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Abstract
We introduce a novel online nonnegative tensor factorization (NTF) algorithm that learns a
CANDECOMP/PARAFAC (CP) basis from a given stream of tensor-valued data under general
constraints. In particular, using nonnegativity constraints, the learned CP modes also give lo-
calized dictionary atoms that respect the tensor structure in multi-model data. On the theoret-
ical side, we prove that our algorithm converges to the set of stationary points of the objective
function under the hypothesis that the sequence of data tensors have functional Markovian de-
pendence. This assumption covers a wide range of application contexts including data streams
generated by independent or MCMC sampling. On the application side, we demonstrate the ef-
ficiency of our online algorithm against standard offline algorithms on both synthetic and real-
world tensor data, and also illustrate the advantage of being able to flexibly reshape multi-modal
tensor data and learn CP-dictionary atoms for any desired groups of modes jointly through video
data applications.

1. Introduction

In modern applications, there is often a critical need to analyze and understand data that is high-
dimensional (many variables), large-scale (many samples), and multi-modal (many attributes).
A tensor is a multi-way array that is a natural generalization of a matrix (which is itself a 2-mode
tensor) and is suitable in representing multi-model data. As matrix factorization is for unimodal
data, tensor factorization (TF) provides a powerful and versatile tool that can extract useful latent
information out of multi-model data tensors. As a result, tensor factorization methods have
witnessed increasing popularity and adoption in modern data science [39, 43, 46, 49, 50].

Besides being multi-modal, another unavoidable characteristic of modern data is their enor-
mous volume and the rate at which new data are generated. Online learning algorithms permit
incremental processing that overcomes the sample complexity bottleneck inherent to batch pro-
cessing, which is especially important when storing the entire data set is cumbersome. Not only
do online algorithms address capacity and accessibility, but they also have the ability to learn
qualitatively different information than offline algorithms for data that admit such a “sequen-
tial" structure (see e.g. [27]). In the literature, many “online" variants of more classical “offline"
algorithms have been extensively studied — nonnegative matrix factorization (NMF) [18, 29, 33],
TF [12, 19, 44, 50, 51], and dictionary learning [3, 4, 21, 38]. Online nonnegative TF (NTF) algo-
rithms can serve as valuable tools that can extract interpretable features from multi-modal data.

We roughly divide the literature on TF into two classes depending on structured or unstruc-
tured TF problems. The structured TF problem concerns recovering exact loading matrices of a
tensor, where a structured tensor decomposition with loading matrices satisfying some incoher-
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ence or sparsity conditions is assumed. A number of works address this problem in the offline
setting [2, 5, 30, 41, 42, 46, 47]. Recently, [39] addresses an online structured TF problem by re-
ducing it to an online MF problem using sparsity constraints on all but one loading matrices.

On the other hand, the unstructured TF problem seeks to find n loading matrices of a given
n-mode tensor possibly with some constraints (e.g., nonnegativity) but without any structural
assumptions on the true decomposition. In this case convergence to a globally optimal solu-
tion cannot be expected, and global convergence to stationary points of the objective function
is desired. For offline problems, global convergence to stationary points of the block coordinate
descent method is known to hold under some regularity assumptions on the objective function
[8, 16, 17]. The recent works [12, 19, 44, 50, 51] on online TF focus on computational consider-
ations and do not provide convergence guarantee. For online NMF, almost sure convergence to
stationary points of a stochastic majorization-minimization (SMM) algorithm under i.i.d. data
assumption is well-known [33], which is recently extended to the Markovian case in [29]. Similar
convergence for online TF is not known even under the i.i.d. assumption. The main difficulty
of extending a similar approach to online TF is that the recursively constructed surrogate loss
function is nonconvex and cannot be jointly minimized in all n loading matrices when n ≥ 2.

Contribution. In this work, we develop a novel algorithm and theory for the problem of on-
line nonnegative CP decomposition (or online NTF), where the goal is to progressively learn an
‘average’ nonnegative CP decomposition of a stream of tensor data. Namely, given a sequence of
n-mode nonnegative tensors (Xt )t≥0, we seek to find a single set of nonnegative loading matrices
U1, . . . ,Un such that they give an approximate nonnegative CP decomposition of each Xt up to
suitable nonnegative linear combination. Our main result shows that our online algorithm pro-
duces a sequence of loading matrices that converge almost surely to the set of stationary points
of the objective function. This result holds for arbitrary number of modes in the tensor data, ar-
bitrary convex constraints in place of the nonnegativity constraint, data samples with Markovian
dependence (including the i.i.d. setting), and with a sparsity regularization in linear coefficients.

2. Background and problem formulation

An n-mode tensor X of shape I1×. . . , In is a map (i1, . . . , in) 7→ X(i1, . . . , in) ∈R from the multi-index
set {1, . . . , I1}× ·· ·× {1, . . . , In} into the real line R. Suppose we have N observed n-mode tensor-
valued signals X1, . . . ,XN ∈RI1×···×In

≥0 . Fix an integer R ≥ 1 and consider the following approximate
factorization problem: (×n+1 denotes mode (n +1)-product [20]){

[X1, . . . ,XN ] ≈Out(U1, . . . ,Un)×n+1 H ∈RI1×···×In×N
≥0 ;

Out(U1, . . . ,Un) := [⊗n
k=1 Uk (:,1),

⊗n
k=1 Uk (:,2), . . . ,

⊗n
k=1 Uk (:,R)

] ∈RI1×···×In×R
≥0 ,

(1)

where Uk (:, j ) denotes the j th column of the Ik ×R matrix Uk and ⊗ denotes the outer product.
Here U1, . . . ,Un are called the loading matrices. Such an approximate factorization learns R dic-
tionary atoms D1, . . . ,DR in Out(U1, . . . ,Un) that together can approximate each observed signal
X j by using the nonnegative linear coefficients in the j th column of the code H ∈ RR×N

≥0 . When
we have a single observed tensor (N = 1), by absorbing the coordinates of H into the loading
matrices, (1) reduces to

X ≈∑
Out(U1, . . . ,Un) :=

R∑
i=1

n⊗
k=1

Uk (:, i ), (2)
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which is the nonnegative CANDECOMP/PARAFAC (CP) decomposition problem [43, 49]. On the
other hand, if n = 1 so that X j are vector-valued signals, then it reduces to the classical dictio-
nary learning problem [13, 14, 23, 25, 36] as well as the nonnegative matrix factorization (NMF)
problem, where the use of nonnegativity constraint is crucial in obtaining “parts-based" repre-
sentation of the input signals [22]. For these reasons, we refer (1) as the CP dictionary learning
(CPDL) problem. We call the (I1 ×·· ·× In ×R)-mode tensor Out(U1, . . . ,Un) = [D1, . . . ,DR ] a CP-
dictionary and the matrix H ∈ RR×N

≥0 the code of the dataset X = [X1, . . . ,XN ], respectively. Here
we call the rank-1 tensors D j the atoms of the CP-dictionary.

In this paper, we consider an online version of the CPDL problem we introduced above.
Namely, given a stream of data tensors (Xt )t≥0, can we find a CP-dictionary such that all observed
signals Xt can be approximated as a suitable nonnegative linear combination of CP-dictionary
atoms? This online problem can be explicitly formulated by an expected risk minimization prob-
lem, as follows. Suppose we have a probability distribution π on the set of data tensors RI1×···×In

≥0 .
The online CP-dictionary learning problem is the following stochastic program

argmin
U1,...,Un

(
f (U1, . . . ,Un) := EX∼π

[
inf

h∈RR×1
≥0

‖X−Out(U1, . . . ,Un)×n+1 h‖2
F +λ‖h‖1

])
, (3)

where the minimization is over all [U1, . . . ,Un] ∈ RI1×R
≥0 ×·· ·×RIn×R

≥0 , the random data tensor X is
sampled from the distribution π and λ ≥ 0 is a sparsity regularizer. For each realization of X,
the optimal choice of h ∈ RR×1

≥0 gives the nonnegative coefficients to combine the atoms in the
CP-dictionary Out(U1, . . . ,Un).

