
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Variance Reduction on Adaptive Stochastic Mirror Descent

Wenjie Li LI3549@PURDUE.EDU

Zhanyu Wang WANG4094@PURDUE.EDU

Yichen Zhang ZHANG@PURDUE.EDU

Guang Cheng CHENGG@PURDUE.EDU

Purdue University, West Lafayette, IN

Abstract
We study the application of the variance reduction technique on general adaptive stochastic mirror
descent algorithms in nonsmooth nonconvex optimization problems. We prove that variance reduc-
tion helps to reduce the gradient complexity of most general stochastic mirror descent algorithms, so
it works well with time-varying steps sizes and adaptive optimization algorithms such as AdaGrad.
We check the validity of our claims using experiments in deep learning.

1. Introduction

In this work, we study the non-smooth non-convex finite sum problem

minx∈XF (x) := f(x) + h(x)

where f(x) = 1
n

∑n
i=1 fi(x) and each fi is a smooth but possibly non-convex function, and h(x)

is a non-smooth convex function, for example, L1 regularization. Recently, the smooth version
of the problem has been thoroughly studied, i.e. when h(x) = 0. To make the convergence of
stochastic gradient descent (SGD) methods faster in such cases, the famous Stochastic Variance
Reduced Gradient method (SVRG) [12] and its popular variants were proposed, such as SAGA [5],
SCSG [17], SNVRG [27], SPIDER [8], stablized SVRG [9], and Natasha momentum variants [1, 2].

When it comes to the non-smooth case, a few algorithms based on the mirror descent algorithm
[3, 6] have been proposed recently. For example, Ghadimi et al. [10] proved the convergence rate of
Proximal GD (ProxGD), Proximal SGD(ProxSGD), and Stochastic Mirror Descent (SMD) when
the sample size is sufficiently large. Reddi et al. [22] showed the convergence of ProxSVRG and
ProxSAGA, which were the proximal variants of SVRG and SAGA respectively. Li and Li [18]
created ProxSVRG+ and obtained even faster convergence than ProxSVRG. However, all of the
above extensions do not consider the case when the algorithm becomes adaptive, i.e., when the step
sizes are not fixed or even when the proximal functions in mirror descent are not fixed.

Instead of trying to create even faster algorithms in the nonsmooth setting, this work focuses on
answering a more general question: Can the variance reduction technique accelerate the convergence
of the general adaptive mirror descent algorithm? We give an affirmative answer to this question, as
long as strong convexity of the proximal function is lower bounded by a constant m.

Our Contributions. In this paper, we prove that the variance reduced general adaptive SMD
algorithms can reduce the gradient complexity of the original algorithms, so variance reduction indeed
can make them converge faster. Moreover, our theory implies many useful results. For example,
time-varying step sizes are allowed for ProxSVRG+ (and many other algorithms), as long as the step

c© W. Li, Z. Wang, Y. Zhang & G. Cheng.

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

sizes are upper bounded by a constant 1/L. Besides, our analysis provides a general intuition that
larger batch sizes are needed when using variance reduction on adaptive SMD algorithms with weaker
convexity. A very important by-product of our analysis is the conclusion that variance reduction
works well with adaptive algorithms, such as AdaGrad [7] and RMSProp [24]. We examine the
correctness of our claims carefully on the CIFAR-10 [15] and MNIST [23] datasets.

Notations. For two matrices A,B, we use A � B to denote that the matrix A− B is positive
semi-definite. For two real integers a, b, we use a∧b, a∨b as short-hands for min(a, b) and max(a, b).
We use bac to denote the largest integer that is smaller than a. We use Õ(·) to hide logarithm factors
in big-O notations. Moreover, we frequently use the notation [n] to represent the set {1, 2, · · · , n}.

