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Abstract
Stochastic gradient descent (SGD) has taken the stage as the primary workhorse for large-scale
machine learning. It is often used with its adaptive variants such as AdaGrad, Adam, and AMS-
Grad. This paper proposes an adaptive stochastic gradient descent method for distributed machine
learning, which can be viewed as the communication-adaptive counterpart of the celebrated Adam
method — justifying its name CADA. The key components of CADA are a set of new rules tai-
lored for stochastic gradients that can be implemented to save communication upload. The new
algorithms adaptively reuse stale Adam gradients, thus saving communication, and still have con-
vergence rates comparable to original Adam. In numerical experiments, CADA achieves impressive
empirical performance at a 60% total communication reduction on average.

1. Introduction

Although simple to use, the plain-vanilla stochastic gradient descent (SGD) method [21] is of-
ten sensitive to the choice of hyper-parameters and sometimes suffer from the slow convergence.
Among various efforts to improve SGD, adaptive methods such as AdaGrad [5], Adam [14] and
AMSGrad [19] have impressive empirical performance, especially in training deep neural networks.

To achieve “adaptivity,” these algorithms adaptively adjust the update direction or tune the
learning rate, or, the combination of both. While existing studies on adaptive SGD have focused on
the setting where data and computation are both centralized in a single node, this paper considers
their implementation in the distributed setting. Since this setting often brings new challenges to
machine learning, can we add an additional dimension of adaptivity to Adam in this regime?

We consider the setting composed of a central server and a set ofM workers inM := {1, . . . ,M},
where each worker m has its local data ξm from a distribution Ξm. Workers may have different data
distributions {Ξm}, and they collaboratively solve the following problem

min
θ∈Rp

L(θ) =
1

M

∑
m∈M

Lm(θ) with Lm(θ) :=Eξm [`(θ; ξm)] , m ∈M (1)

where θ ∈ Rp is the sought variable and {Lm,m ∈M} are smooth (but not necessarily convex)
functions. We focus on the setting where local data ξm at each worker m can not be uploaded to the
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server, and collaboration is needed through communication between the server and workers. This
setting often emerges due to the data privacy concerns, e.g., federated learning [9, 17].

To solve (1), we can in principle apply the single-node version of the adaptive SGD methods
such as Adam [14]: At iteration k, the server broadcasts θk to all the workers; each worker m
computes ∇`(θk; ξkm) using a randomly selected sample or a minibatch of samples {ξkm} ∼ Ξm, and
then uploads it to the server; and once receiving stochastic gradients from all workers, the server can
simply use the aggregated stochastic gradient ∇̄k = 1

M

∑
m∈M∇`(θk; ξkm) to update the parameter

via the plain-vanilla single-node Adam. To implement this, however, all the workers have to upload
the fresh {∇`(θk; ξkm)} at each iteration. This prevents the efficient implementation of Adam in
scenarios where the communication uplink and downlink are not symmetric, and communication
especially upload from workers and the server is costly; e.g., cellular networks [18]. Therefore, our
goal is to endow an additional dimension of adaptivity to Adam for saving uplink communication.

Related work

Adaptive SGD. Adaptive learning rate methods have been developed that scale the gradient in an
entry-wise manner by using past gradients, which include AdaGrad [5, 26], AdaDelta [29] and
other variants [15]. This simple technique has markedly improved the performance of SGD. Adap-
tive SGD methods update the search directions and the learning rates simultaneously using past
gradients. Adam [14] and AMSGrad [19] are the representative ones in this category. While these
methods are simple-to-use, analyzing their convergence is challenging [19]. Their convergence in
the nonconvex setting has been settled only recently [3, 4]. Except [27], most adaptive SGD meth-
ods are studied in the single-node setting where data and computation are both centralized.
Communication-efficient SGD. One of the most popular techniques in this category is the periodic
averaging, e.g., elastic averaging SGD [30], local SGD (a.k.a. FedAvg) [7, 10, 12, 13, 16, 17,
22, 24] or local momentum SGD [25, 28]. In local SGD, workers perform local model updates
independently and the models are averaged periodically. However, except [7, 10, 24], most of local
SGD methods follow a pre-determined communication schedule that is nonadaptive. Some of them
are tailored for the homogeneous settings, where the data are identically distributed over all workers.
The effect of data heterogeneity on local update methods has been discussed in, e.g., [13].

The most related line of work to this paper is the lazily aggregated gradient (LAG) approach
[2, 23]. Unfortunately, the performance of LAG will be degraded when using stochastic gradients.
Our approach generalizes LAG to the regime of running adaptive SGD. Very recently, FedAvg with
local adaptive SGD update has been proposed in [20]. When the new algorithm achieves the sweet
spot between local SGD and adaptive momentum SGD, the proposed algorithm is very different
from ours, and the averaging period and the selection of participating workers are nonadaptive.

2. CADA: Communication-Adaptive Distributed Adam

We develop a new adaptive SGD algorithm for distributed learning, called Communication-Adaptive
Distributed Adam (CADA). Akin to the dynamic scaling of every gradient coordinate in Adam, the
idea of adaptive communication is motivated by that during distributed learning, not all communi-
cation rounds between the server and workers are equally important. So a natural solution is to use a
condition that decides whether the communication is important or not, and then adjust the frequency
of communication between a worker and the server.
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Analogous to the original Adam [14] and AMSGrad [19], our new CADA approach also uses the
exponentially weighted stochastic gradient hk+1 as the update direction of θk+1, and leverages the
weighted stochastic gradient magnitude vk+1 to inversely scale the update direction hk+1. Different
from the direct distributed implementation of Adam that incorporates the fresh (thus unbiased)
stochastic gradients ∇̄k = 1

M

∑
m∈M∇`(θk; ξkm), CADA exponentially combines the aggregated stale

stochastic gradients ∇k = 1
M

∑
m∈M∇`(θ̂km; ξ̂km), where ∇`(θ̂km; ξ̂km) is either the fresh stochastic

gradient ∇`(θk; ξkm), or an old copy when θ̂km 6= θk; ξ̂km 6= ξkm. Informally, with αk > 0 denoting the
stepsize at iteration k, CADA has the following update

hk+1 = β1h
k + (1− β1)∇k, with ∇k =

1

M

∑
m∈M

∇`(θ̂km; ξ̂km) (2a)

vk+1 = β2v̂
k + (1− β2)(∇k)2 (2b)

θk+1 = θk − αk(εI + V̂ k+1)−
1
2hk+1 (2c)

where β1, β2 > 0 are the momentum weights, V̂ k+1 := diag(v̂k+1) is a diagonal matrix whose diago-
nal vector is v̂k+1 := max{vk+1, v̂k}, the constant is ε > 0, and I is an identity matrix. To reduce the

Figure 1: The CADA implementation.

memory requirement of storing all the stale
stochastic gradients {∇`(θk; ξkm)}, we can obtain
∇k by refining the previous aggregated stochastic
gradients ∇k−1 stored in the server via

∇k = ∇k−1 +
1

M

∑
m∈Mk

δkm (3)

where δkm := ∇`(θk; ξkm) − ∇`(θ̂km; ξ̂km) is the
stochastic gradient innovation, and Mk is the set
of workers that upload the stochastic gradient to the server at iteration k. See CADA’s implementa-
tion in Figure 1 and the pseudo-code in Algorithm 1.

We formally develop our CADA method, and present the intuition behind its design. To be more
precise in our notations, we henceforth use τkm ≥ 0 for the staleness or age of the information from
worker m used by the server at iteration k, e.g., θ̂km = θk−τ

k
m . An age of 0 means “fresh.”

The first one termed CADA1 will calculate two stochastic gradient innovations with one δ̃km :=

∇`(θk; ξkm)−∇`(θ̃; ξkm) at the sample ξkm, and one δ̃k−τ
k
m

m := ∇`(θk−τkm ; ξ
k−τkm
m )−∇`(θ̃; ξk−τ

k
m

m ) at the
sample ξk−τ

k
m

m , where θ̃ is a snapshot of the previous iterate θ that will be updated everyD iterations.
CADA1 will exclude worker m fromMk at iteration k if worker m finds∥∥∥δ̃km − δ̃k−τkmm

∥∥∥2 ≤ c D∑
d=1

∥∥θk+1−d − θk−d
∥∥2 . (4)

If (4) is satisfied, workerm does not upload, and the staleness increases by τk+1
m = τkm+1; otherwise,

worker m belongs toMk, uploads the stochastic gradient innovation δkm, and resets τk+1
m = 1.