3. Algorithm: Online CPDL

In this section, we give a high-level description of our main algorithm (Algorithm 1 in the ap-
pendix). For simplicity, we will consider only the case of n = 3 in this section. Our algorithm
for the Online CPDL problem (3) takes the following form: Suppose we have learned n loading
matrices Dt−1 := [U (t−1)

1 , . . . ,U (t−1)
n ] from the sequence X1, . . . ,Xt−1 of data tensors. Then:

ht ← argmin
h∈RR×1

≥0

[‖Xs −Out(Dt−1)×n+1 h‖2
F +λ‖h‖1

]
f̂t (D) ← (1−wt ) f̂t−1(D)+wt

(‖Xt −Out(D)×n+1 ht‖2
F +λ‖ht‖1

)
For i = 1, . . . ,n:

U (t )
i ← argmin

U∈RIi ×R
≥0 ,‖U−U (t−1)

i ‖F≤c ′wt

f̂t (U (t )
1 , . . . ,U (t )

i−1,U ,U (t−1)
i+1 , . . . ,U (t−1)

n ),

(4)

where c ′ > 0 andλ≥ 0 are fixed constants. The recursively defined function f̂t : D = [U1, . . . ,Un] 7→
[0,∞) is called the surrogate loss function, which is quadratic in each factor U j but not jointly
convex for n ≥ 2. When the new tensor data Xt arrives, one computes the code ht for Xt with
respect to the tuple Dt−1 of previous loading matrices and updates the surrogate loss function
f̂t , and then sequentially minimizes it to find updated loading matrices under shrinking search
radius c ′wt . Our algorithm (4) uses the general scheme of stochastic majorization-minimization
(SMM) [32], and it can be shown to reduce to the classical online NMF algorithm in [33] when
n = 1 and c ′ is a large constant. The use of cyclic block coordinate descent and search radius re-
striction in the minimization step of f̂t are two crucial ingredients in handling the multi-modal
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case n ≥ 2. In Appendix A, we state an implementation of (4) that processes b ≥ 1 tensor-valued
signals at once (minibatch extension) and that avoids computing the full surrogate reconstruc-
tion error function f̂t by carefully updating ‘aggregate tensors’ of fixed sizes.

4. Statement of main results

Here we state our main convergence result concerning the Online CPDL problem (3) and algo-
rithm (4). We first lay out all technical assumptions required for our convergence results to hold.

(A1) The observed data tensors Xt are given by Xt =ϕ(Yt ), where Yt is an irreducible and aperi-
odic Markov chain defined on a finite state spaceΩ and ϕ :Ω→RI1×···×In is a bounded function.

(A2) For each 1 ≤ j ≤ n, the j th loading matrices for CP-dictionaries Dt are constrained to a

compact and convex subset C dict
j ⊆RI j×R

≥0 .

(A3) The expected loss function f defined in (3) and the loss function inside the expectation in
(3) are continuously differentiable and have Lipschitz gradient.

Assumptions (A2)-(A3) are standard in the literature of online dictionary learning and [32–
34]. It is also standard to assume that the sequence of signals are drawn from a distribution π

in an independent fashion [31, 33]. However, this is not feasible when the signals have to be
sampled from some complicated or unknown distribution, and one instead often uses Markov
Chain Monte Carlo (MCMC) sampling algorithms (e.g., sampling from the posterior in Bayesian
methods [48] or motif sampling from sparse graphs [26]). Our assumption on input signals in
(A1) is general enough to handle such situations. Markovian extension of the classical online
NMF algorithm developed in [29] has applications in dictionary learning, denoising, and edge
inference problems for network data [28]. Note that (A1) implies the underlying Markov chain Yt

mixes exponentially fast (see [24]).
The main result in this paper, which is stated below in Theorem 1, states that the sequence

Dt of CP-dictionaries produced by Algorithm 1 converges to the set of stationary points of the
expected loss function f defined in (3). To the best of our knowledge, Theorem 1 is the first con-
vergence guarantee for any online constrained dictionary learning algorithm for tensor-valued
signals or as an online unstructured CP-factorization algorithm, which have not been available
even under the classical i.i.d. assumption on input signals.

Theorem 1 Suppose (A1)-(A3). Let (Dt )t≥1 be an output of algorithm (4). Then the distance (mea-
sured by element-wise Frobenius distance) between Dt and the set of stationary points of f over
C dict

1 ×·· ·×C dict
n converges to zero almost surely.

The biggest difficulty in the convergence analysis is that the iterate Dt is not a local minimum
of the surrogate loss function f̂t , which is only convex in each loading matrices not not jointly
convex for n ≥ 2. This causes one to lose essential properties of SMM algorithms that are granted
in the matrix factorization (n = 1) setting. One of our innovations is to use the restricted search
radius for updating loading matrices to ensure stability of estimates, which plays a similar role
of diminishing step sizes in gradient descent algorithms [9]. We show the effect of this additional
constraint vanishes in the limit. Another difficulty is that, under the Markovian dependence in
(A1), the theory of quasi-martingales [15, 40], which is a key ingredient in convergence analysis
under i.i.d input in [1, 32, 33], cannot be used. Instead, we use the recently developed technique
of “conditioning on distant past” in [29] to overcome this issue of dependence in data samples.
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5. Experimental validation and application

In Figure 1, we show the efficiency of our proposed algorithm in (4) against two most popular
algorithms for nonnegative CP decomposition (also known as nonnegative tensor factorization)
on tasks of Alternating Least Squares (ALS) and Multiplicative Update (MU) (see [43]).
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Figure 1: Comparison of performance by run time of Online CPDL (this work) for the nonnegative tensor factorization
problem for Alternating Least Squares (ALS) and Multiplicative Update (MU). For the synthetic and Twitter tensor data
[37] of shape (100,100,5000) and (90,5000,1000), respectively, we apply each algorithm ten times to find nonnegative
loading matrices U1,U2,U3 of R = 5 columns. The average reconstruction error with 1 standard deviation are shown
by the solid lines and shaded regions of respective colors.

In Figure 2, we demonstrate our method on video data of brain activity across a mouse cor-
tex, and how our Online CPDL learns dictionaries for the spatial and temporal activation pat-
terns simultaneously. The original video is due to Barson et al. [6]. In order to learn periodic
activation patterns occurring within 2-seconds, we applied algorithm (4) with wt = 1/t , λ = 2,
and c ′ = 105 for 200 random samples of 2-second-long clips, reshaped into 2-way tensors where
one mode combines space and color modes and the other mode is time. Due to the nonnegativ-
ity constraint, spatial activation atoms representing localized activation regions in the cortex are
learned, while the darker ones represent the background brain shape without activation.
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Figure 2: Learning 20 CP-dictionary patches from video frames on brain activity across the mouse cortex. Origi-
nal tensor has shape (time,width,height,color) = (1501,360,426,3) with total duration of 60 seconds. Blue= 0 and
brighter color indicates larger values.
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Appendix A. Bounded memory implementation of Online CPDL algorithm

In this section, we introduce an alternative implementation of algorithm (4) that uses bounded
memory that is independent of the number T of minibatches of data tensors being processed.
This will be done by replacing the step for computing the surrogate loss function f̂t with com-
puting two ‘aggregate tensors’ based on our deterministic analysis in Proposition 2. The total
amount of information fed in to the algorithm is O(T

∏n
i=1 In) and T → ∞, whereas Algorithm

1 stores only O(R
∏n

i=1 In) (recall that R is the number of dictionary atoms to be learned and T
is the number of minibatches of data tensors that have arrived). This is an inherent memory
efficiency of online algorithms against non-online algorithms (see, e.g., [33]).

For given n-mode tensors A and B, denote by A¯B and A⊗kr B their Hadamard (pointwise)
product and Katri-Rao product, respectively. When B is a matrix, for each 1 ≤ j ≤ n, we also
denote their mode- j product by A× j B .