2. Preliminaries

We present the preliminary assumptions used throughout this paper. We first recall the general SMD
algorithm with adaptive proximal functions ψt(x), where αt is the step size, gt = ∇fIj (xt) is the
gradient from a random sample Ij , and h(x) is the regularization on the dual space.

xt+1 = argminx{αt〈gt, x〉+ αth(x) +Bψt(x, xt)} (1)

whereBψt(x, xt) is the Bregman divergence, defined asBψt(x, y) = ψt(x)−ψt(y)−〈∇ψt(y), x−y〉.
One special example of the above definition is the Euclidean distance 1

2‖x− y‖
2
2 in ProxSGD, which

is generated by ψt(x) = 1
2‖x‖

2
2. In this work, we consider adaptive SMD algorithms whose proximal

functions are all m-strongly convex (A1) for some real constant m > 0,
(A1.) The proximal functions ψt(x) are all m-strongly convex with respect to ‖ · ‖2, i.e.

ψt(y) ≥ ψt(x) + 〈∇ψt(x), y − x〉+
m

2
‖y − x‖22,∀t > 0

The constant m can be viewed as a lower bound of the strong convexity of all the proximal functions
{ψt(x)} and therefore assumption A1 is very weak. For example, if ψt(x) = φt(x) + c

2‖x‖
2
2, c > 0,

where each φt(x) is an arbitrary convex function, then m = c. If ψt(x) = 1
2〈x,Htx〉, Ht ∈ Rd×d

and Ht � mI , the algorithm covers all the adaptive optimizers with constant m added to the
denominator to avoid division by zero. For the functions {fi}ni=1, we assume the L-smoothness and
bounded variance gradients conditions, which are standard in non-convex optimization analysis.

(A2.) Each function fi is L-smooth, i.e.

‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2

(A3.) f(x) have unbiased stochastic gradients with bounded variance σ2, i.e.

Ei∼[n][∇fi(x)] = ∇f(x), Ei∼[n]‖∇fi(x)−∇f(x)‖22 ≤ σ2

The convergence of algorithms in non-convex optimization problems is usually measured by the
stationarity of the gradient∇f(x), i.e. E[‖∇f(x)‖2] ≤ ε2. However, due to the existence of h(x) in
the non-smooth setting, such a definition is no longer intuitive. Instead, we follow Li and Li [18] to
use the definition of generalized gradient and the related convergence criterion. Given the generated
parameters xt by the algorithm, we define the generalized gradient at iteration t as

gX,t =
1

αt
(xt − x+

t+1), where x+
t+1 = argminx{αt〈∇f(xt), x〉+ αth(x) +Bψt(x, xt)}

2

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Correspondingly, the convergence criterion is the stationarity of the generalized gradient E[‖gX,t∗‖2] ≤
ε2. We use the stochastic first-order oracle (SFO) complexity to compare the convergence of different
algorithms. When given the parameters x, SFO returns one stochastic gradient∇fi(x). The gradient
complexity of general adaptive SMD is similar to that of non-adaptive SMD algorithm [10], i.e.

O(
n

ε2
∧ σ

2

ε4
+ n ∧ σ

2

ε2
) (2)

The proof of this bound is provided in Appendix A for completeness

3. Algorithm and Convergence

3.1. Convergence of Adaptive SMD with Variance Reduction

We first present the variance reduced adaptive SMD algorithm, which is an extension of ProxSVRG+
[18]. The details are presented in Algorithm 1. Similar to the aforementioned paper, Bt and bt
are called the batch sizes and mini-batch sizes. The major difference between Algorithm 1 and
ProxSVRG+ is that the proximal function is a general ψtk(x) instead of the fixed ψ(x) = 1

2x
2, and

therefore naturally the Euclidean distance 1
2‖y− y

t
k‖22 is replaced by the general Bregman divergence

Bψtk
(y, ytk), so Algorithm 1 covers the ProxSVRG+ and a lot more algorithms. Now we present the

major convergence results for Algorithm 1 in the following theorem. The results for the gradient
dominant situation (P-L condition) is provided in Appendix C. Both of them show that variance
reduction can help to improve the convergence of almost all mirror descent algorithms.