In addition to (4), the second rule that we term CADA2 will reuse the stale stochastic gradient
∇`(θk−τ

k
m

m ; ξ
k−τkm
m ) or exclude worker m fromMk if worker m finds

∥∥∥∇`(θk; ξkm)−∇`(θk−τ
k
m

m ; ξkm)
∥∥∥2 ≤ c D∑

d=1

∥∥θk+1−d− θk−d
∥∥2. (5)
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Algorithm 1 Pseudo-code of CADA; red lines are run only by CADA1; blue lines are implemented
only by CADA2; not both at the same time.

Input: counter {τ0m}, stepsize αk, c, max delay D.
for k = 0, 1, . . . ,K − 1 do

Server broadcasts θk to all workers.
CADA1: All workers set θ̃ = θk if k modD=0.
for Worker m = 1, 2, . . . ,M do in parallel

CADA1:
Compute∇`(θk; ξkm) and ∇`(θ̃; ξkm).

Check condition (4) with stored δ̃k−τ
k
m

m .
CADA2:

Compute∇`(θk; ξkm) and ∇`(θk−τ
k
m

m ; ξkm).
Check condition (5).

if (4) or (5) is violated, or, τkm ≥ D then
Upload δkm. . τk+1

m = 1
else

Upload nothing. . τk+1
m = τkm + 1

end if
end for
Server updates {hk, vk} via (2a)-(2b).
Server updates θk via (2c).

end for

If (5) is satisfied, then worker m does not upload, and the staleness increases by τk+1
m = τkm + 1;

otherwise, worker m uploads the stochastic gradient innovation δkm, and resets the staleness as
τk+1
m = 1. Notice that (5) is evaluated at two different iterates but on the same sample ξkm.

3. Convergence Analysis of CADA
We present the convergence results of CADA. For all the results, we make some basic assumptions,
which are standard in analyzing Adam and its variants [3, 14, 19, 27].

Assumption 1 The loss function L(θ) is smooth with the constant L.

Assumption 2 Samples ξ1m, ξ2m, . . . are independent, and the stochastic gradient ∇`(θ; ξkm) satisfies
Eξkm [∇`(θ; ξkm)] = ∇Lm(θ) and ‖∇`(θ; ξkm)‖ ≤ σm. And define σ := 1

M

∑
m∈M σm.

We will start with analyzing the expected descent in L(θk) by applying one CADA update.

Lemma 1 Under Assumptions 1 and 2, if αk ≤ αk+1, then {θk} generated by CADA satisfy

E[L(θk+1)]− E[L(θk)] ≤
(
L

2
+ β1L

)
E
[
‖θk+1 − θk‖2

]
− αk(1− β1)E

[〈
∇L(θk), (εI + V̂ k−D)−

1
2∇k

〉]
− αkβ1E

[〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉]

+αk(2− β1)σ2E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2−(ε+ v̂k+1

i )−
1
2

)]
. (6)
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Lemma 1 contains four terms in the RHS of (6): the first term captures the drift of two consec-
utive iterates; the second and third terms quantify the correlations between the gradient direction
∇L(θk) and the stale stochastic gradient ∇k as well as the state momentum stochastic gradient hk;
and, the last term estimates the maximum drift of the adaptive stepsizes over D + 1 iterations. The
following lemma characterizes the regularity of the stale aggregated stochastic gradients ∇k.

Lemma 2 Under Assumptions 1 and 2, if the stepsizes satisfy αk+1 ≤ αk ≤ 1/L, then we have

−αkE
[〈
∇L(θk), (εI + V̂ k−D)−

1
2∇k

〉]
≤− αk

2
E
[∥∥∇L(θk)

∥∥2
(εI+V̂ k−D)−

1
2

]
+

6DLα2
kε
− 1

2

M

∑
m∈M

σ2
m

+ ε−
1
2

(
L

12
+

c

2L

) D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
. (7)

Lemma 2 justifies the relevance of the stale yet properly selected stochastic gradients. Intuitively,
the first term in the RHS of (7) resembles the descent of using SGD with the unbiased gradient, and
the second and third terms will diminish if the stepsizes are diminishing.

In view of Lemmas 1 and 2, we introduce the following Lyapunov function:

Vk := L(θk)− L(θ?)−
∞∑
j=k

αjβ
j−k+1
1

〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉

+ bk

D∑
d=0

p∑
i=1

(ε+ v̂k−di )−
1
2 +

D∑
d=1

ρd‖θk+1−d − θk−d‖2 (8)

where θ? is the solution of (1), {bk}Kk=1 and {ρd}Dd=1 are constants that will be specified in the proof.
The following lemma captures the progress of the Lyapunov function.

Lemma 3 Under Assumptions 1-2, if {bk}Kk=1 and {ρd}Dd=1 in (8) are chosen properly, we have

E[Vk+1]− E[Vk] ≤− αk(1− β1)

2

(
ε+

σ2

1− β2

)− 1
2

E
[∥∥∇L(θk)

∥∥2]+ α2
kC0 (9)

where the constant C0 depends on the CADA and problem parameters c, β1, β2, ε,D, and L, {σ2
m}.

Lemma 3 is a generalization of SGD’s descent lemma. If we set β1 = β2 = 0 in (2) and bk = 0, ρd =

0, ∀d, k in (8), then Lemma 3 reduces to that of SGD in terms of L(θk); see e.g., [1, Lemma 4.4].
Building upon our Lyapunov analysis, we first present the convergence in nonconvex case.

Theorem 4 (nonconvex) Under Assumptions 1, 2, if we choose αk = α = O( 1√
K

) and β1 <√
β2 < 1, then the iterates {θk} generated by CADA satisfy

1

K

K−1∑
k=0

E
[
‖∇L(θk)‖2

]
= O

(
1√
K

)
. (10)

From Theorem 4, the convergence rate of CADA in terms of the average gradient norms is
O(1/

√
K), which matches that of the plain-vanilla Adam [3, 19].
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Figure 2: Logistic regression on covtype dataset.
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Figure 3: Training Neural network for classification on mnist dataset.

4. Simulations
In order to verify our analysis and show the empirical performance of CADA, we conduct simula-
tions using logistic regression and training neural networks. Data are distributed across M = 10
workers during all tests. We benchmark CADA with some popular methods Adam [14], stochastic
version of LAG [2], local SGD (or FedAvg) [17], local momentum [28] and FedAdam [20]. For
local SGD, local momentum and FedAdam, workers perform model update independently, which
are averaged over all workers every H iterations. In simulations, stepsizes are optimized for each
algorithm by a grid-search. Due to space limitation, please see the data allocation, the detailed
choice of parameters, and additional experiments on CIFAR10 dataset in Appendix.

Tests on logistic regression are reported in Figure 2, and tests on training neural networks are
reported in Figure 3. In our tests, two CADA variants achieve the similar iteration complexity as
the original Adam and outperform all other baselines in most cases. Since our CADA requires
two gradient evaluations per iteration, the gradient complexity of CADA is higher than Adam, but
still not more than that of other baselines. For logistic regression task, CADA1 and CADA2 save
the number of communication uploads by at least one order of magnitude; and for neural network
training, the saving is about 60%. Based on this results, the CADA1 and CADA2 rules achieve
more saving in terms of communication rounds than the direct stochastic version of LAG.
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Supplementary materials for
“CADA: Communication-Adaptive Distributed Adam”

In this supplementary document, we first compare CADA and the direct stochastic extension
of LAG, and then present the missing derivations of some claims, as well as the proofs of all the
lemmas and theorems in the paper, which is followed by details on our experiments.

Appendix A. Rationale of CADA

A.1. Why LAG with stochastic gradients does not work?
The LAG method [2] modifies the distributed gradient descent update. Instead of communicating
with all workers per iteration, LAG selects the subset of workers Mk to obtain fresh full gradi-
ents and reuses stale full gradients from others, that is, θk+1 = θk − ηk

M

∑
m∈M\Mk∇Lm(θk−τ

k
m) −

ηk
M

∑
m∈Mk∇Lm(θk), whereMk is adaptively decided by comparing the gradient difference ‖∇Lm(θk)−

∇Lm(θk−τ
k
m)‖. Following this principle, the direct (or “naive”) stochastic version of LAG selects the

subset of workersMk to obtain fresh stochastic gradients ∇Lm
(
θk; ξkm

)
, m ∈ Mk. The stochastic

LAG also follows the distributed SGD update, but it selectsMk by: if workerm finds the innovation
of the fresh stochastic gradient ∇`(θk; ξkm) is small such that it satisfies∥∥∥∇`(θk; ξkm)−∇`(θk−τ

k
m ; ξ

k−τkm
m )

∥∥∥2 ≤ c D∑
d=1

∥∥θk+1−d − θk−d
∥∥2 (11)

where c ≥ 0 and D are pre-fixed constants, then worker m reuses the old gradient, m ∈M\Mk, and
sets the staleness τk+1

m = τkm+ 1; otherwise, worker m uploads the fresh gradient, and sets τk+1
m = 1.