Algorithm 1 Online CP-Dictionary Learning (Bounded Memory Implementation)

1: Input: (Xt )1≤t≤T (minibatches of data tensors in R
I1×···×In×b
≥0 ); [U (0)

1 , . . . ,U (0)
n ] ∈ RI1×R

≥0 × ·· · ×
R

In×R
≥0 (initial loading matrices)

2: Constraints: C dict
i ⊆RIi×R , 1 ≤ j ≤ n, C code ⊆RR×b (e.g., nonnegativity constraints)

3: Parameters: R ∈N (# of dictionary atoms); λ≥ 0 (`1-regularizer); c ′ > 0 (search radius con-
stant);

4: Initialize aggregate tensors A0 ∈RR×R , B0 ∈RI1×···×In×R ;
5: For t = 1, . . . ,T do:
6: Coding: Compute the optimal code matrix

Ht ← argmin
H∈C code⊆RR×b

[∥∥∥Xs −Out(U (t−1)
1 , . . . ,U (t−1)

n )×n+1 H
∥∥∥2

F
+λ‖H‖1

]
; (5)

7: Update aggregate tensors:

At ← (1−wt )At−1 +wt Ht H T
t ∈RR×R ; (6)

Bt ← (1−wt )Bt−1 +wt (Xt ×n+1 H T
t ) ∈RI1×···×In×R ;

8: Update dictionary:
9: [U1, . . . ,U1] ← [U (t−1)

1 , . . . ,U (t−1)
1 ];

10: For j = 1, . . . ,n do:

11: At ; j ∈RR×R , B t ; j ∈RIi×R ← Algorithm 2 with input At ,Bt ,U1, . . . ,Un , j ;

12: U ′
i ← argminU∈Ci ,‖U−Ui ‖F≤c ′wt

[
tr(U At ; jU T )−2tr(U B

T
t ; j )

]
;

13: Ui ←U ′
i ;

14: End for
15: [U (t )

1 , . . . ,U (t )
n ] ← [U ′

1, . . . ,U ′
n];

16: End for
17: Return: [U (T )

1 , . . . ,U (T )
n ] ∈C dict

1 ×·· ·×C dict
n ;

10
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Algorithm 2 Intermediate Aggregation

1: Input: A ∈RR×R , B ∈RI1×···×In×R , [U1, . . . ,Un] ∈RI1×R × . . .×RIn×R , 1 ≤ j ≤ n
2: Do: (Notation: A¯B =Hadamard (pointwise) product; A⊗kr B =Katri-Rao product; When B

is a matrix, A×i B =mode- j product. (See [20])

Ai = A¯U T
1 U1 ¯ . . .¯U T

i−1Ui−1 ¯U T
i+1Ui+1 ¯ . . .¯U T

n Un ∈RR×R (7)

3: For r = 1, . . . ,R do:

B(,r ) := mode-(n +1) slice of B at coordinate r

bi ;r := B(,r )×1 U1(:,r )×2 · · ·×i−1 Ui−1(:,r )×i+1 Ui+1(:,r )×i+2 · · ·×n Un(:,r ) ∈RIi

B t ; j := Ii ×R matrix whose r th column is bi ;r

4: End for
5: Return:

Ai = Ai (A,U1, . . . ,Ui−1,Ui+1, . . . ,Un)

B i = B i (B ,U1, . . . ,Ui−1,Ui+1, . . . ,Un)

In order to see why Algorithm 1 is equivalent to (4), first, consider the following block opti-
mization problem

Upon arrival of Xt :



Ht = argminH∈C code⊆RR×b `(Xt ,Dt−1, H)

At = (1−wt )At−1 +wt Ht H T
t

Bt = (1−wt )Bt−1 +wt (Xt ×n+1 H T
t )

Dt = argmin
D=[U1,...,Un ]∈C dict

‖Ui−U (t−1)
i ‖F≤c ′wt ∀i

ĝ t (D)

, (8)

where for each D = [U1, . . . ,Un] ∈C dict and B (n+1)
t denoting the mode-(n −1) unfolding of Bt ,

ĝ t (D) := tr(At (U T
n Un ¯ . . .¯U T

1 U1))−2tr
(
B (n+1)

t (Un ⊗kr . . .⊗kr U1)T
)

. (9)

The following proposition reformulates (4) into Algorithm 8.

Proposition 2 The following holds:

(i) Let f̂t be as in (4) and ĝ t as above. Then

f̂t (U1, . . . ,Un) = ĝ t (U1, . . . ,Un)+
t∑

s=1
tr

(
MAT(Xs)MAT(Xs)T )+λ t∑

s=1
‖Hs‖1, (10)

(ii) For each 1 ≤ j ≤ n, we can rewrite ĝ t (D) = ĝ t (U1, . . . ,Un) in (9) as

ĝ t (U1, . . . ,Un) = tr
(
Ui At ; jU T

i

)
−2tr

(
Ui B

T
t ; j

)
, (11)

where At ; j ∈ RR×R , B t ; j ∈ RIi×R are computed by Algorithm 2 with input At ,Bt ,U1, . . . ,Un ,
and j .

11
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Proof See Subsection B.2.

Now We describe how Algorithm 1 is derived and why it is equivalent to Algorithm (4). By
the time that the new data tensor Xt arrives, the algorithm have computed previous loading
matrices U (t−1)

1 , . . . ,U (t−1)
n and two aggregate tensors At−1 ∈ RR×R and Bt−1 ∈ RI1×···×In×b . Then

one computes the code matrix Ht ∈ C code ⊆ RR×b by solving the convex optimization problem
in (5), and then updates the aggregate tensors At ← At−1 and Bt ← Bt−1. In order to perform
the block coordinate descent to update the loading matrices U (t )

i in line 12 of Algorithm (4),

we appropriately recompute intermediate aggregate matrices Ai and B i using Algorithm 2 so
that we are correctly minimizing the surrogate loss function f̂t in (4) marginally according to
Proposition 2 (ii).

Appendix B. Proof of Theorem 1

In this section, we provide a sketch the proof of Theorem 1. In [45], a more general version of
Theorem 1 (replacing wt in Algorithm 1 with a general weight wt under certain condition) is
shown with more detailed analysis. Throughout this section, we assume the code matrices Ht

and loading matrices U (t )
i belong to convex and compact constraint sets Ht ∈ C code ⊆ RR×b ,

U (t )
i ∈ C dict ⊆ RIi×R and denote C dict = C dict

1 × ·· · ×C dict
n ⊆ RI1×R × ·· · ×RIn×R . For each X ∈

R
I1×···×In×b
≥0 , D = [U1, . . . ,Un] ∈RI1×R ×·· ·×RIn×R , H ∈RR×b , define

`(X ,D, H) := ‖X −Out(D)×n+1 H‖2
F +λ‖H‖1; (12)

`(X ,D) := inf
H∈C code

`(X ,D, H), (13)

where λ≥ 0 is a sparsity regularizer. Also, we introduce the empirical loss function ft associated
with algorithm 4, which is defined recursively as

ft (D) = (1−wt ) ft−1(D)+wt `(X ,D), (14)

By comparing with the definition of the surrogate loss function f̂t in (4), it is clear that f̂t ≥ ft for
all t ≥ 0 given that we initialize f̂0 ≥ f0. Also it is important to note that ‖ ft − f ‖→ 0 almost surely
as t →∞ by Lemma 17, where f is the expected loss function (main objective function) in (3).

B.1. Key lemmas to the proof of Theorem 1.

In this subsection, we state the key lemmas we use to prove Theorem 1 and illustrate our contri-
bution in techniques for convergence analysis. As we mentioned in Section 3, there is a signifi-
cant amount of difficulty in convergence analysis in the multi-modal case n ≥ 2, as the surrogate
loss functions f̂t computed by (4) are non-convex.

Next, we list the key properties of Stochastic Majorization-Minimization (SMM) scheme in
the unimodal case n = 1 that have been critically used in convergence analysis in related works
[29, 32–34].

1 (Surrogate Optimality) Dt is a minimizer of f̂t over C dict.

2 (Forward Monotonicity) f̂t (Dt−1) ≥ f̂t (Dt ).

3 (Backward Monotonicity) f̂t−1(Dt−1) ≤ f̂t−1(Dt ).

12
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4 (Second-Order Growth Property) f̂t (Dt−1)− f̂t (Dt ) ≥ c‖Dt −Dt−1‖2
F for some constant

c > 0.

5 (Stability of Estimates) ‖Dt −Dt−1‖F =O(wt ).

6 (Stability of Errors) For ht := f̂t − ft ≥ 0, |ht (Dt )−ht−1(Dt−1)| =O(wt ).