Algorithm 1 General Adaptive SMD with Variance Reduction Algorithm
1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1, batch, mini-batch sizes {Bt, bt}Tt=1

2: for t = 1 to T do
3: Randomly sample a batch It with size Bt
4: gt = ∇fIt(xt); yt1 = xt
5: for k = 1 to K do
6: Randomly pick sample Ĩt of size bt
7: vtk = ∇fĨt(y

t
k)−∇fĨt(y

t
1) + gt

8: ytk+1 = argminy{αt〈vtk, y〉+ αth(x) +Bψtk
(y, ytk)}

9: end for
10: xt+1 = ytK+1

11: end for
12: Return (Smooth case) Uniformly sample t∗ from {t}Tt=1 and output xt∗ ; (P-L case) xt∗ = xT+1

Theorem 1 Suppose that f satisfies the Lipschitz gradients and bounded variance assumptions
A2, A3 and ψtk(x) satisfy the m-strong convexity assumption A1. Further assume that the learning
rate, the batch sizes, the mini-batch sizes, the number of outer and inner loop iterations are set to
be αt = m/L,Bt = n ∧ (20σ2/m2ε2), bt = b, T = 1 ∨ 16∆FL/(m

2ε2K),K =
⌊√

b/20
⌋
∨ 1,

where ∆F is a constant. Then the output of algorithm 1 converges with gradient computations

O(
n

ε2
√
b
∧ σ2

ε4
√
b

+
b

ε2
)

3

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Remark. The proof is relegated to Appendix B. The theorem essentially states with assumption
A1, A2, and A3, we can guarantee the convergence of Algorithm 4. Moreover, similar to ProxSVRG+,
when SCSG [17] and ProxSVRG [22] achieve their best convergence at b = 1 and b = n2/3, our
algorithm achieve the best results using a moderate mini-batch size, as shown in corollary 2.

Although αt is fixed in the theorem, ψtk can change with time and hence results in the adaptivity.
To name an example, using different designs of time-varying step sizes in ProxSVRG+ is allowed
(similar to the third example in section 2). When we take the proximal function to be ψtk(x) =
ctk
2 ‖x‖

2
2, ctk ≥ m, Algorithm 1 reduces to ProxSVRG+ with time-varying effective step size

αt/ctk (i.e. η in Li and Li [18]). As long as the effective step sizes αt/ctk are upper bounded by
(m/L)/m = 1/L, Algorithm 1 still convergences with the same complexity. The upper bound
condition is easy to satisfy when using decreasing step sizes, cyclic step sizes [19] or warm up [11].
Besides, ψtk can be more complicated, such as ψtk(x) = φtk(x) + c

2‖x‖
2
2, c > 0, where each φtk(x)

is an arbitrary convex function, or ψtk(x) = 1
2〈x,Htkx〉 as in adaptive algorithms.

Another interesting result observed in our theorem is that when m is small, we require relatively
larger batch sizes Bt to guarantee the fast convergence. We show this intuition is actually supported
by our experiments in section 4. Next, we show that the convergence can be made faster than the
original SMD algorithm by tuning the mini-batch sizes b. We provide the following corollary.

Corollary 2 With all the assumptions and parameter settings in Theorem 1, further assume that
b = ε−4/3, where ε−4/3 ≤ n. Then the output of algorithm 1 converges with gradient computations

O(
n

ε4/3
∧ 1

ε10/3
+

1

ε10/3
) (3)

Remark. The above gradient complexity is the same as the best convergence result of Prox-
SVRG+, and it is provably better than the complexity in equation (2). Therefore, we conclude that
variance reduction can indeed reduce the complexity of any adaptive SMD algorithm.

3.2. Extension to Adaptive Subgradient Algorithms

As we have mentioned in section 2, adaptive algorithms such as AdaGrad are special cases of the
general adaptive SMD algorithms. The proximal function of adaptive methods is ψt(x) = 1

2〈x,Htx〉,
where Ht is often a diagonal matrix. Assumption A1 is satisfied because we consistently add
a constant m to the matrix Ht. Therefore the conclusions in Theorem 1 still hold for adaptive
algorithms. We provide the implementation for Variance Reduced AdaGrad (VR-AdaGrad) in
algorithm 4 in Appendix D and Variance Reduced RMSProp (VR-RMSProp) is similar.

