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Abstract
This paper addresses the problem of optimizing partition functions in a stochastic learning setting.
We propose a stochastic variant of the bound majorization algorithm from [29] that relies on upper-
bounding the partition function with a quadratic surrogate. The update of the proposed method,
that we refer to as Stochastic Partition Function Bound (SPFB), resembles scaled stochastic gradi-
ent descent where the scaling factor relies on a second order term that is however different from
the Hessian. Similarly to quasi-Newton schemes, this term is constructed using the stochastic ap-
proximation of the value of the function and its gradient. We prove sub-linear convergence rate of
the proposed method and show the construction of its low-rank variant (LSPFB). Experiments on
logistic regression demonstrate that the proposed schemes significantly outperform SGD. We also
discuss how to use quadratic partition function bound for efficient training of deep learning models
and in non-convex optimization.

1. Introduction
The problem of estimating the probability density function over a set of random variables underlies
majority of learning frameworks and heavily depends on the partition function. Partition function
is a normalizer of a density function and ensures that it integrates to 1. This function needs to be
minimized when learning proper data distribution. Optimizing the partition function however is a
hard and often intractable problem [20]. It has been addressed in a number of ways in the literature.
Below we review strategies that directly confront the partition function (we skip pseudo-likelihood
strategies [24] and score matching [25] and ratio matching [26] techniques, which avoid direct
partition function computations).

There exists a variety of Markov chain Monte Carlo methods for approximately maximizing the
likelihood of models with partition functions such as i) contrastive divergence [13, 22] and persistent
contrastive divergence [42], which perform Gibbs sampling and are used inside a gradient descent
procedure to compute model parameter update, and ii) fast persistent contrastive divergence [43],
which relies on re-parameterizing the model and introducing the parameters that are trained with
much larger learning rate such that the Markov chain is forced to mix rapidly. The above mentioned
techniques are Gibbs sampling strategies that focus on estimating the gradient of the log-partition
function. Another technique called noise-contrastive estimation [21] treats partition function like
an additional model parameter whose estimate can be learned via nonlinear logistic regression dis-
criminating between the observed data and some artificially generated noise. Methods that directly
estimate the partiton function rely on importance sampling. More conretely they estimate the ratio
of the partition functions of two models, where one of the partition function is known. The exten-
sions of this technique, annealed importance sampling [27, 37] and bridge sampling [6], cope with
the setting where two considered distributions are far from each other.
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Finally, bound majorization constitutes yet another strategy for performing density estimation.
Bound majorization methods iteratively construct and optimize variational bound on the original
optimization problem. Among these techniques we have iterative scaling schemes [8, 17], EM al-
gorithm [2, 18], non-negative matrix factorization method [34], convex-concave procedure [47],
minimization by incremental surrogate optimization [35], and technique based on constructing
quadratic partition function bound [29] (early predecessors of these techniques include [9, 33]).
The latter technique uses tighter bound compared to the aforementioned methods, and exhibits
faster convergence compared to generic first- [36, 40, 44] and second-order [1, 7, 48] techniques
in the batch optimization setting for both convex and non-convex learning problems. In this paper
we revisit the quadratic bound majorization technique and propose its stochastic variant that we
analyze both theoretically and empirically. We prove its convergence rate and show that it is per-
forming favorably compared to SGD [10, 38]. Finally, we propose future research directions that
can utilize quadratic partition function bound in non-convex optimization, including deep learn-
ing setting. With a pressing need to develop landscape-driven deep learning optimization strate-
gies [3–5, 14, 14, 15, 19, 23, 28, 30, 31, 39, 41, 45], we foresee the resurgence of interest in bound
majorization techniques and its applicability to non-convex learning problems.