In the deterministic setting, LAG condition (11) is motivated by the elegant “larger descent per
upload” rationale, and has proved to be effective [2]. Nevertheless, the observation here is that the
two stochastic gradients (11) are evaluated on not just two different iterates (θk and θk−τ

k
m ) but also

two different samples (ξkm and ξk−τ
k
m

m ) thus two different loss functions. This is in contrast to the
original LAG in [2] where the gradient innovation is evaluated on the same function.

This subtle difference leads to the ineffectiveness of (11). We can see this by expanding the
left-hand-side (LHS) of (11) by (see the details in supplemental material)

E
[
‖∇`(θk; ξkm)−∇`(θk−τ

k
m ; ξ

k−τkm
m )‖2

]
≥ 1

2
E
[∥∥∇`(θk; ξkm)−∇Lm(θk)

∥∥2] (12a)

+
1

2
E
[[∥∥∇`(θk−τkm ; ξ

k−τkm
m )−∇Lm(θk−τ

k
m)
∥∥2]] (12b)

−E[‖∇Lm(θk)−∇Lm(θk−τ
k
m)‖2]. (12c)

Even if θk converges, e.g., θk → θ∗, and thus the right-hand-side (RHS) of (11)
∥∥θk+1−d−θk−d

∥∥2→
0, the LHS of (11) does not, because the variance inherited in (12a) and (12b) does not vanish yet the
gradient difference at the same function (12c) diminishes. Therefore, the key insight here is that the
non-diminishing variance of stochastic gradients makes the LAG rule (11) ineffective eventually.
This will also be verified in our simulations when we compare CADA with stochastic LAG.

Appendix B. Why CADA rules can work with stochastic gradients?
The rationale of CADA1. In contrast to the non-vanishing variance in LAG rule (see (12)), the
CADA1 rule (4) reduces its inherent variance. To see this, we can decompose the LHS of (4) as

9
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the difference of two variance reduced stochastic gradients at iteration k and k − τkm. Using the
stochastic gradient in SVRG as an example [8], the innovation can be written as

δ̃km − δ̃
k−τkm
m =(
∇`(θk; ξkm)−∇`(θ̃; ξkm) +∇Lm(θ̃)

)
−
(
∇`(θk−τ

k
m ; ξ

k−τkm
m )−∇`(θ̃; ξk−τ

k
m

m ) +∇Lm(θ̃)
)
. (13)

Define the minimizer of (1) as θ?. With derivations given in the supplementary document, the
expectation of the LHS of (4) can be upper-bounded by

E
[∥∥δ̃km − δ̃k−τkmm

∥∥2] = O
(
E[L(θk)]− L(θ?) + E[L(θk−τ

k
m)]− L(θ?) + E[L(θ̃)]− L(θ?)

)
. (14)

If θk converges, e.g., θk, θk−τ
k
m , θ̃ → θ∗, the RHS of (14) diminishes, and thus the LHS of (4)

diminishes. This is in contrast to the LAG rule (12) lower-bounded by a non-vanishing value.
Notice that while enjoying the benefit of variance reduction, our communication rule does not need
to repeatedly calculate the full gradient∇Lm(θ̃).

The rationale of CADA2. Similar to CADA1, the CADA2 rule (5) also reduces its inherent
variance, since the LHS of (5) can be written as the difference between a variance reduced stochastic
gradient and a deterministic gradient, that is

∇`(θk; ξkm)−∇`(θk−τ
k
m ; ξkm)=

(
∇`(θk; ξkm)−∇`(θk−τ

k
m ; ξkm) +∇Lm(θk−τ

k
m)
)
−∇Lm(θk−τ

k
m). (15)

With derivations deferred to the supplementary document, similar to (14) we can also conclude that
E[‖∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)‖2]→ 0 as the iterate θk → θ?.

For either (4) or (5), worker m can check it locally with small memory cost by recursively
updating the RHS of (4) or (5). In addition, worker m will update the stochastic gradient if the
staleness satisfies τkm ≥ D. We summarize CADA1 and CADA2 in Algorithm 1.

Appendix C. Missing Derivations

The analysis in this part is analogous to that in [6]. We define an auxiliary function as

ψm(θ) = Lm(θ)− Lm(θ?)−
〈
∇Lm(θ?), θ − θ?

〉
where θ? is a minimizer of L. Assume that∇`(θ; ξm) is L̄-Lipschitz continuous for all ξm, we have

‖∇`(θ; ξm)−∇`(θ?; ξm)‖2 ≤ 2L̄
(
`(θ; ξm)− `(θ?; ξm)−

〈
∇`(θ?; ξm), θ − θ?

〉)
.

Taking expectation with respect to ξm, we can obtain

Eξm [‖∇`(θ; ξm)−∇`(θ?; ξm)‖2] ≤ 2L̄
(
Lm(θ)− Lm(θ?)−

〈
∇Lm(θ?), θ − θ?

〉)
= 2L̄ψm(θ).

Note that∇Lm is also L̄-Lipschitz continuous and thus

‖∇Lm(θ)−∇Lm(θ?)‖2 ≤ 2L̄(Lm(θ)− Lm(θ?)−
〈
∇Lm(θ?), θ − θ?

〉
) = 2L̄ψm(θ).

10
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C.1. Derivations of (12)

By (56), we can derive that
‖θ1 + θ2‖ ≤ 2‖θ1‖2 + 2‖θ2‖2

which also implies ‖θ1‖2 ≥ 1
2‖θ1 + θ2‖2 − ‖θ2‖2.

As a consequence, we can obtain

E
[∥∥∇`(θk; ξkm)−∇`(θk−τ

k
m ; ξ

k−τkm
m )

∥∥2]
≥1

2
E
[∥∥(∇`(θk; ξkm)−∇Lm(θk)

)
+
(
∇Lm(θk−τ

k
m)−∇`(θk−τ

k
m ; ξ

k−τkm
m )

)∥∥2]
− E

[∥∥∇Lm(θk)−∇Lm(θk−τ
k
m)
∥∥2]

=
1

2
E
[∥∥∇`(θk; ξkm)−∇Lm(θk)

∥∥2]+
1

2
E
[[∥∥∇`(θk−τkm ; ξ

k−τkm
m )−∇Lm(θk−τ

k
m)
∥∥2]]

+ E
[〈
∇`(θk; ξkm)−∇Lm(θk),∇Lm(θk−τ

k
m)−∇`(θk−τ

k
m ; ξ

k−τkm
m )

〉]
I3

−E
[∥∥∇Lm(θk)−∇Lm(θk−τ

k
m)
∥∥2]

where we used the fact that I3 = 0 to obtain (12), that is

I3 = E
[〈

E
[
∇`(θk; ξkm)

∣∣Θk
]
−∇Lm(θk),∇Lm(θk−τ

k
m)−∇`(θk−τkm ; ξk−τ

k
m

m )
〉]

= 0.

C.2. Derivations of (14)

Recall that

δ̃km − δ̃
k−τkm
m =

(
∇`(θk; ξkm)−∇`(θ̃; ξkm) +∇Lm(θ̃)

)
−
(
∇`(θk−τ

k
m ; ξ

k−τkm
m )−∇`(θ̃; ξk−τ

k
m

m ) +∇Lm(θ̃)
)

=
(
∇`(θk; ξkm)−∇`(θ̃; ξkm) +∇ψm(θ̃)

)
gkm

−
(
∇`(θk−τ

k
m ; ξ

k−τkm
m )−∇`(θ̃; ξk−τ

k
m

m ) +∇ψm(θ̃)
)

g
k−τkm
m

.

And by (56), we have ‖δ̃km − δ̃
k−τkm
m ‖2 ≤ 2‖gkm‖2 + 2‖gk−τ

k
m

m ‖2. We decompose the first term as

E[‖gkm‖2] ≤2E[‖∇`(θk; ξkm)−∇`(θ?; ξkm)‖2] + 2E[‖∇`(θ̃; ξkm)−∇`(θ?; ξkm)−∇ψm(θ̃)‖2]
=2E[E[‖∇`(θk; ξkm)−∇`(θ?; ξkm)‖2|Θk]]

+ 2E[‖∇`(θ̃; ξkm)−∇`(θ?; ξkm)− E[∇`(θ̃; ξkm)−∇`(θ?; ξkm)|Θk]‖2]
≤4L̄Eψm(θk) + 2E[‖∇`(θ̃; ξkm)−∇`(θ?; ξkm)‖2]
=4L̄Eψm(θk) + 2E[E[‖∇`(θ̃; ξkm)−∇`(θ?; ξkm)‖2|Θk]]

≤4L̄Eψm(θk) + 4L̄Eψm(θ̃).