However, notice that the strong convexity of these algorithms is relatively weak (m is often
set as 1e-3 or even smaller in real experiments), Theorem 1 implies that the batch size Bt needs
to be sufficiently large for these algorithm to converge. If variance reduction can work with such
algorithms with small m, then we should expect good performances with the other algorithms.

4. Experiments

In this section, we present several experiments on neural networks to show the effectiveness of
variance reduction in adaptive SMD algorithms. We choose VR-AdaGrad and VR-RMSProp as two
examples of our general algorithm because they have relatively smaller lower bound of the strong
convexity. We train a fully connected network on the MNIST dataset and the LeNet [16] on the

4

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

in
in

g
 L

o
ss

AdaGrad

VR-AdaGrad

RMSProp

VR-RMSProp

(a) MNIST Training Loss

20 40 60 80 100
Epochs

84

86

88

90

92

94

96

98

T
e
st

in
g
 T

o
p
-1

 A
cc

u
ra

cy

AdaGrad

VR-AdaGrad

RMSProp

VR-RMSProp

(b) MNIST Testing Acc.

20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

T
ra

in
in

g
 L

o
ss

AdaGrad

VR-AdaGrad

RMSProp

VR-RMSProp

(c) CIFAR-10 Training Loss.

20 40 60 80 100
Epochs

30

35

40

45

50

55

60

65

T
e
st

in
g
 T

o
p
-1

 A
cc

u
ra

cy

AdaGrad

VR-AdaGrad

RMSProp

VR-RMSProp

(d) CIFAR-10 Testing Acc.

Figure 1: (a) and (b): training loss and testing accuracy using fully connected network on MNIST.
(c) and (d): training loss and testing accuracy using LeNet on CIFAR-10. The results
were averaged over five runs.

20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

in
in

g
 L

o
ss

AdaGrad

VR-AdaGrad, r = 32

VR-AdaGrad, r = 16

VR-AdaGrad, r = 8

VR-AdaGrad, r = 4

(a) AdaGrad on MNIST

20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
ra

in
in

g
 L

o
ss

RMSProp

VR-RMSProp, r = 64

VR-RMSProp, r = 32

VR-RMSProp, r = 16

VR-RMSProp, r = 8

(b) RMSProp on MNIST

20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T
ra

in
in

g
 L

o
ss

AdaGrad

VR-AdaGrad, r = 32

VR-AdaGrad, r = 16

VR-AdaGrad, r = 8

VR-AdaGrad, r = 4

(c) AdaGrad on CIFAR-10

20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

T
ra

in
in

g
 L

o
ss

RMSProp

VR-RMSProp, r = 64

VR-RMSProp, r = 32

VR-RMSProp, r = 16

VR-RMSProp, r = 8

(d) RMSProp on CIFAR-10

Figure 2: (a) and (b): training loss with different r on MNIST using AdaGrad and RMSProp.
(c) and (d): training loss with different r on CIFAR-10 using AdaGrad and RMSProp.

CIFAR-10 dataset. Our implementation is based on the publicly available PyTorch code by yueqiw
[25]. For the batch sizes and mini batch sizes Bt and bt in VR-AdaGrad, VR-RMSProp, we used
a slightly different notation of batch size ratio r = Bt/bt. More details of parameter tuning and
the neural network model can be found in Appendix D. All the results in Figure 1 and Figure 2 are
averaged over five indepedent runs

As can be observed in Figure 1, the variance reduced algorithms converged faster than their
original algorithms and their best testing top-1 accuracy was also higher, proving the effectiveness of
variance reduction. Some other experiments of using different step sizes are provided in Appendix
D. We emphasize that the experiments are not designed to pursue the state-of-the-art performances,
but to show that variance reduction can work well with any adaptive proximal functions and lead to
faster training, even if the algorithms has very weak convexity guarantees.