2. Method
Consider the log-linear model given by a density function of the form

p(yjx;�) = exp(�T fx(y))=Zx(�); (2.1)

where (x; y) is the observation-label pair (y 2 f1; 2; :::; ng), fx : f1; 2; :::; ng ! Rd represents a
feature map, � 2 Rd is a model parameter vector, and Zx(�) =

Pn
y=1 exp(�

T fx(y)) is the partition
function. Maximum likelihood framework estimates � from a training data set f(xi; yi)gTi=1 by
maximizing the objective function of the form

J(�) =
TX
i=1

log p(yijxi;�)�
�

2
k�k22 =

TX
i=1

�
�T fxi(y)� logZxi(�)

�
� �

2
k�k22 ; (2.2)

where the second term is a regularization (� is a regularization coefficient). This framework and
its various extensions underlie logistic regression, conditional random fields, maximum entropy
estimation, latent likelihood, deep belief networks, and other density estimation approaches. Equa-
tion 2.2 requires minimizing the partition function Zx(�). This can be done by optimizing the
variational quadratic bound on the partition function instead. The bound is shown in Theorem 1.

Algorithm 1: Partition function bound

Input: e� 2 Rd, observation x,
fx(y)8y 2 f1; :::; ng.

Output: Bound parameters: �, �, z
1 Init z ! 0+, � = 0, � = zI
2 for y = 1; :::; n do
3 �j = exp(e�T fx(y)); l = fx(y)� �

4 � =
tanh( 1

2
log(�=z))

2 log(�=z) ;� = �
z+�

5 �+ = �llT

6 �+ = �l
7 z+ = �

8 end

Algorithm 2: Maximum Likelihood via
Stochastic Partition Function Bound (SPFB)
Input: initial parameters �0, training data set

f(xj ; yj)gTj=1, features fxj , learning
rates �t, regularization coefficient �

Output: Model parameters �
1 Set � = �0

2 while not converged do
3 randomly select a training point (xt; yt)
4 Get �t, �t from fxt , � via Algorithm 1
5 � ���t (�t+�I)�1 (�t�fxt(yt)+��)

6 end
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Theorem 1. [29] LetZx (� ) =
P n

y=1 exp
�
� T f x (y)

�
. Algorithm 1 �ndsz; � ; � such that

Zx (� ) � z exp
�

1
2

(� � e� )T � (� � e� ) + ( � � e� )T �
�

(2.3)

for any� ; e� ; f x (y) 2 Rd for anyy 2 f 1; :::; ng.

2.1. Stochastic Partition Function Bound (SPFB)

The partition function bound of Algorithm 1 can be used to optimize the objective in Equation 2.2.
The maximum likelihood parameter update given by the bound takes the form:

� t+1 = � t � �

0

@
TX

j =1

� j + � I

1

A

� 1 0

@
TX

j =1

�
� j � f x j (yj )

�
+ � � t

1

A ; (2.4)

where� j s and� j s are computed from Algorithm 1. In contrast to the above full-batch update,
Stochastic Partition Function Bound (SPFB) method that we propose in Algorithm 2 updates param-
eters after seeing each training data point, rather than the entire data set, according to the formula:

� t+1 = � t � � t (� t + � I ) � 1 �
� t � f x t (yt ) + � � t � ; (2.5)

where� t = � 0=t is the learning rate. Denotef (� ; x t ) = log( Z t (� )) � � T f x t (y t ) + �
2 k� k2 to be

an unbiased estimation of objective functionL(� ), whereL(� ) = � J (� ). The above formula (2.5)
can be rewritten as

� t+1 = � t � � t (� t + � I ) � 1 r f (� t ; x t ): (2.6)

The next theorem shows the convergence rate of SPFB.

Theorem 2. f � t g is the sequence of parameters generated by Algorithm 2. There exists0 < � 1 <
� 2, 0 < � 1 < � 2 such that for all iterationst,

� 1I � (� t + � I ) � 1 � � 2I and � 1I � r 2L(� ) � � 2I ; (2.7)
and there exists a constant� , such that for all� 2 Rd, Ex t [kf (� ; x t )k]2 � � 2. De�ne the learning
rate in iterationt as� t = � 0=t, where� 0 > 1=(2� 1� 1). Then for allt > 1,

E[L (� t ) � L (� � )] � Q(� 0)=t; (2.8)

whereQ(� 0) = max
n

� 2 � 2
2 � 2

0 � 2

2(2� 1 � 1 � 0 � 1) ; L (� 1) � L (� � )
o

.