By nonnegativity of ψm, we have

E[‖gkm‖2] ≤ 4L̄
∑
m∈M

Eψm(θk) + 4L̄
∑
m∈M

Eψm(θ̃)

= 4ML̄(EL(θk)− L(θ?)) + 4ML̄(EL(θ̃)− L(θ?)). (16)

Similarly, we can prove

E[‖gk−τkmm ‖2] ≤ 4ML̄(EL(θk−τ
k
m)− L(θ?)) + 4ML̄(EL(θ̃)− L(θ?)). (17)

11
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Therefore, it follows that

E[‖δ̃km − δ̃k−τ
k
m

m ‖2]

≤ 8ML̄(EL(θk)− L(θ?)) + 8ML̄(EL(θk−τ
k
m)− L(θ?)) + 16ML̄(EL(θ̃)− L(θ?)).

C.3. Derivations of (15)

The LHS of (5) can be written as

∇`(θk; ξkm)−∇`(θk−τkm ; ξkm) =
(
∇`(θk; ξkm)−∇`(θk−τkm ; ξkm) +∇Lm(θk−τ

k
m)
)
−∇Lm(θk−τ

k
m)

=
(
∇`(θk; ξkm)−∇`(θk−τkm ; ξkm) +∇ψm(θk−τ

k
m)
)
−∇ψm(θk−τ

k
m).

Similar to (16), we can obtain

E[‖∇`(θk; ξkm)−∇`(θk−τkm ; ξkm) +∇ψm(θk−τ
k
m)‖2]

≤ 4ML̄(EL(θk)− L(θ?)) + 4ML̄(EL(θk−τ
k
m)− L(θ?)).

Combined with the fact

E[‖∇ψm(θk−τ
k
m)‖2] = E[‖∇Lm(θk−τ

k
m)−∇Lm(θ?)‖2]

≤ 2L̄Eψm(θk−τ
k
m) ≤ 2ML̄(EL(θk−τ

k
m)− L(θ?))

we have

E[‖∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)‖2] ≤ 8ML̄(EL(θk)− L(θ?)) + 12ML̄(EL(θk−τ
k
m)− L(θ?)).

Appendix D. Proof of Lemma 1

Using the smoothness of L(θ) in Assumption 1, we have

L(θk+1) ≤L(θk) +
〈
∇L(θk), θk+1 − θk

〉
+
L

2

∥∥θk+1 − θk
∥∥2

=L(θk)− αk
〈
∇L(θk), (εI + V̂ k+1)−

1
2hk+1

〉
+
L

2

∥∥θk+1 − θk
∥∥2. (18)

We can further decompose the inner product as

−
〈
∇L(θk), (εI + V̂ k+1)−

1
2hk+1

〉
=− (1− β1)

〈
∇L(θk), (εI + V̂ k)−

1
2∇k

〉
−β1

〈
∇L(θk), (εI + V̂ k)−

1
2hk
〉

Ik1

−
〈
∇L(θk),

(
(εI + V̂ k+1)−

1
2 − (εI + V̂ k)−

1
2

)
hk+1

〉
Ik2

(19)

12
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where we again decompose the first inner product as

−(1− β1)
〈
∇L(θk), (εI + V̂ k)−

1
2∇k

〉
= −(1− β1)

〈
∇L(θk), (εI + V̂ k−D)−

1
2∇k

〉
Ik3

−(1− β1)
〈
∇L(θk),

(
(εI + V̂ k)−

1
2 − (εI + V̂ k−D)−

1
2

)
∇k
〉

Ik4

. (20)

Next, we bound the terms Ik1 , I
k
2 , I

k
3 , I

k
4 separately.

Taking expectation on Ik1 conditioned on Θk, we have

E[Ik1 | Θk] = −E
[
β1

〈
∇L(θk), (εI + V̂ k)−

1
2hk
〉
| Θk

]
= −β1

〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉
− β1

〈
∇L(θk)−∇L(θk−1), (εI + V̂ k)−

1
2hk
〉

(a)

≤ −β1
〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉

+ α−1k−1β1L
∥∥θk − θk−1∥∥2

(b)

≤ β1

(
Ik−11 + Ik−12 + Ik−13 + Ik−14

)
+ α−1k−1β1L

∥∥θk − θk−1∥∥2 (21)

where follows from the L-smoothness of L(θ) implied by Assumption 1; and (b) uses again the
decomposition (19) and (20).

Taking expectation on Ik2 over all the randomness, we have

E[Ik2 ] =E
[
−
〈
∇L(θk),

(
(εI + V̂ k+1)−

1
2 − (εI + V̂ k)−

1
2

)
hk+1

〉]
=E
[ p∑
i=1

∇iL(θk)hk+1
i

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
(d)

≤E
[
‖∇L(θk)‖‖hk+1‖

p∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
(e)

≤σ2E
[ p∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
(22)

where (d) follows from the Cauchy-Schwarz inequality and (e) is due to Assumption 2.
Regarding Ik3 , we will bound separately in Lemma 2.
Taking expectation on Ik4 over all the randomness, we have

E[Ik4 ] =E
[
− (1− β1)

〈
∇L(θk),

(
(εI + V̂ k)−

1
2 − (εI + V̂ k−D)−

1
2

)
∇k
〉]

=− (1− β1)E
[ p∑
i=1

∇iL(θk)∇k
i

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k−Di )−

1
2

)]
≤(1− β1)E

[
‖∇L(θk)‖‖∇k‖

p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂ki )−

1
2

)]
≤(1− β1)σ2E

[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂ki )−

1
2

)]
. (23)

13
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Taking expectation on (18) over all the randomness, and plugging (21), (22), and (23), we have

E[L(θk+1)]− E[L(θk)] ≤ − αkE
[〈
∇L(θk), (εI + V̂ k+1)−

1
2hk+1

〉]
+
L

2
E
[∥∥θk+1 − θk

∥∥2]
=αkE

[
Ik1 + Ik2 + Ik3 + Ik4

]
+
L

2
E
[∥∥θk+1 − θk

∥∥2]
≤− αk(1− β1)E

[〈
∇L(θk), (εI + V̂ k−D)−

1
2∇k

〉]
− αkβ1E

[〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉]

+ αkσ
2E
[ p∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+ αk(1− β1)σ2E

[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂ki )−

1
2

)]
+

(
L

2
+ αkα

−1
k−1β1L

)
E
[
‖θk+1 − θk‖2

]
. (24)

Since (ε+ v̂ki )−
1
2 ≤ (ε+ v̂k−1i )−

1
2 , we have

σ2E
[ p∑
i=1

(
(ε+ v̂ki )−

1
2−(ε+ v̂k+1

i )−
1
2

)
+(1− β1)

p∑
i=1

(
(ε+ v̂k−Di )−

1
2−(ε+ v̂ki )−

1
2

)]
≤(2− β1)σ2E

[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
. (25)

Plugging (25) into (24) leads to the statement of Lemma 1.

Appendix E. Proof of Lemma 2

We first analyze the inner produce under CADA2 and then CADA1.
First recall that ∇̄k = 1

M

∑
m∈M∇`(θk; ξkm). Using the law of total probability implies that

E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2 ∇̄k

〉]
= E

[
E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2 ∇̄k

〉
| Θk

]]
= E

[〈
∇L(θk), (εI + V̂ k−D)−

1
2E
[
∇̄k | Θk

] 〉]
= E

[∥∥∥∇L(θk)
∥∥∥2
(εI+V̂ k−D)−

1
2

]
. (26)

14
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Taking expectation on
〈
∇L(θk), (εI + V̂ k−D)−

1
2∇k

〉
over all randomness, we have

− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2∇k

〉]
=− E

[〈
∇L(θk), (εI + V̂ k−D)−

1
2 ∇̄k

〉]
− E

[〈
∇L(θk), (εI + V̂ k−D)−

1
2

1

M

∑
m∈M

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk; ξkm)
)〉]

(a)
= − E

[∥∥∥∇L(θk)
∥∥∥2
(εI+V̂ k−D)−

1
2

]
− 1

M

∑
m∈M

E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk; ξkm)
)〉]

(27)

where (a) uses (26).
Decomposing the inner product, for the CADA2 rule (5), we have

− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk; ξkm)
)〉]

=− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk−τkm ; ξkm)
)〉]

− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)

)〉]
(b)

≤Lε
− 1

2

12αk

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+ 6DLαkε

− 1
2σ2m

− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)

)〉]
(28)

where (b) follows from Lemma 6.
Using the Young’s inequality, we can bound the last inner product in (28) as

− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)

)〉]
≤1

2
E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+

1

2
E
[∥∥∥(εI + V̂ k−D)−

1
2

∥∥∥∥∥∥(∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)
)∥∥∥2]

(g)

≤ 1

2
E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+

1

2
E
[∥∥∥(εI + V̂ k−D)−

1
2

∥∥∥∥∥∥∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)
∥∥∥2]

(h)

≤ 1

2
E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+
c

2
E
[∥∥∥(εI + V̂ k−D)−

1
2

∥∥∥ D∑
d=1

∥∥∥θk+1−d− θk−d
∥∥∥2 ]

(i)

≤ 1

2
E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+
cε−

1
2

2

D∑
d=1

E
[ ∥∥∥θk+1−d− θk−d

∥∥∥2 ] (29)

where (g) follows from the Cauchy-Schwarz inequality, and (h) uses the adaptive communication
condition (5) in CADA2, and (i) follows since V̂ k−D is entry-wise nonnegative.
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Similarly for CADA1’s condition (4), we have

− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk; ξkm)
)〉]

=− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θ̃; ξk−τkmm )−∇`(θ̃; ξkm)

)〉]
− E

[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
δ̃k−τ

k
m

m − δ̃km)
)〉]

(j)

≤Lε
− 1

2

12αk

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+ 6DLαkε

− 1
2σ2m

− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
δ̃k−τ

k
m

m − δ̃km
)〉]

(30)

where (j) follows from Lemma 6 since θ̃ is a snapshot among {θk, · · · , θk−D}.
And the last product in (30) is bounded by

− E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
δ̃k−τ

k
m

m − δ̃km
)〉]

≤1

2
E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+
c

2
E
[∥∥∥(εI + V̂ k−D)−

1
2

∥∥∥ D∑
d=1

∥∥∥θk+1−d− θk−d
∥∥∥2 ]

(i)

≤ 1

2
E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+
cε−

1
2

2

D∑
d=1

E
[ ∥∥∥θk+1−d− θk−d

∥∥∥2 ]. (31)

Combining (27)-(31) leads to the desired statement for CADA1 and CADA2.

Appendix F. Proof of Lemma 3

For notational brevity, we re-write the Lyapunov function (8) as

Vk := L(θk)− L(θ?)− ck
〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉

+ bk

D∑
d=0

p∑
i=1

(ε+ v̂k−di )−
1
2 +

D∑
d=1

ρd‖θk+1−d − θk−d‖2 (32)

where {ck} are some positive constants.
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Therefore, taking expectation on the difference of Vk and Vk+1 in (32), we have (with ρD+1 =
0)

E[Vk+1]− E[Vk] =E[L(θk+1)]− E[L(θk)]− ck+1E
[〈
∇L(θk), (εI + V̂ k+1)−

1
2hk+1

〉]
+ ckE

[〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉]

+ bk+1

D∑
d=0

p∑
i=1

(ε+ v̂k+1−d
i )−

1
2 − bk

D∑
d=0

p∑
i=1

(ε+ v̂k−di )−
1
2

+ ρ1E
[
‖θk+1 − θk‖2

]
+

D∑
d=1

(ρd+1 − ρd)E
[
‖θk+1−d − θk−d‖2

]
(a)

≤ (αk + ck+1)E
[
Ik1 + Ik2 + Ik3 + Ik4

]
− ckE

[
Ik−11 + Ik−12 + Ik−13 + Ik−14

]
+ bk+1

p∑
i=1

E
[
(ε+ v̂k+1

i )−
1
2

]
− bk

p∑
i=1

E
[
(ε+ v̂k−Di )−

1
2

]
+

D∑
d=1

(bk+1 − bk)
p∑
i=1

E
[
(ε+ v̂k+1−d

i )−
1
2

]
+

(
L

2
+ ρ1

)
E
[
‖θk+1 − θk‖2

]
+

D∑
d=1

(ρd+1 − ρd)E
[
‖θk+1−d − θk−d‖2

]
(33)

where (a) uses the smoothness in Assumption 1 and the definition of Ik1 , I
k
2 , I

k
3 , I

k
4 in (19) and (20).

Note that we can bound (αk + ck+1)E
[
Ik1 + Ik2 + Ik3 + Ik4

]
the same as (19) in the proof of

Lemma 1 In addition, Lemma 2 implies that

E[Ik3 ] ≤− 1− β1
2

E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+ (1− β1)ε−

1
2

(
L

12αk
+
c

2

) D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+(1− β1)

6DLαkε
− 1

2

M

∑
m∈M

σ2m.

(34)

17
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Therefore, plugging Lemma 1 with αk replaced by αk+ck+1 into (33), together with (34), leads
to

E[Vk+1]− E[Vk] ≤− (αk + ck+1)

(
1− β1

2

)
E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+ (αk + ck+1)(1− β1)ε−

1
2

(
L

12αk
+
c

2

) D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+ (αk + ck+1)(1− β1)

6DLαkε
− 1

2

M

∑
m∈M

σ2m

+ ((αk + ck+1)β1 − ck)E
[
Ik−11 + Ik−12 + Ik−13 + Ik−14

]
+ (αk + ck+1)(2− β1)σ2E

[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+ bk+1

p∑
i=1

E
[
(ε+ v̂k+1

i )−
1
2

]
− bk

p∑
i=1

E
[
(ε+ v̂k−Di )−

1
2

]
+

D∑
d=1

(bk+1 − bk)
p∑
i=1

E
[
(ε+ v̂k+1−d

i )−
1
2

]
+

D∑
d=1

(ρd+1 − ρd)E
[
‖θk+1−d − θk−d‖2

]
+

(
L

2
+ ρ1 + (αk + ck+1)α

−1
k−1β1L

)
E
[
‖θk+1 − θk‖2

]
. (35)

Select αk ≤ αk−1 and ck :=
∞∑
j=k

αjβ
j−k+1
1 ≤ (1− β1)−1αk so that (αk + ck+1)β1 = ck and

(αk + ck+1)(1− β1) ≤ (αk + (1− β1)−1αk+1)(1− β1)
≤ αk(1 + (1− β1)−1)(1− β1) = αk(2− β1).

In addition, select bk to ensure that bk+1 ≤ bk. Then it follows from (35) that

E[Vk+1]− E[Vk] ≤− αk(1− β1)
2

E
[∥∥∥∇L(θk)

∥∥∥2
(εI+V̂ k−D)−

1
2

]
+ (2− β1)α2

k

6DLε−
1
2

M

∑
m∈M

σ2m

+ (2− β1)αkε−
1
2

(
L

12αk
+
c

2

) D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+

(
(2− β1)2

(1− β1)
αkσ

2 − bk
)
E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+

(
L

2
+ ρ1 + (1− β1)−1L

)
E
[
‖θk+1 − θk‖2

]
+

D∑
d=1

(ρd+1 − ρd)E
[
‖θk+1−d − θk−d‖2

]
(36)
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where we have also used the fact that −(αk + ck+1)
(
1−β1
2

)
≤ −αk(1−β1)

2 since ck+1 ≥ 0.

If we choose αk ≤ 1
L for k = 1, 2 . . . ,K, then it follows from (36) that

E[Vk+1]− E[Vk]

≤− αk(1− β1)
2

(
ε+

σ2

1− β2

)− 1
2

E
[∥∥∥∇L(θk)

∥∥∥2]+ (2− β1)
6α2

kDLε
− 1

2

M

∑
m∈M

σ2m

+

(
(2− β1)2

(1− β1)
αkσ

2 − bk
)

Ak

E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]

+

(
L

2
+ ρ1 + (1− β1)−1L

)
E
[
‖θk+1 − θk‖2

]
+

D∑
d=1

(
(2− β1)ε−

1
2

(
L

12
+
cαk
2

)
+ ρd+1 − ρd

)
Bk

d

E
[
‖θk+1−d − θk−d‖2

]
. (37)

To ensure Ak ≤ 0 and Bk
d ≤ 0, it is sufficient to choose {bk} and {ρd} satisfying (with ρD+1 =

0)

(2− β1)2

(1− β1)
αkσ

2 − bk ≤ 0, k = 1, · · · ,K

(2− β1)ε−
1
2

(
L

12
+
cαk
2

)
+ ρd+1 − ρd ≤ 0, d = 1, · · · , D.

Solve this system of linear equations and get

bk =
(2− β1)2

(1− β1)L
σ2, k = 1, · · · ,K (38)

ρd = (2− β1)ε−
1
2

(
L

12
+

c

2L

)
(D − d+ 1), d = 1, · · · , D (39)

plugging which into (37) leads to the conclusion of Lemma 3.