Next, we show that algorithms with weaker convexity need a larger batch size B to converge
fast. We fixed the mini batch sizes bt to be the same as in Figure 1 and gradually decreased the batch
size ratio r. The baseline ratios of ProxSVRG+ were provided in Appendix D and the performances
of VR-AdaGrad and VR-RMSProp were shown in Figure 2. Note that ProxSVRG+ only needed a
small ratio (r = 4) to be faster than SGD [18], but for VR-AdaGrad and VR-RMSProp, even when
r = 16, the algorithms still did not converge faster than their original algorithms.

5

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

References

[1] Zeyuan Allen-Zhu. Natasha: Faster non-convex stochastic optimization via strongly non-convex
parameter, 2017a.

[2] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd, 2017b.

[3] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 2003.

[4] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
adam-type algorithm for non-convex optimization. Proceedings of 7th International Conference
on Learning Representations(ICLR), 2019.

[5] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. Advances in Neural
Information Processing Systems 27, 2014.

[6] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite objective
mirror descent. In Proceedings of the Twenty Third Annual Conference on Computational
Learning Theory, 2010.

[7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research (JMLR), pages 12:2121–
2159, 2011.

[8] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in Neural
Information Processing Systems 31, 2018.

[9] Rong Ge, Zhize Li, Weiyao Wang, and Xiang Wang. Stabilized svrg: Simple variance reduction
for nonconvex optimization, 2019.

[10] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. arXiv preprint arXiv:1308.6594,
2016.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour, 2017.

[12] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in Neural Information Processing Systems 27, 2013.

[13] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-Łojasiewicz condition, 2016.

[14] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. Proceed-
ings of the 3rd International Conference on Learning Representations (ICLR), 2015.

6

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

[15] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). 1, 2009.

[16] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[17] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization
via scsg methods. Advances in Neural Information Processing Systems 30, pages 2348–2358,
2017.

[18] Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. Advances in Neural Information Processing Systems 31, pages 5564–5574, 2018.

[19] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
International Conference on Learning Representations, 2016.

[20] Vinod Nair and Geoffrey Hinton. Rectified linear units improve restricted boltzmann machines.
Proceedings of 27th International Conference on Machine Learning(ICML), 2010.

[21] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychisli-
tel’noi Matematiki i Matematicheskoi Fiziki, 1963.

[22] Sashank Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic
methods for nonsmooth nonconvex finite-sum optimization. Advances in Neural Information
Processing Systems 29, 2016b.

[23] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

[24] Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, pages 4(2):26–31,
2012.

[25] yueqiw. Svrg for neural networks (pytorch), 2019. URL https://github.com/yueqiw/
OptML-SVRG-PyTorch.

[26] Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. On the convergence of
adaptive gradient methods for nonconvex optimization, 2018.

[27] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. Advances in Neural Information Processing Systems 32, 2018.

7

https://github.com/yueqiw/OptML-SVRG-PyTorch
https://github.com/yueqiw/OptML-SVRG-PyTorch

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Appendix A. Convergence of Mini-batch Adaptive Mirror Descent

Further notations: We denote the global minimum of F (x) to be F (x∗), and define ∆F =
F (x1) − F (x∗), where x1 is the initialization point of the algorithm. We define the generalized
stochastic gradient at t as

g̃X,t =
1

αt
(xt − xt+1)

Table 1: Comparisons of SFO complexity of different algorithms to reach ε-stationary point of the
generalized gradient. n is the total number of samples and b is the mini-batch size. “VR” in
the last row stands for Variance Reduction. Õ notation omits the logarithm term log 1

ε

.