For n = 1, it is crucial that f̂t is convex so that Dt is a minimizer of f̂t in the convex constraint
set C dict, as stated in 1. From this the monotonicity properties 2 and 3 follow immediately.
The second-order growth property 4 requires additional assumption that the surrogates f̂t are
strongly convex uniformly in t . Then 3 and 4 imply 5, which then implies 6. Lastly, 1 is also
crucially used to conclude that every limit point of (Dt )t≥1 is a stationary point of f over C dict.
Now in the multi-modal case n ≥ 2, we do not have 1 so all of the implications mentioned above
are not guaranteed. Hence the analysis in the multi-modal case requires a significant amount of
technical innovation.

Now we state our key lemma that handles the non-convexity of the surrogate loss f̂t in the
general multi-modal case n ≥ 1.

Lemma 3 (Key Lemma) Assume (A2) and (A3). Let (Dt )t≥1 be an output of Algorithm 1. Denote
ht := f̂t − ft . Then for all t ≥ 1, the following hold:

(i) (Forward Monotonicity) f̂t (Dt−1) ≥ f̂t (Dt );

(ii) (Stability of Estimates) ‖Dt −Dt−1‖F =O(wt );

(iii) (Stability of Errors) |ht (Dt )−ht−1(Dt−1)| =O(wt ).

(iv) (Asymptotic Surrogate Stationarity) Further assume (A1),
∑∞

t=1 wt =∞, and
∑∞

t=1 w2
t

p
t <

∞. Let (tk )k≥1 be any sequence such that Dtk and f̂tk converges almost surely. Then D∞ =
limk→∞Dtk is almost surely a stationary point of f̂∞ = limk→∞ f̂tk over C dict.

We show Lemma 3 (i) using a monotonicity property of block coordinate descent and Lin-
deberg’s replacement trick [11], which is often used in the probability literature (see the proof of
Lemma 3). One of our key observations is that we can directly ensure the stability properties 5
and 6 (Lemma 3 (ii) and (iii)) by using a search radius restriction (see line 12 of Algorithm 4). In
turn, we do not need the properties 3 and 4. In particular, our analysis does not require strong
convexity of the surrogate loss f̂t in each loading matrices as opposed to the existing analysis
(see, e.g., [33, Assumption B] and [32, Def. 2.1]). Lastly, our analysis requires that estimates Dt

are only asymptotically stationary to the limiting surrogate loss function along convergent sub-
sequences, as stated in Lemma 3 (iv). The proof of this statement is nontrivial and requires a
substantial work. Roughly speaking, we show that the effect of search radius restriction by O(wt )
vanishes in the limit and the gradient ∇ f̂∞(D∞) is in the normal cone of C dict at D∞.

The second technical challenge is to handle dependence in input signals, as stated in (A1).
The theory of quasi-martingales [15, 40] is a key ingredient in convergence analysis under i.i.d in-
put in [1, 32, 33]. However, dependent signals do not induce quasi-martingale since conditional
on the information Ft at time t , the following signal Xt+1 could be heavily biased. We use the
recently developed technique in [29] to overcome this issue of data dependence. The key insight
is to condition on “distant past” Ft−N , not on the present Ft , in order to allow the underlying
Markov chain to mix close enough to the stationary distributionπ for N iterations. This allows us
to control positive variations of the one-step error of the algorithm using Markov chain mixing,
as stated in Lemma 4.

13
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Lemma 4 (Convergence of Positive Variation) Let (Dt )t≥1 be an output of Algorithm 4. Suppose
(A1) and (A2) holds.

(i) Let (at )t≥0 be a sequence of non-decreasing non-negative integers such that at ∈ o(t ). Then
there exists absolute constants C1,C2,C3 > 0 such that for all sufficiently large t ≥ 0,

E

[(
E
[

wt+1
(
`(Xt+1,Dt )− ft (Dt )

)∣∣∣Ft−at

])+]
≤C1(t −at )−2pt +C2t−2at +C3wt sup

y∈Ω
‖P at+1(y, ·)−π‖T V .

(ii)
∞∑

t=0

(
E
[

f̂t+1(Dt+1)− f̂t (Dt )
])+ ≤

∞∑
t=0

wt+1
(
E
[(
`(Xt+1,Dt )− ft (Dt )

)])+ <∞.

B.2. Deterministic analysis

We first provide some deterministic analysis of our online algorithm (Algorithm 1), which are
foundational to the forthcoming stochastic analysis. The first three results are original in this
work and handle most of the difficulties unique to the tensor-valued signals.

We first derive Proposition 2.
Proof [Proof of Proposition 2] Let MAT(Xs) = [vec(Xs;1), . . . ,vec(Xs;b)] ∈R(I1...In )×b denote the ma-
trix whose i th column is the vectorization vec(Xs; j ) of the tensor Xs; j ∈ RI1×···×In . The first asser-
tion follows easily from observing that, for each [U1, . . . ,Un] ∈C dict and H ∈RR×b

‖Xs −Out(U1, . . . ,Un)×n+1 H‖2
F

= ‖MAT(Xs)− (Un ⊗kr . . .⊗kr U1)H‖2
F

= tr
(
(Un ⊗kr . . .⊗kr U1)H H T (Un ⊗kr . . .⊗kr U1)T )
−2tr

(
MAT(Xs)H T (Un ⊗kr . . .⊗kr U1)T )+ tr

(
MAT(Xs)MAT(Xs)T )

,

and also noting that

tr
(
(Un ⊗kr . . .⊗kr U1)H H T (Un ⊗kr . . .⊗kr U1)T )
= tr(H H T (Un ⊗kr . . .⊗kr U1)T (Un ⊗kr . . .⊗kr U1))

= tr(H H T (U T
n Un ¯ . . .¯U T

1 U1)).

Indeed, this and the definition of At and Bt together with the linearity of trace show

f̂t (U1, . . . ,Un) = tr(At (U T
n Un ¯ . . .¯U T

1 U1))−2tr
(
B̃t (Un ⊗kr . . .⊗kr U1)T )

(15)

+
t∑

s=1
tr

(
MAT(Xs)MAT(Xs)T )+λ t∑

s=1
‖Hs‖1,

where the matrix B̃t ∈R(I1×···×In )×b is defined recursively by

B̃s = (1−wt )B̃s−1 +wt MAT(Xs)H T
s .

By an induction, one can show that B̃t equals the mode-(n+1) unfolding B (n+1)
t of Bt . This shows

(i).

14
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For (ii), first note that

tr(A (U T
n Un ¯ . . .¯U T

1 U1))

= tr((A¯U T
1 U1 ¯ . . .U T

i−1Ui−1 ¯U T
i+1Ui+1 ¯ . . .¯U T

n Un)U T
j U j )

= tr(U j (A¯U T
1 U1 ¯ . . .U T

i−1Ui−1 ¯U T
i+1Ui+1 ¯ . . .¯U T

n Un)U T
j )

= tr(U j At ; j U T
j ).

Also, recall that Bt and Un ⊗kr . . .⊗kr U1 are
(∏n

i=1 I j
)×R matrices. We note that

tr
(
B (n+1)

t (Un ⊗kr . . .⊗kr U1)T
)

=
R∑

r=1
tr(Bt (,r )×1 U1(:,r )×2 · · ·×i−1 Ui−1(:,r )×i Ui (:,r )×i+1 Ui+1(:,r )×i+2 · · ·×n Un(:,r ))

= tr

(
R∑

r=1
[Bt (,r )×1 U1(:,r )×2 · · ·×i−1 Ui−1(:,r )×i+1 Ui+1(:,r )×i+2 · · ·×n Un(:,r )]Ui (:,r )T

)
= tr

(
Ui B

T
t ; j

)
,

where Bt (,r ) ∈RI1×···×In denotes the r th mode-(n +1) slice of Bt . Then the assertion follows.

Proof [Proof of Lemma 3 (i)-(iii)] First, we show (i). Write Dt−1 = [U1, . . . ,Un] and Dt = [U ′
1, . . . ,U ′

n].
Using Proposition 2 (i) and Lindeberg’s replacement trick, we write

f̂t (Dt−1)− f̂t (Dt ) = f̂t ([U1, . . . ,Un])− f̂t ([U ′
1, . . . ,U ′

n])

=
n∑

i=1
f̂t ([U ′

1, . . . ,U ′
i−1,Ui ,Ui+1, . . . ,Un])− f̂t ([U ′

1, . . . ,U ′
i−1,U ′

i ,Ui+1, . . . ,Un]).