Appendix G. Proof of Theorem 4

From the definition of Vk, we have for any k, that

E[Vk] ≥ L(θk)− L(θ∗)− ck
〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉

+

D∑
d=1

ρd‖θk+1−d − θk−d‖2

≥ −|ck|
∥∥∥∇L(θk−1)

∥∥∥∥∥∥(εI + V̂ k)−
1
2hk
∥∥∥

≥ −(1− β1)−1αkσ2ε−
1
2 (40)

where we use Assumption 2 and Lemma 7.
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By taking summation on (37) over k = 0, · · · ,K − 1, it follows from that

α(1− β1)
2

(
ε+

σ2

1− β2

)− 1
2 1

K

K∑
k=1

E
[∥∥∥∇L(θk)

∥∥∥2]

≤E[V1]− E[VK+1]

K
+ (2− β1)

6α2DLε−
1
2

M

∑
m∈M

σ2m +
(2− β1)2

(1− β1)
σ2pDε−

1
2
α

K

+

(
L

2
+ ρ1 + (1− β1)−1L

)
1

K

K∑
k=1

E
[
‖θk+1 − θk‖2

]
(a)

≤ E[V1]
K

+ (2− β1)
6α2DLε−

1
2

M

∑
m∈M

σ2m + (1− β1)−1σ2ε−
1
2
α

K
+

(2− β1)2

(1− β1)
σ2pDε−

1
2
α

K

+

(
L

2
+ ρ1 + (1− β1)−1L

)
p(1− β2)−1(1− β3)−1α2 (41)

where (a) follows from (40) and Lemma 8.
Specifically, if we choose a constant stepsize α := η√

K
, where η > 0 is a constant, and define

C̃1 := (2− β1)6DLε−
1
2 (42)

and

C̃2 := (1− β1)−1ε−
1
2 +

(2− β1)2

(1− β1)
Dε−

1
2 (43)

and

C̃3 :=

(
L

2
+ ρ1 + (1− β1)−1L

)
(1− β2)−1(1− β3)−1 (44)

and

C̃4 :=
1

2
(1− β1)

(
ε+

σ2

1− β2

)− 1
2

(45)

we can obtain from (41) that

1

K

K−1∑
k=0

E
[
‖∇L(θk)‖2

]
≤
L(θ0)−L(θ∗)

K + C̃1
M

∑
m∈M σ2mα

2 + C̃2pσ
2 α
K + C̃3pα

2

αC̃4

≤L(θ0)− L(θ∗)

KαC̃4

+
C̃1α

C̃4M

∑
m∈M

σ2m + C̃2p
σ2

KC̃4

+
C̃3pα

C̃4

=
(L(θ0)− L(θ∗))C4√

Kη
+

C1η√
KM

∑
m∈M

σ2m +
C2pσ

2

K
+
C3pη√
K

where we define C1 := C̃1/C̃4, C2 := C̃2/C̃4, C3 := C̃3/C̃4, and C4 := 1/C̃4.
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Appendix H. Convergence under Polyak-Łojasiewicz condition

Next we present the convergence results under a slightly stronger assumption on the loss L(θ).

Assumption 3 The loss function L(θ) satisfies the Polyak-Łojasiewicz (PL) condition with the
constant µ > 0, that is L(θ)− L(θ∗) ≤ 1

2µ ‖L(θ)‖2.

The PL condition is weaker than the strongly convexity, which does not even require convexity
[11]. And it is satisfied by a wider range of problems such as least squares for underdetermined
linear systems and logistic regression, and also certain types of neural networks.

We next establish the convergence of CADA under this condition.

Theorem 5 (PL-condition) Under Assumptions 1-3, if we choose the stepsize as αk = 2
µ(k+K0)

for a given constant K0, then θK generated by Algorithm 1 satisfies

E
[
L(θK)

]
− L(θ?) = O

(
1

K

)
. (46)

Theorem 5 implies that under the PL-condition of the loss function, the CADA algorithm can
achieve the global convergence in terms of the loss function, with a fast rate O(1/K).

By the PL-condition of L(θ), we have

− αk(1− β1)

2

(
ε+

σ2

1− β2

)− 1
2

E
[∥∥∇L(θk)

∥∥2]
≤− αkµ(1− β1)

(
ε+

σ2

1− β2

)− 1
2

E
[
L(θk)− L(θ?)

]
(a)

≤− 2αkµC̃4

(
E[Vk]+ck

〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉
−bk

D∑
d=0

p∑
i=1

(ε+ v̂k−di )−
1
2 −

D∑
d=1

ρd‖θk+1−d − θk−d‖2
)

(b)

≤ − 2αkµC̃4E[Vk] + 2α2
kµC̃4(1− β1)−1σ2ε−

1
2 + 2αkµC̃4bk

D∑
d=0

p∑
i=1

E
[
(ε+ v̂k−di )−

1
2

]
+ 2αkµC̃4

D∑
d=1

ρdE[‖θk+1−d − θk−d‖2] (47)

where (a) uses the definition of C̃4 in (45), and (b) uses Assumption 2 and Lemma 7.
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Plugging (47) into (36), we have

E[Vk+1]− E[Vk]

≤− 2αkµC̃4E[Vk] + (2− β1)
6α2

kDLε
− 1

2

M

∑
m∈M

σ2m

+
(2− β1)2

(1− β1)
αkσ

2E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+ bk+1

p∑
i=1

E
[
(ε+ v̂k+1

i )−
1
2

]
− (bk − 2αkµC̃4bk)

p∑
i=1

E
[
(ε+ v̂k−Di )−

1
2

]
+

D∑
d=1

(bk+1 − bk + 2αkµC̃4bk)

p∑
i=1

E
[
(ε+ v̂k+1−d

i )−
1
2

]
+

(
L

2
+ ρ1 + (1− β1)−1L

)
p(1− β2)−1(1− β3)−1α2

k + 2α2
kµC̃4(1− β1)−1σ2ε−

1
2

+
D∑
d=1

(
(2− β1)ε−

1
2

(
L

12
+
cαk
2

)
+ ρd+1 − ρd + 2αkµC̃4ρd

)
E
[
‖θk+1−d − θk−d‖2

]
. (48)

If we choose bk to ensure that bk+1 ≤ (1− 2αkµC̃4)bk, then we can obtain from (48) that

E[Vk+1]− E[Vk] (49)

≤− 2αkµC̃4E[Vk] +
C̃1

M

∑
m∈M

σ2mα
2
k + C̃3pα

2
k + 2µC̃4(1− β1)−1σ2ε−

1
2α2

k

+

(
(2− β1)2

(1− β1)
αkσ

2 − (1− 2αkµC̃4)bk

)
E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+

D∑
d=1

(
(2− β1)ε−

1
2

(
L

12
+
cαk
2

)
+ ρd+1 − ρd + 2αkµC̃4ρd

)
E
[
‖θk+1−d − θk−d‖2

]
.

If αk ≤ 1
L , we choose parameters {bk, ρd} to guarantee that

(2− β1)2

(1− β1)L
σ2 −

(
1− 2µC̃4

L

)
bk ≤ 0, ∀k (50)

(2− β1)
(
L

12
+

c

2L

)
ε−

1
2 + ρd+1 −

(
1− 2µC̃4

L

)
ρd ≤ 0, d = 1, · · · , D (51)

and choose β1, β2, ε to ensure that 1− 2µC̃4

L ≥ 0.
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Then we have

E[Vk+1] ≤
(

1− 2αkµC̃4

)
E[Vk] +

(
C̃1

M

∑
m∈M

σ2m + C̃3p+ 2µC̃4(1− β1)−1σ2ε−
1
2

C̃5

)
α2
k

≤
k∏
j=0

(1− 2αjµC̃4)E[V0] +

k∑
j=0

α2
j

k∏
i=j+1

(1− 2αiµC̃4)C̃5. (52)

If we choose αk = 1
µ(k+K0)C̃4

≤ 1
L , where K0 is a sufficiently large constant to ensure that αk

satisfies the aforementioned conditions, then we have

E[VK ] ≤E[V0]
K−1∏
k=0

(1− 2αkµC̃4) + C̃5

K−1∑
k=0

α2
k

K−1∏
j=k+1

(1− 2αjµC̃4)

≤E[V0]
K−1∏
k=0

k +K0 − 2

k +K0
+

C̃5

µ2C̃2
4

K−1∑
k=0

1

(k +K0)2

K−1∏
j=k+1

j +K0 − 2

j +K0

≤ (K0 − 2)(K0 − 1)

(K +K0 − 2)(K +K0 − 1)
E[V0] +

C̃5

µ2C̃2
4

K−1∑
k=0

(k +K0 − 1)

(k +K0)(K +K0 − 2)(K +K0 − 2)

≤ (K0 − 1)2

(K +K0 − 1)2
E[V0] +

C̃5K

µ2C̃2
4 (K +K0 − 1)2

=
(K0 − 1)2

(K +K0 − 1)2
(L(θ0)− L(θ?)) +

C̃5K

µ2C̃2
4 (K +K0 − 2)2

from which the proof is complete.