Algorithms Nonconvex Nonsmooth PL condition
ProxGD [10] O(nε2) Õ(nµ)

ProxSVRG [22] O(n
ε2

√
b

+ n) Õ(n
µ
√
b

+ n)

SCSG [17] O(n
2/3b1/3

ε2 ∧ b1/3

ε10/3
) Õ(nb

1/3

µ ∧ b1/3

µ5/3ε2/3
+ n ∧ 1

µε)

ProxSVRG+ [18] O(n
ε2

√
b
∧ 1
ε4

√
b

+ b
ε2) Õ((n ∧ 1

µε)
1

µ
√
b

+ b
µ)

Adaptive SMD (Algorithm 2) O(nε2 ∧
1
ε4) Õ(nµ ∧

1
µ2ε)

Adaptive SMD + VR (Algorithm 1) O(n
ε2

√
b
∧ 1
ε4

√
b

+ b
ε2) Õ((n ∧ 1

µε)
1

µ
√
b

+ b
µ)

We first present the convergence rate of Algorithm 2 in the non-convex setting. Despite a few
recent analyses on the convergence of SMD and adaptive algorithms such as Ghadimi et al. [10],
Zhou et al. [26] and Chen et al. [4], the results on general adaptive SMD is still somewhat lacking.
Here we provide the convergence rate of algorithm 2 in Theorem 3.

Algorithm 2 General Adaptive SMD Algorithm
1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1

2: for t = 1 to T do
3: Randomly sample a batch It with size b
4: gt = ∇fIt(xt)
5: xt+1 = argminx{αt〈gt, x〉+ αth(x) +Bψt(x, xt)}
6: end for
7: Return Uniformly sample t∗ from {t}Tt=1 and ouput xt∗

Theorem 3 Suppose that f satisfies the Lipschitz gradients and bounded variance assumptions
A2, A3, and ψt(x) satisfy the m-strong convexity assumption A1. Further assume that the learn-
ing rate, the mini batch sizes, and the number of iterations are set to be αt = m/L, b = n ∧
(12σ2/(m2ε2)), T = 1 ∨ (8∆FL/(m

2ε2)). Then the output of algorithm 2 converges with gradient
computations

O(
n

ε2
∧ σ

2

ε4
+ n ∧ σ

2

ε2
) (4)

8

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Remark. Note that if we treat σ2 as a constant, then the above complexity can be treated as
O(nε−2 ∧ ε−4). Similar to the results proved by Ghadimi et al. [10], Algorithm 2 needs a relatively
large batch size (O(ε−2)) to obtain a convergence rate close to that of GD (O(nε−2)) and SGD
(O(ε−4)). The major reason why algorithm 2 has an advantage over GD and SGD is that we use
batched gradient instead of full gradient or stochastic gradient in line 4. However, it is still only
asymptotically as fast as one of them, depending on the sample size n.

A.1. Auxiliary Lemmas for Theorem 3

Lemma 4 [Lemma 1 in Ghadimi et al. [10]]. Let gt be the stochastic gradient in algorithm 2
obtained at t and g̃X,t be defined as in (4), then

〈gt, g̃X,t〉 ≥ m‖g̃X,t‖2 +
1

αt
[h(xt+1)− h(x)] (5)

Proof. By the optimality of the mirror descent update rule, it implies for any x ∈ X and∇h(xt+1) ∈
∂h(xt+1)

〈gt +
1

αt
(∇ψt(xt+1)−∇ψt(xt)) +∇h(xt+1), x− xt+1〉 ≥ 0 (6)

Let x = xt in the above in equality, we get

〈gt, xt − xt+1〉 ≥
1

αt
〈∇ψt(xt+1)−∇ψt(xt), xt+1 − xt〉+ 〈∇h(xt+1), xt+1 − xt〉

≥ m

αt
‖xt+1 − xt‖22 + h(xt+1)− h(x)

(7)

where the second inequality is due to the strong convexity of the function ψt(x) and the convexity
of h(x), by noting that xt − xt+1 = αtg̃X,t , the inequality follows.