Recall that U ′
i is a minimizer of the function U 7→ f̂t ([U ′

1, . . . ,U ′
i−1,U ,Ui+1, . . . ,Un]) (which is con-

vex by Proposition 2) over the convex set Ci defined in Algorithm 1. Also, U ′
i belongs to Ci . Hence

each summand in the last expression above is nonnegative. This shows f̂t (Dt−1)− f̂t (Dt ) ≥ 0, as
desired.

(ii) is clear from the algorithm (4).
Lastly, we show (iii). Both f̂t and ft are uniformly bounded and Lipschitz by Lemma 15.

Hence ht = f̂t − ft is also Lipschitz with some constant C ′′ > 0 independent of t . Then by the
recursive definitions of f̂t and ft (see (4) and (14)) and noting that `(Xt ,Dt−1, Ht ) = `(Xt ,Dt−1),
we have

|ht (Dt )−ht−1(Dt−1)| ≤ |ht (Dt )−ht (Dt−1)|+ |ht (Dt−1)−ht−1(Dt−1)| (16)

≤C‖Dt −Dt−1‖F + ∣∣( f̂t (Dt−1)− f̂t−1(Dt−1)
)− (

ft (Dt−1)− ft−1(Dt−1)
)∣∣

=C‖Dt −Dt−1‖F +wt | f̂t−1(Dt−1)− ft−1(Dt−1)|.
If δt ≡ 1, then this and (i) show |ht (Dt )−ht−1(Dt−1)| = O(wt ). For the more general case when
δt ∈ [1−wt ,1], taking expectation and (i) shows E [|ht (Dt )−ht−1(Dt−1)|] =O(wt ), as desired.

Next, we establish two elementary yet important inequalities connecting the empirical and
surrogate loss functions. This is trivial in the case of vector-valued signals, in which case we can
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directly minimize f̂t over a convex constraint set C dict to find Dt so we have the the ‘forward
monotonicity’ f̂t (Dt ) ≤ f̂t (Dt−1) immediately from the algorithm design. In the tensor case, this
still holds since we use block coordinate descent to progressively minimize f̂t in each loading
matrix. Also, one can deduce the forward monotonicity from Lemma 3 (i).

Proposition 5 Let (Dt )t≥1 be an output of Algorithm 1. Then for each t ≥ 0, the following hold:

(i) f̂t+1(Dt+1)− f̂t (Dt ) ≤ wt+1
(
`(Xt+1,Dt )− ft (Dt )

)
.

(ii) 0 ≤ wt+1
(

f̂t (Dt )− ft (Dt )
)≤ wt+1

(
`(Xt+1,Dt )− ft (Dt )

)+ f̂t (Dt )− f̂t+1(Dt+1).

Proof We begin by observing that

f̂t+1(Dt ) = (1−wt+1) f̂t (Dt )+wt+1`t+1(Xt+1,Dt ) (17)

for all t ≥ 0. The first equality above uses the definition of f̂t , and the second equality uses the
fact that Ht+1 is a minimizer of `(Xt+1,Dt , H) over C code. Hence

f̂t+1(Dt+1)− f̂t (Dt ) (18)

= f̂t+1(Dt+1)− f̂t+1(Dt )+ f̂t+1(Dt )− f̂t (Dt )

= f̂t+1(Dt+1)− f̂t+1(Dt )+ (1−wt+1) f̂t (Dt )+wt+1`(Xt+1,Dt )− f̂t (Dt )

= f̂t+1(Dt+1)− f̂t+1(Dt )+wt+1(`(Xt+1,Dt )− ft (Dt ))+wt+1( ft (Dt )− f̂t (Dt )).

Now note that f̂t+1(Dt+1)− f̂t+1(Dt ) ≤ 0 by assumption and ft ≤ f̂t by definition. Furthermore,
f̂t+1(Dt+1)− f̂t+1(Dt ) ≤ 0 by Lemma 3 (i), so the above inequalities apply for Dt+1 = Dt+1. Thus
the inequalities in both (i) and (ii) follow.

B.3. Stochastic analysis

In this section, we develop stochastic analysis on our online algorithm, a major portion of which
is devoted to handle functional Markovian dependence in signals as stated in assumption (A1)
(which generalizes (A1)). The analysis here is verbatim as the one developed in [29] for the
vector-valued signal (or matrix factorization) case, which we present some of the important ar-
guments in details here for the sake of completeness. However, the results in this subsection
crucially relies on the deterministic analysis in the previous section that was necessary to handle
difficulties arising in the tensor-valued signal case.

Recall that under our assumption (A1), the signals (Xt )t≥0 are modulated by an underlying
Markov chain (Yt )t≥0 as Xt =ϕ(Yt ) for a fixed functionϕ. We would like to establish convergence
of our online dictionary learning algorithm for tensor-valued signals in this general setting. Note
that Proposition 5 gives a bound on the change in surrogate loss f̂t (Dt ) in one iteration that al-
lows to control its positive variation in terms of difference `(Xt+1,Dt )− ft (Dt ). The core of the
stochastic analysis in this subsection is to get a good bound on this quantity. In the classical
setting when Yt ’s are i.i.d., our signals Xt =ϕ(Yt ) are also i.i.d., so we can condition on the infor-
mation Ft up to time t so that

E
[
`(Xt+1,Dt )− ft (Dt )

∣∣∣Ft

]
= f (Dt )− ft (Dt ). (19)
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Note that for each fixed D ∈ C dict, ft (W ) → f (W ) almost surely as t → ∞ by the strong law of
large numbers. To handle time dependence of the evolving dictionaries Dt , one can instead look
that the convergence of the supremum ‖ ft − f ‖∞ over the compact set C dict, which is provided
by the classical Glivenko-Cantelli theorem. This is the approach taken in [32, 33] for i.i.d. input.

However, the same approach is not applicable for dependent signals, for instance, when
(Yt )t≥0 is a Markov chain. This is because, in this case, conditional on Ft , the distribution of
Yt+1 is not necessarily the stationary distribution π. In fact, when Yt ’s form a Markov chain with
transition matrix P , Yt given Yt−1 has distribution P (Yt−1, ·), and this conditional distribution is a
constant distance away from the stationary distributionπ. (For instance, consider the case when
Yt alternates between two matrices. Then π= [1/2,1/2] and πt is either [1,0] or [0,1] for all t ≥ 1.)

To handle dependence in data samples, we adopt the strategy developed in [29] in order
to handle a similar issue for vector-valued signals (or matrix factorization). The key insight in
[29] is that, while the 1-step conditional distribution P (X t−1, ·) may be far from the stationary
distribution π, the N -step conditional distribution P N (X t−N , ·) is exponentially close to π under
mild conditions. Hence we can condition much early on – at time t −N for some suitable N =
N (t ). Then the Markov chain runs N + 1 steps up to time t + 1, so if N is large enough for the
chain to mix to its stationary distribution π, then the distribution of Yt+1 conditional on Ft−N is
close to π. The error of approximating the stationary distribution by the N +1 step distribution
can be controlled using total variation distance and Markov chain mixing bound. This is stated
more precisely in the proposition below.

Proposition 6 Suppose (A1) hold. Fix a CP-dictionary D. Then for each t ≥ 0 and 0 ≤ N < t ,
conditional on the information Ft−N up to time t −N ,(

E
[
`(Xt+1,D)− ft (D)

∣∣∣Ft−N

])+
≤ ∣∣ f (D)− ft−N (D)

∣∣+N wt ft−N (D) (20)

+2‖`(·,D)‖∞ sup
y∈Ω

‖P N+1(y, ·)−π‖T V . (21)

Proof Proof is identical to that of [29, Prop. 7.5].

Lemma 7 Let (Dt )t≥1 be the output of Algorithm 1. Suppose (A1) and (A2) hold. Then the follow-
ing hold.

(i)
∞∑

t=0
E
[
wt+1

(
`(Xt+1,Dt )− ft (Dt )

)]+ <∞;

(ii) E[ f̂t (Dt )] converges as t →∞;

(iii) E

[ ∞∑
t=0

wt+1
(

f̂t (Dt )− ft (Dt )
)]=

∞∑
t=0

wt+1
(
E[ f̂t (Dt )]−E[ ft (Dt )]

)<∞;

(iv)
∞∑

t=0
wt+1

(
f̂t (Dt )− ft (Dt )

)<∞ almost surely.