Appendix I. Supporting Lemmas

Define the σ-algebra Θk = {θl, 1 ≤ l ≤ k}. For convenience, we also initialize parameters as
θ−D, θ−D+1, . . . , θ−1 = θ0. Some basic facts used in the proof are reviewed as follows.
Fact 1. Assume that X1, X2, . . . , Xn ∈ Rp are independent random variables, and EX1 = · · · =
EXn = 0. Then

E

[∥∥∥ n∑
i=1

Xi

∥∥∥2] =
n∑
i=1

E
[
‖Xi‖2

]
. (53)

Fact 2. (Young’s inequality) For any θ1, θ2 ∈ Rp, ε > 0,〈
θ1, θ2

〉
≤ ‖θ1‖

2

2ε
+
ε‖θ2‖2

2
. (54)

As a consequence, we have

‖θ1 + θ2‖2 ≤
(

1 +
1

ε

)
‖θ1‖2 + (1 + ε)‖θ2‖2. (55)
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Fact 3. (Cauchy-Schwarz inequality) For any θ1, θ2, . . . , θn ∈ Rp, we have∥∥∥ n∑
i=1

θi

∥∥∥2 ≤ n n∑
i=1

‖θi‖2. (56)

Lemma 6 For k −D ≤ l ≤ k − τkm, if {θk} are the iterates generated by CADA, we have

E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)〉]
≤Lε

− 1
2

12αk

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+6DLαkε

− 1
2σ2m (57)

and similarly, we have

E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇Lm(θl)−∇`(θl; θk−τkm

)〉]
≤Lε

− 1
2

12αk

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+ 3DLαkε

− 1
2σ2m. (58)

Proof: We first show the following holds.

E
[〈
∇L(θl), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)〉]
(a)
=E

[
E
[〈
∇L(θl), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)〉∣∣∣Θl
]]

(b)
=E

[〈
∇L(θl), (εI + V̂ k−D)−

1
2E
[
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

∣∣Θl
]〉]

=E
[〈
∇L(θl), (εI + V̂ k−D)−

1
2

(
∇Lm(θl)−∇Lm(θl)

)〉]
= 0 (59)

where (a) follows from the law of total probability, and (b) holds because V̂ k−D is deterministic
conditioned on Θl when k −D ≤ l.

We first prove (57) by decomposing it as

E
[〈
∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)〉]
(c)
=E

[〈
∇L(θk)−∇L(θl), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)〉]
(d)

≤LE
[∥∥∥(εI + V̂ k−D)−

1
4

∥∥∥∥∥∥θk − θl∥∥∥∥∥∥(εI + V̂ k−D)−
1
4

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)∥∥∥]
(e)

≤ Lε−
1
2

12Dαk
E
[
‖θk − θl‖2

]
I1

+
6DLαkε

− 1
2

2
E
[
‖∇`(θl; ξkm)−∇`(θl; ξk−τkmm )‖2

]
I2

(60)

where (c) holds due to (59), (d) uses Assumption 1, and (e) applies the Young’s inequality.
Applying the Cauchy-Schwarz inequality to I1, we have

I1 =E
[∥∥∥ k−l∑

d=1

(θk+1−d − θk−d)
∥∥∥2]

≤(k − l)
k−l∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
≤ D

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
. (61)
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Applying Assumption 2 to I2, we have

I2 =E
[∥∥∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

∥∥2]
=E
[∥∥∇`(θl; ξkm)

∥∥2]+ E
[∥∥∇`(θl; ξk−τkmm )

∥∥2] ≤ 2σ2m (62)

where the last inequality uses Assumption 2. Plugging (61) and (62) into (60), it leads to (57).
Likewise, following the steps to (60), it can be verified that (58) also holds true.

Lemma 7 Under Assumption 2, the parameters {hk, v̂k} of CADA in Algorithm 1 satisfy

‖hk‖ ≤ σ, ∀k; v̂ki ≤ σ2, ∀k, i (63)

where σ := 1
M

∑
m∈M σm.

Proof: Using Assumption 2, it follows that

‖∇k‖ =

∥∥∥∥∥ 1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )

∥∥∥∥∥ ≤ 1

M

∑
m∈M

∥∥∥∇`(θk−τkm ; ξk−τ
k
m

m )
∥∥∥ ≤ 1

M

∑
m∈M

σm = σ.

(64)
Therefore, from the update (2a), we have

‖hk+1‖ ≤ β1‖hk‖+ (1− β1)‖∇k‖ ≤ β1‖hk‖+ (1− β1)σ.

Since ‖h1‖ ≤ σ, if follows by induction that ‖hk+1‖ ≤ σ, ∀k.
Using Assumption 2, it follows that

(∇ki )2 =

(
1

M

∑
m∈M

∇i`(θk−τ
k
m ; ξk−τ

k
m

m )

)2

≤ 1

M

∑
m∈M

(
∇i`(θk−τ

k
m ; ξk−τ

k
m

m )
)2

≤ 1

M

∑
m∈M

∥∥∥∇`(θk−τkm ; ξk−τ
k
m

m )
∥∥∥2 =

1

M

∑
m∈M

σ2m ≤ σ2. (65)

Similarly, from the update (2b), we have

v̂k+1
i ≤ max{v̂ki , β2v̂ki + (1− β2)(∇ki )2} ≤ max{v̂ki , β2v̂ki + (1− β2)σ2}.

Since v1i = v̂1i ≤ σ2, if follows by induction that v̂k+1
i ≤ σ2.

Lemma 8 Under Assumption 2, the iterates {θk} of CADA in Algorithm 1 satisfy∥∥∥θk+1 − θk
∥∥∥2 ≤ α2

kp(1− β2)−1(1− β3)−1 (66)

where p is the dimension of θ, β1 <
√
β2 < 1, and β3 := β21/β2.
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Proof: Choosing β1 < 1 and defining β3 := β21/β2, it can be verified that

|hk+1
i | =

∣∣∣β1hki + (1− β1)∇ki
∣∣∣β1|hki |+ |∇ki |

≤ β1
(
β1|hk−1i |+ |∇k−1i |

)
+ |∇ki |

≤
k∑
l=0

βk−l1 |∇li| =
k∑
l=0

√
β3
k−l√

β2
k−l
|∇li|

(a)

≤

(
k∑
l=0

βk−l3

) 1
2
(

k∑
l=0

βk−l2 (∇li)2
) 1

2

≤ (1− β3)−
1
2

(
k∑
l=0

βk−l2 (∇li)2
) 1

2

(67)

where (a) follows from the Cauchy-Schwartz inequality.
For v̂ki , first we have that v̂1i ≥ (1− β2)(∇1

i )
2. Then since

v̂k+1
i ≥ β2v̂ki + (1− β2)(∇ki )2

by induction we have

v̂k+1
i ≥ (1− β2)

k∑
l=0

βk−l2 (∇li)2. (68)

Using (67) and (68), we have

|hk+1
i |2 ≤(1− β3)−1

(
k∑
l=0

βk−l2 (∇li)2
)

≤(1− β2)−1(1− β3)−1v̂k+1
i .

From the update (2c), we have

‖θk+1 − θk‖2 = α2
k

p∑
i=1

(
ε+ v̂k+1

i

)−1
|hk+1
i |2

≤ α2
kp(1− β2)−1(1− β3)−1 (69)

which completes the proof.
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Appendix J. Additional Numerical Results

J.1. Simulation setup

In order to verify our analysis and show the empirical performance of CADA, we conduct experi-
ments in the logistic regression and training neural network tasks, respectively.

In logistic regression, we tested the covtype and ijcnn1 in the main paper, and MNIST in the
supplementary document. In training neural networks, we tested MNIST dataset in the main paper,
and CIFAR10 in the supplementary document. To benchmark CADA, we compared it with some
state-of-the-art algorithms, namely ADAM [14], stochastic LAG, local momentum [25, 28], local
SGD (or FedAvg) [17] and FedAdam [20].

All experiments are run on a workstation with an Intel i9-9960x CPU with 128GB memory and
four NVIDIA RTX 2080Ti GPUs each with 11GB memory using Python 3.6.

J.2. Simulation details

J.2.1. LOGISTIC REGRESSION.