Lemma 5 Let gX,t, g̃X,t be defined as in (4) and (2) respectively, then

‖gX,t − g̃X,t‖2 ≤
1

m
‖∇f(xt)− gt‖2 (8)

Proof. By definition of gXt and g̃X,t,

‖gX,t − g̃X,t‖2 =
1

αt
‖(xt − x+

t+1)− (xt − xt+1)‖2 =
1

αt
‖xt+1 − x+

t+1‖2 (9)

Similar to Lemma 4, by the optimality of the mirror descent update rule, we have the following
two inequalities

〈gt +
1

αt
(∇ψt(xt+1)−∇ψt(xt)) +∇h(xt+1), x− xt+1〉 ≥ 0, ∀x ∈ X ,∇h(xt+1) ∈ ∂h(xt+1)

〈∇f(xt) +
1

αt
(∇ψt(x+

t+1)−∇ψt(xt)) +∇h(x+
t+1), x− x+

t+1〉 ≥ 0,∀x ∈ X ,∇h(x+
t+1) ∈ ∂h(x+

t+1)

(10)
Take x = x+

t+1 in the first inequality and x = xt+1 in the second one, we can get

9

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

〈gt, xt+1 − x+
t+1〉 ≥

1

αt
〈∇ψt(xt+1)−∇ψt(xt), xt+1 − x+

t+1〉+ h(xt+1)− h(x+
t+1)

〈∇f(xt), xt+1 − x+
t+1〉 ≥

1

αt
〈∇ψt(x+

t+1)−∇ψt(xt), x+
t+1 − xt+1〉+ h(x+

t+1)− h(xt+1)

(11)

Summing up the above inequalities, we can get

〈gt −∇f(xt), xt+1 − x+
t+1〉

≥ 1

αt
(〈∇ψt(xt+1)−∇ψt(xt), xt+1 − x+

t+1〉+ 〈∇ψt(x+
t+1)−∇ψt(xt), x+

t+1 − xt+1〉)

=
1

αt
(〈∇ψt(xt+1)−∇ψt(x+

t+1), xt+1 − x+
t+1〉)

≥ m

αt
‖xt+1 − x+

t+1‖
2
2

(12)

Therefore by Cauchy Schwarz inequality,

‖gt −∇f(xt)‖2 ≥
m

αt
‖xt+1 − x+

t+1‖2 (13)

Hence the inequality in the lemma follows.

Lemma 6 [Lemma A.1 in Lei et al. [17]]. Let x1, · · · , xM ∈ Rd be an arbitrary population of M
vectors with the condition that

M∑
i=1

xj = 0 (14)

Further let J be a uniform random subset of {1, · · · ,M} with size m, then

E[‖ 1

m

∑
j∈J

xj‖2] ≤ I(m < M)

mM

M∑
j=1

‖xj‖2 (15)

Proof of the above general lemma can be found in Lei et al. [17].

A.2. Proof of the Convergence of the Adaptive SMD Algorithm (Theorem 3)

Proof. From the L-Lipshitz gradients and Lemma 4, we know that

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= f(xt)− αt〈∇f(xt), g̃X,t〉+
L

2
α2
t ‖g̃X,t‖22

= f(xt)− αt〈gt, g̃X,t〉+
L

2
α2
t ‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉

≤ f(xt) +
L

2
α2
t ‖g̃X,t‖22 − αtm‖g̃X,t‖22 − [h(xt+1)− h(x)] + αt〈gt −∇f(xt), g̃X,t〉

(16)

10

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Therefore since F (x) = f(x) + h(x), we get

F (xt+1) ≤ F (xt)− (αtm−
L

2
α2
t)‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉+ αt〈gt −∇f(xt), g̃X,t − gX,t〉

≤ F (xt)− (αtm−
L

2
α2
t)‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉+ αt‖∇f(xt)− gt‖2‖g̃X,t − gX,t‖2

≤ F (xt)− (αtm−
L

2
α2
t)‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉+

αt
m
‖∇f(xt)− gt‖22

(17)
where the second last one is a direct result from Cauchy-Schwarz inequality and the last inequality

is from Lemma 5. Rearrange the above inequalities and sum up from 1 to T , we get

T∑
t=1

(αtm−
L

2
α2
t)‖g̃X,t‖22 ≤

T∑
t=1

[F (xt)− F (xt+1)] +
T∑
t=1

[αt〈gt −∇f(xt), g̃X,t〉+
αt
m
‖∇f(xt)− gt‖22]

= F (x1)− F (xT+1) +
T∑
t=1

[αt〈gt −∇f(xt), g̃X,t〉+
αt
m
‖∇f(xt)− gt‖2]

≤ F (x1)− F (x∗) +
T∑
t=1

[αt〈gt −∇f(xt), g̃X,t〉+
αt
m
‖∇f(xt)− gt‖2]

(18)
where the last inequality is due to f(x∗) ≤ f(x),∀x. Define the filtration Ft = σ(x1, · · · , xt).