Theorem 2 guarantees sub-linear convergence rate for SPFB when the step size is diminishing.
However, the time complexity of SPFB isO(nd2+d3)= eO(d3), due to the computation and inversion
of matrix � t , which is less appealing than theO(nd) complexity of SGD. This is next addressed.

2.2. Low-rank bound

In this section, we provide a low-rank construction of the bound that applies to both batch and
stochastic setting. We decompose matrix� into � = V T SV + D , whereV 2 Rk� d (orthnormal
matrix),S 2 Rk� k , andD 2 Rd� d (diagonal matrix) and apply Woodbury formula to compute the
inverse: � � 1 = D � 1 � D � 1V T (S� 1 + VD � 1V T ) � 1VD � 1 (clearly, the inverse only requires
O(k3) time and does not affect the total time complexity when rankk � d). Note that Algorithm
1 performs rank-one update to matrix� of the form: � = � + rr T , wherer =

p
� l . This update

can be “projected” onto matricesV ; S, andD . The concrete updates of matricesV ; S, andD are
shown in Algorithm 3. The next theorem, Theorem 3, guarantees that the low-rank bound is indeed
an upper-bound on the partition function1.

1. We simultaneously repair the low-rank bound construction of [29], which breaks this property.
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Theorem 3. Let Zx (� ) =
P n

y=1 exp
�
� T f x (y)

�
. In each iteration of thex-loop in Algorithm 3

�nds z; � ; V ; S; D such that

Zx (� ) � z exp
�

1
2

(� � e� )T (V T SV + D )( � � e� ) + ( � � e� )T �
�

(2.9)

for any� ; e� ; f x (y) 2 Rd for anyy 2 f 1; :::; ng.

Low-rank variant of Algorithm 2 is presented in Algorithm 4. Note that all proofs supporting
this section are deferred to the Supplement.

Algorithm 3: Low-rank Partition Function Bound

Input: e� 2 Rd, observationx, f x (y)8y 2 f 1; :::; ng, rankk 2 N
Output: Low-rank bound parameters:V , S, D , � , z

1 z ! 0+ , S = 0 , V = orthonormal 2 Rk� d, D = zI , � = 0
2 for each samplex j in batchdo // x-loop
3 Init zj  0+ , � = 0
4 for each labely 2 f 1; 2; :::; ng do

5 � = exp( e�
T

f x j (y)) ; r =

r
tanh( 1

2 log( �=z ))
2 log(�=z ) (f x j (y) � � );

6 p = Vr ; a = V T p; g = r � a, S+= pp T

7 QT AQ = svd(S); S  A ; V  QV ; D += kgkkakI 2 Rd� d

8 s = [ S(1; 1); :::; S(k; k); kgk2]T , ek = arg min i =1 ;:::;k +1 s(i )

9 if ek � k then
10 D = D + S(ek; ek)1T jV (ek; �)jdiag(jV (ek; �)j)

11 S(ek; ek) = kgk2; g = g
kgk ; V (ek; �) = g

12 else
13 D += 1 T jgjdiag(jgj)
14 � += �

zj + � (f x j (y) � � ); zj += �

15 end
16 � += � , z+= zj

17 end

Algorithm 4: MLE via Low-rank Stochastic Partition Function Bound (LSPFB)

Input: initial parameters� 0, training data setf (x j ; yj )gT
j =1 , featuresf x j , learning rates� t ,

regularization coef�cient�
Output: Model parameters�

1 Set� = � 0

2 while not convergeddo
3 randomly select a training point(x t ; yt )
4 GetV t , St , D t , � t from x t , f x t , � via Algorithm 3 (input batch is a single data pointx t )
5 D t = D t + � I ; � t = � t � f x t (yt ) + � �

6 �  � � � t

�
D � 1

t � D � 1
t V T

t

�
S� 1

t + V t D � 1
t V T

t

� � 1
V t D � 1

t

�
� t

7 end
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