Proof Part (i) can be derived from Proposition 6 and Jensen’s inequality. See the proof of [29,
Lem. 12 (ii)] for details. Parts (ii)-(iv) can be shown by using Propositions 5, 6, and part (i). See
the proof of [29, Lem. 13] for details.
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B.4. Proof of Lemma 3 (iv)

In this subsection, we prove Lemma 3 (iv), which is one of the most nontrivial arguments we
give in this work. Throughout this subsection, we will denote by (Dt )t≥1 the output of Algorithm
1 and Λ := {Dt | t ≥ 1} ⊆C dict. Note that by Proposition 2, f̂tk converges almost surely if and only
if Atk ,Btk ,Xtk , Htk converge a.s. as k →∞. In what follows, we say D∞ ∈C dict a stationary point
of Λ if it is a limit point D∞ of Λ and there exists a sequence tk → ∞ such that Dtk → D∞ and
f̂∞ := limk→∞ f̂tk exists almost surely and D∞ is a stationary point of f̂∞ over C dict. Our goal is to
show that every limit point ofΛ is stationary.

The following observation is a key to our argument.

Proposition 8 Assume (A1), (A2), and
∑∞

t=1 w2
t

p
t <∞. Let (Dt )t≥1 be an output of Algorithm 1.

Then almost surely,

∞∑
t=1

∣∣tr
(∇ f̂t+1(Dt+1)T (Dt −Dt+1)

)∣∣<∞.

Proof Since C dict is compact by (A2) and the aggregate tensors At ,Bt are uniformly bounded by
Lemma 14, we can see from Proposition 2 that ∇ f̂t+1 over C dict is Lipschitz with some uniform
constant L > 0. Hence by Lemma 13, for all t ≥ 1,∣∣ f̂t+1(Dt )− f̂t+1(Dt+1)− tr

(∇ f̂t+1(Dt+1)T (Dt −Dt+1)
)∣∣≤ L

2
‖Dt −Dt+1‖2

F .

Also note that f̂t+1(Dt ) ≥ f̂t+1(Dt+1) by Lemma 3 (i). Hence it follows that∣∣tr
(∇ f̂t+1(Dt+1)T (Dt −Dt+1)

)∣∣≤ L

2
‖Dt −Dt+1‖2

F + f̂t+1(Dt )− f̂t+1(Dt+1) (22)

On the other hand, (18) and f̂t ≥ ft yields

0 ≤ f̂t+1(Dt )− f̂t+1(Dt+1) ≤ f̂t (Dt )− f̂t+1(Dt+1)+wt+1(`(Xt+1,Dt )− ft (Dt )).

Hence using Lemma 7, we have

∞∑
t=1

E
[

f̂t+1(Dt )− f̂t+1(Dt+1)
]<∞.

Then from (22) and noting that ‖Dt −Dt+1‖2
F =O(w2

t+1) and
∑∞

t=1 w2
t <∞, it follows that

∞∑
t=1

E
[∣∣tr

(∇ f̂t+1(Dt+1)T (Dt −Dt+1)
)∣∣]= L

2

∞∑
t=1

E
[‖Dt −Dt+1‖2

F

]
+

∞∑
t=1

E
[

f̂t+1(Dt )− f̂t+1(Dt+1)
]<∞.

Then the assertion follows by Fubini’s theorem and the fact that E[|X |] < ∞ implies |X | < ∞
almost surely for any random variable X .

Next, we show that the block coordinate descent we use to obtain Dt+1 should always give
the optimal first order descent up to an additive error of order O(wt+1).
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Proposition 9 Assume (A1) and (A2). Then there exists a constant c > 0 such that for all t ≥ 1,

tr

(
∇ f̂t+1(Dt )T (Dt+1 −Dt )

‖Dt+1 −Dt‖F

)
≤ inf

D∈C dict
tr

(
∇ f̂t+1(Dt )T (D−Dt )

‖D−Dt‖F

)
+ cwt+1. (23)

Proof Write Dt = [U (t )
1 , . . . ,U (t )

n ] and denote f̂t+1;i : U 7→ f̂t+1(U (t+1)
1 , . . . ,U (t+1)

i−1 ,U ,U (t )
i+1, . . . ,U (t )

n )

for U ∈ RIi×R and i = 1, . . . ,n. Recall that U (t+1)
i is a minimizer of f̂t+1;i over the convex set of

C dict
i intersected with {U : ‖U −U (t )

i ‖ ≤ c ′wt+1}. By the convexity, note that for each Ui ∈ C dict
i ,

U (t )
i +a(Ui −U (t )

i ) ∈C dict
i for all a ∈ [0,1]. Hence denoting ‖C dict

i ‖F := supU ,U ′∈Ci
‖U −U ′‖F <∞,

f̂t+1;i (U (t+1)
i ) ≤ f̂t+1;i

(
U (t )

i + cwt+1

‖C dict
i ‖F

(Ui −U (t )
i )

)
(24)

for all t ≥ 1. Recall that ∇ f̂t+1 = [∇ f̂t+1;1, . . . ,∇ f̂t+1;n] is Lipschitz with uniform Lipschitz constant
L > 0 by Lemma 15. Hence by Lemma 13,

tr

(
∇ f̂t+1;i (U (t )

i )T
(U (t+1)

i −U (t )
i )

‖U (t+1)
i −U (t )

i ‖F

)
≤ tr

(
∇ f̂t+1;i (U (t )

i )T
(Ui −U (t )

i )

‖Ui −U (t )
i ‖F

)
+Lc ′wt+1. (25)

Adding up these inequalities for i = 1, . . . ,n and writing D = [U1, . . . ,Un] ∈C dict, we get

tr

(
∇ f̂t+1(Dt )T (Dt+1 −Dt )

‖Dt+1 −Dt‖F

)
≤ tr

([
∇ f̂t+1;1(U (t )

1 ), . . . , f̂t+1;n(U (t )
n )

]T (D−Dt )

‖D−Dt‖F

)
+nLc ′wt+1 (26)

≤ tr

(
∇ f̂t+1(Dt )T (D−Dt )

‖D−Dt‖F

)
+n(L+1)c ′wt+1, (27)

where the second inequality follows from Lipschitz continuity of ∇ f̂t+1. Since D ∈ C dict was
arbitrary, this shows the assertion.

Proposition 10 Assume (A1), (A2), and
∑∞

t=1 w2
t

p
t < ∞. Suppose there exists a subsequence

(Dtk )k≥1 such that either

∞∑
k=1

wtk+1 =∞ or liminf
k→∞

∣∣∣∣tr

(
∇ f̂tk+1(Dtk+1)T Dtk −Dtk+1

‖Dtk −Dtk+1‖F

)∣∣∣∣= 0. (28)

There exists a further subsequence (sk )k≥1 of (tk )k≥1 such that D∞ := limk→∞Dsk exists and is a
stationary point ofΛ.

Proof By Proposition 8, we have

∞∑
k=1

wtk+1

∣∣∣∣tr

(
∇ f̂tk+1(Dtk+1)T Dtk −Dtk+1

‖Dtk −Dtk+1‖F

)∣∣∣∣<∞. (29)

Hence if
∑∞

k=1 wtk+1 =∞, then the latter condition in (28) holds. Thus it suffices to show that this
latter condition implies the assertion. Assume this condition, and let (sk )k≥1 be a subsequence
of (tk )k≥1 for which the liminf in (28) is achieved. By taking a subsequence, we may assume that
D′∞ = limk→∞Dsk and f̂∞ := limk→∞ f̂sk exist.
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Now suppose for contradiction that D∞ is not a stationary point of f̂∞ over C dict. Then there
exists D? ∈C dict and δ> 0 such that

tr
(∇ f̂∞(D∞)T (D?−D∞)

)<−δ< 0. (30)

By triangle inequality, write

‖∇ f̂sk+1(Dsk )T (D?−Dsk )−∇ f̂∞(D∞)T (D?−D∞)‖F (31)

≤ ‖∇ f̂sk+1(Dsk )−∇ f̂∞(D∞)‖F · ‖D?−Dsk‖F +‖∇ f̂∞(D∞)‖F · ‖D∞−Dsk‖F . (32)

Noting that ‖Dt −Dt−1‖F = O(wt ) = o(1), we see that the right hand side goes to zero as k →∞.
Hence for all sufficiently large k ≥ 1, we have

tr
(∇ f̂sk+1(Dsk )T (D?−Dsk )

)<−δ/2. (33)

Then by Proposition 9, denoting ‖C dict‖F := supD,D ′∈C dict‖D−D′‖F <∞,

liminf
k→∞

tr

(
∇ f̂sk+1(Dsk+1)T Dsk −Dsk+1

‖Dsk −Dsk+1‖F

)
≤− δ

2‖C dict‖F
< 0, (34)

which contradicts the choice of the subsequence (Dsk )k≥1. This shows the assertion.

