalization layers. To ensure stable training we
use the SkipInit initialization [5].

VGG-11 on the CIFAR-100 dataset We adapt the VGG-11 model [24] to CIFAR-100. We do not
use dropout nor Batch Normalization layers. We hold out random 5000 examples as the validation
set. We use the standard data augmentation (where noted) and data normalization for CIFAR-100.
We train the model using SGD with momentum of 0.9, a batch size of 128, and weight decay of
0.0001. We train the model for 300 epochs, and decay the learning rate by a factor of 0.1 after every
40 epochs starting from epoch 80.
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SimpleCNN on the CIFAR-10 dataset We also run experiments on the CNN example architec-
ture from the Keras example repository [4]1, which we change slightly. Specifically, we remove
dropout and reduce the size of the final fully-connected layer to 128. We train it for 300 epochs and
decay the learning rate by a factor of 0.1 after the epochs 150 and 225. We train the model using
SGD with momentum of 0.9, a batch size of 128.

Wide ResNet on the TinyImageNet dataset We train Wide ResNet (depth 44 and width 3, with
Batch Normalization layers) on TinyImageNet Le and Yang [18]. TinyImageNet consists of subset
of 100,000 examples from ImageNet that we downsized to 32×32 pixels. We train the model using
SGD with momentum of 0.9, a batch size of 128, and weight decay of 0.0001. We train for 300
epochs and decay the learning rate by a factor of 0.1 after epochs 150 and 225. We train the model
using SGD with momentum of 0.9, a batch size of 128. We do not use validation in TinyImageNet
due to its larger size. To reduce variance, in testing we update Batch Normalization statistics using
100 batches from the training set.

E.2. Fisher Penalty Reduces Memorization

Here, we describe additional experimental details for Section 3.1. We use two configurations de-
scribed in Section E.1: VGG-11 trained on CIFAR-100 dataset, and Wide ResNe trained on the
CIFAR-100 dataset. We tune the regularization coefficient α in the range {0.01, 0.1, 0.31, 10},
with the exception of GPx for which we use the range {10, 30, 100, 300, 1000}. We tuned mixup
coefficient in the range {0.4, 0.8, 1.6, 3.2, 6.4}. We removed weight decay in these experiments.

1. Accessible at https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py.
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