Objective function. For the logistic regression task, we use either the logistic loss for the binary
case, or the cross-entropy loss for the multi-class class, both of which are augmented with an `2
norm regularizer with the coefficient λ = 10−5.

Data pre-processing. For ijcnn1 and covtype datasets, they are imported from the popular
library LIBSVM1 without further preprocessing. For MNIST, we normalize the data and subtract
the mean. We uniformly partition ijcnn1 dataset with 91,701 samples and MNIST dataset with
60,000 samples into M = 10 workers. To simulate the heterogeneous setting, we partition covtype
dataset with 581,012 samples randomly into M = 20 workers with different number of samples per
worker.

For covtype, we fix the batch ratio to be 0.001 uniformly across all workers; and for ijcnn1 and
MNIST, we fix the batch ratio to be 0.01 uniformly across all workers.

Choice of hyperparameters. For the logistic regression task, the hyperparameters in each
algorithm are chosen by hand to roughly optimize the performance of each algorithm. We list the
values of parameters used in each test in Tables 1-3.

Algorithm stepsize α momentum weight β averaging interval H/D
FedAdam αl = 100 αs = 0.02 0.9 H = 10

Local momentum 0.1 0.9 H = 10
ADAM 0.005 β1 = 0.9 β2 = 0.999 /

CADA1&2 0.005 β1 = 0.9 β2 = 0.999 D = 100, c = 5e−4

Local SGD 0.1 / H = 10
Stochastic LAG 0.1 / c = 0.006

Table 1: Choice of parameters in covtype.
1. https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Algorithm stepsize α momentum weight β averaging interval H/D
FedAdam αl = 100 αs = 0.03 0.9 H = 10

Local momentum 0.1 0.9 H = 20
ADAM 0.01 β1 = 0.9 β2 = 0.999 /
CADA 0.01 β1 = 0.9 β2 = 0.999 D = 100, c = 10

Local SGD 0.1 / H = 10
Stochastic LAG 0.1 / c = 0.1

Table 2: Choice of parameters in ijcnn1.

Algorithm stepsize α momentum weight β averaging interval H/D
FedAdam αl = 0.1 αs = 0.02 0.9 H = 40

Local momentum 0.1 0.9 H = 40
ADAM 0.0005 β1 = 0.9 β2 = 0.999 /

CADA1&2 0.0005 β1 = 0.9 β2 = 0.999 D = 100, c = 5e−5

Local SGD 0.1 / H = 40
Stochastic LAG 0.1 / c = 0.1

Table 3: Choice of parameters in binary-class MNIST (digits 3 and 5).

Additional results. Due to space limitation, some simulations results have not been covered in
the main paper. Figures 4 and 5 show the performance of all the considered algorithms on ijcnn1
and covtype datasets averaged over 10 Monte Carlo runs. And Figure 6 demonstrates the binary
classification performance of all the considered algorithms on MNIST dataset averaged over 10
Monte Carlo runs. The shadow region in Figures 4-6 represents one standard deviation.
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Figure 4: Binary classification on ijcnn1 dataset averaged over 10 Monte Carlo runs. Shadow re-
gion represents one standard deviation.

J.2.2. TRAINING NEURAL NETWORKS.

For training neural networks, we use the cross-entropy loss for all the tests.
Neural network models. For MNIST dataset, we use a convolutional neural network with two

convolution-ELUmaxpooling layers (ELU is a smoothed ReLU) followed by two fully-connected
layers. The first convolution layer is 5 × 5 × 20 with padding, and the second layer is 5 × 5 × 50
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Figure 5: Binary classification on covtype dataset averaged over 10 Monte Carlo runs. Shadow
region represents one standard deviation.
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Figure 6: Binary classification on MNIST dataset averaged over 10 Monte Carlo runs. Shadow
region represents one standard deviation.

with padding. The output of second layer is followed by two fully connected layers with one being
800×500 and the other being 500×10. The output goes through a softmax function. For CIFAR10
dataset, we use the popular neural network architecture ResNet20 2 which has 20 and roughly 0.27
million parameters. We do not use a pre-trained model.

Data pre-processing. We uniformly partition MNIST and CIFAR10 datasets into M = 10
workers. For MNIST, we use the raw data without preprocessing. The minibatch size per worker is
12. For CIFAR10, in addition to normalizing the data and subtracting the mean, we randomly flip
and crop part of the original image every time it is used for training. This is a standard technique of
data augmentation to avoid over-fitting. The minibatch size for CIFAR10 is 50 per worker.

Choice of hyperparameters. For MNIST dataset which is relatively easy, the hyperparameters
in each algorithm are chosen by hand to optimize the performance of each algorithm. We list the
values of parameters used in each test in Table 4.

2. https://github.com/akamaster/pytorch resnet cifar10

29



CADA: COMMUNICATION-ADAPTIVE DISTRIBUTED ADAM

0 2 4 6 8
# of communication rounds (uploads)×10

4

10

20

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y

CADA1
CADA2
FedAdam
local SGD
local momentum
LAG

0 2 4 6 8
# of communication rounds (uploads)×10

4

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 lo
ss

CADA1
CADA2
FedAdam
local SGD
local momentum
LAG

Figure 7: Testing accuracy and training loss versus the communication uploads on CIFAR10.

Algorithm stepsize α momentum weight β averaging interval H/D
FedAdam αl = 0.1 αs = 0.001 0.9 H = 2

Local momentum 0.1 0.9 H = 8
ADAM 0.0005 β1 = 0.9 β2 = 0.999 /

CADA1&2 0.0005 β1 = 0.9 β2 = 0.999 D = 100, c = 1000
Local SGD 0.1 / H = 8

Stochastic LAG 0.1 / c = 1000

Table 4: Choice of parameters in multi-class MNIST.

For CIFAR10 dataset, we search the best values of hyperparameters from the following search
grid on a per-algorithm basis to optimize the testing accuracy versus the number of communication
rounds. The chosen values of parameter are listed in Table 5.

Local SGD: α ∈ {0.1, 0.01, 0.001}; H ∈ {4, 6, 8}.
FedAdam: αs ∈ {0.1, 0.01, 0.001}; αl ∈ {1, 0.5, 0.1}; H ∈ {4, 6, 8}.
Local momentum: α ∈ {0.1, 0.01, 0.001}; H ∈ {4, 6, 8}.
CADA1: α ∈ {0.1, 0.01, 0.001}; c ∈ {0.05, 0.1, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8}.
CADA2: α ∈ {0.1, 0.01, 0.001}; c ∈ {0.05, 0.1, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8}.
LAG: α ∈ {0.1, 0.01, 0.001}; c ∈ {0.05, 0.1, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8}.

Algorithm stepsize α momentum weight β averaging interval H/D
FedAdam αl = 0.1 αs = 0.1 0.9 H = 4

Local momentum 0.1 0.9 H = 6
CADA1 0.1 β1 = 0.9 β2 = 0.99 D = 50, c = 1.5
CADA2 0.1 β1 = 0.9 β2 = 0.99 D = 50, c = 0.3

Local SGD 0.1 / H = 6
Stochastic LAG 0.1 / c = 0.05

Table 5: Choice of parameters in CIFAR10.

Additional results. In addition to the results presented in the main paper on MNIST dataset in
Figure 3, we report a new set of simulations on the image classification task on CIFAR10 in Figures
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Figure 8: Testing accuracy and training loss versus the gradient evaluation on CIFAR10.

Figure 9: FedAdam and local momentum on CIFAR10 dataset under different interval H .

7-9. Figure 7 reports the testing accuracy and training loss versus the number of communication
uploads. Figure 8 demonstrates the testing accuracy and training loss versus the number of stochas-
tic gradient evaluations. Figure 9 compares the performance of FedAdam and local momentum on
CIFAR10 dataset under different averaging interval H .

Different from the logistic regression case, we observe that FedAdam has very impressive per-
formance in training deep neural networks. In Figure 7, CADA1 and CADA2 require slightly more
number of communication rounds than FedAdam at the initial stage of learning, but achieve at least
3-4% higher accuracy in the steady stage than the comparators. Local momentum method achieves
a reasonable accuracy with the fewest number of communication, but the test accuracy does not
get further improvement. This reduced test accuracy is common among local SGD-type methods,
which has also been studied theoretically; see e.g., [7]. In Figure 8, CADA1 and CADA2 require
fewer number of stochastic gradient evaluations to achieve certain testing accuracy or training loss
than the comparators that are based on multiple local updates. This implies that our CADA meth-
ods do not reduce communication at the expense of sacrificing computation overhead. In Figure 9,
FedAdam and local momentum under a larger averaging interval H have faster convergence speed
at the initial stage, but they reach slightly lower accuracy compared with that under a smaller H .
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