Recall that during the update Dt−1 7→Dt each factor matrix of Dt−1 changes by at most c ′wt

in Frobenius norm. For each t ≥ 1, we say Dt is a long point if none of the factor matrices of Dt−1

change by c ′wt in Frobenius norm and short point otherwise. Observe that if Dt is a long point,
then imposing the search radius restriction in 12 has no effect and Dt is obtained from Dt−1 by a
single cycle of block coordinate descent on f̂t over C dict.

Proposition 11 Assume (A1) and (A2). If (Dtk )k≥1 is a convergent subsequence of (Dt )t≥1 consist-
ing of long points, then the D∞ = limk→∞Dsk is stationary.

Proof For each A ∈RR×R , B ∈RI1×···×In×b , D = [U1, . . . ,Un] ∈RI1×R ×·· ·×RIn×R , define

ĝ (A,B ,D) = tr(A (U T
n Un ¯ . . .¯U T

1 U1))−2tr
(
B (n+1)(Un ⊗kr . . .⊗kr U1)T )

. (35)

By taking a subsequence of (tk )k≥1, we may assume that A∞ := limk→∞ Atk and B∞ := limk→∞ Btk

exist. Hence the function ĝ∞ := limk→∞ ĝ tk = ĝ (A∞,B∞, ·) is well-defined. Noting that ∇ f̂t =∇ĝ t

for all t ≥ 1, it suffices to show that D∞ is a stationary point of ĝ∞ over C dict almost surely.
The argument is similar to that of [7, Prop. 2.7.1]. However, here we do not need to assume

uniqueness of solutions to minimization problems of f̂t in each block coordinate due to the
added search radius restriction. Namely, write D∞ = [U (∞)

1 , . . . ,U (∞)
n ]. Then for each k ≥ 1,

ĝ tk (U (tk )
1 ,U (tk−1)

2 , . . . ,U (tk−1)
n ) ≤ ĝ tk (U1,U (tk−1)

2 , . . . ,U (tk−1)
n ) (36)

for all U1 ∈C dict
1 ∩{U : ‖U−U (tk−1)

1 ‖F ≤ c ′wtk }. In fact, since Dtk is a long point by the assumption,

(36) holds for all U1 ∈C dict
1 . Taking k →∞ and using the fact that ‖U (tk )

1 −U (tk−1)
1 ‖F ≤ c ′wtk ,

ĝ∞(U (∞)
1 ,U (∞)

2 , . . . ,U (∞)
n ) ≤ ĝ∞(U1,U (∞)

2 , . . . ,U (∞)
n ) for all U1 ∈C dict

1 . (37)
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Since C dict
1 is convex, it follows that

∇1ĝ∞(D∞)T (U1 −U (∞)
1 ) ≥ 0 for all U1 ∈C dict

1 . (38)

By using a similar argument for other coordinates of D∞, it follows that ∇ĝ∞(D∞)T (D−D∞) ≥ 0
for all D ∈C dict. This shows the assertion.

Proposition 12 Assume (A1), (A2),
∑∞

t=1 wt = ∞, and
∑∞

t=1 w2
t

p
t < ∞. Suppose there exists

a non-stationary limit point D∞ of Λ. Then there exists ε > 0 such that the ε-neighborhood
Bε(D∞) := {D ∈C dict |‖D−D∞‖F < ε} with the following properties:

(a) Bε(D∞) does not contain any stationary points ofΛ.

(b) There exists infinitely many Dt ’s outside of Bε(D∞).

Proof We will first show that there exists an ε-neighborhood Bε(D∞) of D∞ that does not contain
any long points of Λ. Suppose for contradiction that for each ε > 0, there exists a long point Λ
in Bε(D∞). Then one can construct a sequence of long points converging to D∞. But then by
Proposition 11, D∞ is a stationary point, a contradiction.

Next, we show that there exists ε> 0 such that Bε(D∞) satisfies (a). Suppose for contradiction
that there exists no such ε > 0. Then we have a sequence (D∞;k )k≥1 of stationary points of Λ
that converges to D∞. Denote the limiting surrogate loss function associated with D∞;k by f̂∞;k .
Recall that each f̂∞;k is parameterized by elements in a compact set (see (A1), Proposition 2,
and Lemma 15). Hence by choosing a subsequence, we may assume that f̂∞ := limk→∞ f̂∞;k is
well-defined. Fix D ∈C dict note that by Cauchy-Schwarz inequality,

∇ f̂∞(D∞)T (D−D∞) ≥−‖∇ f̂∞(D∞)−∇ f̂∞;k (D∞;k )‖F · ‖D−D∞‖F (39)

−‖∇ f̂∞;k (D∞;k )‖F · ‖D∞−D∞;k‖F +∇ f̂∞;k (D∞;k )T (D−D∞;k ). (40)

Note that ∇ f̂∞;k (D∞;k )T (D−D∞;k ) ≥ 0 since D∞;k is a stationary point of f̂∞;k over C dict. Hence
by taking k →∞, this shows ∇ f̂∞(D∞)T (D −D∞) ≥ 0. Since D ∈ Ddict was arbitrary, this shows
that D∞ is a stationary point of f̂∞ over C dict, a contradiction.

Lastly, from the earlier results, we can choose ε> 0 such that Bε(D∞) has no long points ofΛ
and also satisfies (b). We will show that Bε/2(D∞) satisfies (c). Then Bε/2(D∞) satisfies (a)-(b), as
desired. Suppose for contradiction there are only finitely many Dt ’s outside of Bε/2(D∞). Then
there exists an integer M ≥ 1 such that Dt ∈ Bε/2(D∞) for all t ≥ M . Then each Dt for t ≥ M
is a short point of Λ. By definition, it follows that ‖Dt−1 −D‖F≥ c ′wt for all t ≥ M . Then by
Proposition 8, we have

∑
t≥M

wt+1

∣∣∣∣tr

(
∇ f̂t+1(Dt+1)T Dt −Dt+1

‖Dt −Dt+1‖F

)∣∣∣∣<∞. (41)

Since
∑∞

t=1 wt =∞, there exists a subsequence (sk )k≥1 such that D′∞ := limk→∞Dtk exists and is
stationary. But since D′∞ ∈ Bε(D), this contradicts (a) for Bε(D). This shows the assertion.

We are now ready to give a proof of Lemma 3 (iv).
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Proof [Proof of Lemma 3 (iv)] Assume (A1), (A2),
∑∞

t=1 wt = ∞, and
∑∞

t=1 w2
t

p
t < ∞. Suppose

there exists a non-stationary limit point D∞ of Λ. By Proposition 12, we may choose ε > 0 such
that Bε(D∞) satisfies the conditions (a)-(b) of Proposition 12. Choose M ≥ 1 large enough so
that wt < ε/4 whenever t ≥ M . We call an integer interval I := [`,`′] a crossing if D` ∈ Bε/3(D∞),
D`′ ∈ B2ε/3(D∞), and no proper subset of I satisfies both of these conditions. By definition, two
distinct crossings have empty intersection. Fix a crossing I = [`,`′], it follows that by triangle
inequality,

c ′
p

n
`′−1∑
t=`

wt+1 ≥
`′−1∑
t=`

‖Dt+1 −Dt‖F ≥ ‖D`′ −D`‖F ≥ ε/3. (42)

Note that since D∞ is a limit point of Λ, Dt visits Bε/3(D∞) infinitely often. Moreover, by condi-
tion (a) of Proposition 12, Dt also exits Bε(D∞) infinitely often. It follows that there are infinitely
many crossings. Let tk denote the kth smallest integer that appears in some crossing. Then
tk → ∞ as k → ∞, and by (42) (recall that n denotes the number of modes in tensors and is
fixed),

∞∑
k=1

wtk+1 ≥ (# of crossings)
c ′ε

3
p

n
=∞. (43)

Then by Proposition 10, there exists a further subsequence (sk )k≥1 of (tk )k≥1 such that D′∞ :=
limk→∞Dsk exists and is stationary. However, since Dtk ∈ B2ε/3(D∞), we have D′∞ ∈ Bε(D∞). This
contradicts condition (b) of Proposition 12 for Bε(D∞) that it cannot contain any stationary point
ofΛ. This shows the assertion.

B.5. Proof of the main result

Now we prove the first main result in this paper, Theorem 1.
Proof [Proof of Theorem 1] Suppose (A1) and (A2) hold. We first show (i). Recall that E[ f̂t (Dt )]
converges by Lemma 7. Jensen’s inequality and Lemma 3 (iv) imply

|E[ht+1(Dt+1)]−E[ht (Dt )]| ≤ E [|ht+1(Dt+1)−ht (Dt )|] =O(wt+1). (44)

Since E[ f̂t (Dt )] ≥ E[ ft (Dt )], Lemma 7 (ii)-(iii) and Lemma 16 give

lim
t→∞E[ ft (Dt )] = lim

t→∞E[ f̂t (Dt )]+ lim
t→∞

(
E[ ft (Dt )]−E[ f̂t (Dt )]

)= lim
t→∞E[ f̂t (Dt )] ∈ (1,∞). (45)

This shows (i).
Next, we show (ii). Triangle inequality gives

| f (Dt )− f̂t (Dt )| ≤
(

sup
D∈C dict

| f (D)− ft (D)|
)
−ht (Dt ). (46)

Note that |ht+1(Dt+1)−ht (Dt )| = O(wt+1) by Lemma 3 (iii). Hence Lemma 7 (iv) and Lemma
16 show that ht (Dt ) → 0 almost surely. Furthermore, (46) and Lemma 17 show that | f (Dt )−
f̂t (Dt )|→ 0 almost surely. This completes the proof of (ii).

22



ONLINE NONNEGATIVE CP TENSOR FACTORIZATION

Lastly, we show (iii). Let D∞ ∈C dict be an arbitrary limit point of the sequence (Dt )t≥1. Recall
that Σt := (Dt , At ,Bt ,rt )t≥0 is bounded by Lemma 14 and (A1) and (A2). Hence we may choose
a random subsequence (tk )k≥1 so that Dtk → D∞. By taking a further subsequence, we may
also assume that Σtk converges to some random element (D∞, A∞,B∞,r∞) a.s. as k →∞. Then
f̂∞ := limk→∞ f̂tk exists almost surely. It is important to note that D∞ is a stationary point of f̂∞
over C dict by Lemma 3 (iv).

Recall that f̂t (Dt )− ft (Dt ) → 0 as t →∞ almost surely by part (ii). By using continuity of f̂t ,
ft , f in parameters (see Assumption (A3)d), it follows that

∣∣ f̂∞(D∞)− f (D∞)
∣∣= lim

k→∞
∣∣ f̂tk (Dtk )− ftk (Dtk )

∣∣≤ lim
k→∞

(
sup

D∈C dict

∣∣ f − ftk (D)
∣∣−htk (Dtk )

)
= 0, (47)

where the last equality also uses Lemma 17.
Fix ε> 0 and D ∈RI1×R ×·· ·×RIn×R . Hence, almost surely,

f̂∞(D∞+D) = lim
k→∞

f̂sk (Dsk +D) ≥ lim
k→∞

fsk (Dsk +D) = f (D∞+D), (48)

where the last equality follows from Lemma 17. Using first order Taylor expansion, write

f̂∞(D∞+εD) = f̂∞(D∞)+ tr
(∇ f̂∞(D∞)T (εD)

)+O
(
ε2‖D‖2

F

)
, (49)

f (D∞+εD) = f (D∞)+ tr
(∇ f (D∞)T (εD)

)+O
(
ε2‖D‖2

F

)
. (50)

Recall that f̂∞(D∞) = f (D∞) a.s. by (47). Hence it follows that there exists some constant c > 0
such that almost surely

tr
((∇ f̂∞(D∞)−∇ f (D∞)

)T
(εD)

)
≥−cε2‖D‖2

F . (51)

After canceling out ε> 0 and letting ε↘ 0 in (51),

tr
((∇ f̂∞(D∞)−∇ f (D∞)

)T
D

)
≥ 0 a.s. (52)

Since this holds for all D ∈RI1×R · · ·×RIn×R , it follows that ∇ f̂∞(D∞) =∇ f (D∞) almost surely. But
since D∞ is a stationary point of f̂∞ over C dict by Lemma 3 (iv), it follows that ∇ f̂∞(D∞) is in the
normal cone of C dict at D∞ (see., e.g., [10]). The same holds for ∇ f (D∞). This means that D∞ is a
stationary point of f over C dict. Since D∞ is an arbitrary limit point of Dt , the desired conclusion
follows.

Appendix C. Auxiliary lemmas

Lemma 13 (Convex Surrogate for Functions with Lipschitz Gradient) Let f : Rp → R be differ-
entiable and ∇ f be L-Lipschitz continuous. Then for each θ,θ′ ∈Rp ,

∣∣ f (θ′)− f (θ)−∇ f (θ)T (θ′−θ)
∣∣≤ L

2
‖θ−θ′‖2

F . (53)
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Proof This is a classical Lemma. See [35, Lem 1.2.3].

For each X ∈RI1×···×In×b and D ∈RI1×R × . . .RIn×R , denote

H?(X ,D) ∈ argmin
H∈C code

`(X ,D, H). (54)

Recall Assumption (A1). Denote ‖ϕ(Ω)‖F = supY ∈Ω‖ϕ(Y )‖F . The following boundedness results
for the codes Ht and aggregate tensors At ,Bt are easy to derive.

Lemma 14 Assume (A1) and (A2). Then the following hold:

(i) For all X ∈RI1×···×In×b and D ∈C dict,

‖H?(X ,D)‖2
F ≤λ−2‖ϕ(Ω)‖4

F <∞. (55)

(ii) For any sequences (Xt )t≥1 in RI1×···×In×b and (Dt )t≥1 in C , define At and Bt recursively as in
(8). Then for all t ≥ 1, we have

‖At‖F ≤λ−2‖ϕ(Ω)‖4
F , ‖Bt‖F ≤λ−1‖ϕ(Ω)‖3

F . (56)

Proof Omitted. See [29, Prop. 7.2].

The following lemma shows Lipschitz continuity of the loss function `(ϕ(·), ·) defined in (13).
Since Ω and C code are both compact, this also implies that D 7→ f̂t (D) and D 7→ ft (D) are L-
Lipschitz for some L > 0 uniformly for all t ≥ 0.

Lemma 15 Suppose (A1) and (A2) hold, and let M = 2‖ϕ(Ω)‖F +2‖C ‖F‖ϕ(Ω)‖2
F /λ. Then for each

Y1,Y2 ∈Ω and D1,D2 ∈C dict,

|`(ϕ(Y1),D1)−`(ϕ(Y2),D2)| ≤ M
(‖Y1 −Y2‖F +λ−1‖ϕ(Ω)‖F‖D1 −D2‖F

)
. (57)

Proof Omitted. See [29, Prop. 7.3].

The following deterministic statement on converging sequences is due to [33].

Lemma 16 Let (an)n≥0 and (bn)≥0 be non-negative real sequences such that

∞∑
n=0

an =∞,
∞∑

n=0
anbn <∞, |bn+1 −bn | =O(an). (58)

Then limn→∞ bn = 0.

Proof Omitted. See [32, Lem. A.5].

Lemma 17 Under the assumptions (A1) and (A2),

E

[
sup

W ∈C dict

p
t

∣∣∣∣ f (D)− 1

t

t∑
s=1

`(Xs ,D)

∣∣∣∣
]
=O(1). (59)

Furthermore, supW ∈C

∣∣ f (D)− 1
t

∑t
s=1`(Xs ,D)

∣∣→ 0 almost surely as t →∞.

Proof Omitted. See [29, Lem. 7.8].
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