Note that we suppose gt is an unbiased estimate of ∇f(xt), hence E[〈∇f(xt)− gt, gX,t〉|Ft] = 0.
Moreover, since the sampled gradients has bounded variance σ2, hence by applying Lemma 6 with
xi = ∇i∈Ijfi(xt)−∇f(xt)

E[‖∇f(xt)− gt‖2] ≤ σ2

bt
I(bt < n) (19)

where I is the indicator function. Since the final xt∗ is uniformly sampled from all {xt}Tt=1, therefore

E[‖g̃X,t∗‖22] = E[E[‖g̃X,t∗‖22|t∗]] =
1

T

T∑
t=1

E[‖g̃X,t‖22] (20)

Therefore when αt, bt are constants, the average can be found as

T (αtm−
L

2
α2
t)E(‖g̃X,t∗‖22) ≤ F (x1)− F (x∗) +

T∑
t=1

αt
m

E[‖∇f(xt)− gt‖22]

= ∆F + T
αtσ

2

mbt
I(bt < n)

(21)

where we define ∆F = F (x1)− F (x∗). Take αt = m
L , then αtm− L

2α
2
t = m2

2L and

E(‖g̃X,t∗‖22) ≤ 2∆FL

m2T
+

2σ2

btm2
I(bt < n) (22)

Also by Lemma 5, the difference between gX,t∗ and g̃X,t∗ are bounded, hence

11

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

E[‖gX,t∗‖22] ≤ 2E[‖g̃X,t∗‖22] + 2E[‖gX,t∗ − g̃X,t∗‖22]

≤ 4∆FL

m2T
+

4σ2

btm2
I(bt < n) +

2σ2

btm2
I(bt < n)

=
4∆FL

m2T
+

6σ2

btm2
I(bt < n)

(23)

Take bt = n ∧ (12σ2/m2ε2), T = 1 ∨ (8∆FL/m
2ε2) as in the theorem, the expectation is

E[‖gX,t∗‖22] ≤ 4∆FL

m2T
+

6σ2

btm2
I(bt < n)

≤ ε2

2
+
ε2

2
= ε2

(24)

Therefore since one iteration takes bt stochastic gradient computations, the total number of
stochastic gradient computations is

Tbt ≤
8∆FL

m2ε2
bt + bt = O(

n

ε2
∧ σ

2

ε4
+ n ∧ σ

2

ε2
) (25)

A.3. Convergence of Algorithm 2 under the PL condition

By the proof in A.2, we have

F (xt+1) ≤ F (xt)− (αtm−
L

2
α2
t)‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉+

αt
m
‖∇f(xt)− gt‖22 (26)

Take expectation on both sides, we know that

E[F (xt+1)] ≤ E[F (xt)]− (αtm−
L

2
α2
t)E[‖g̃X,t‖22] +

αt
m

E[‖∇f(xt)− gt‖22] (27)

Since

E[‖gX,t∗‖22] ≤ 2E[‖g̃X,t∗‖22] + 2E[‖gX,t∗ − g̃X,t∗‖22] (28)

Hence the inequality becomes

E[F (xt+1)] ≤ E[F (xt)]− (αtm−
L

2
α2
t)(

1

2
E[‖gX,t‖22]− E[‖∇f(xt)− gt‖22]) +

αt
m

E[‖∇f(xt)− gt‖22]

≤ E[F (xt)]− (
αtm

2
− L

4
α2
t)E[‖gX,t‖22] + (

αt
m

+ αtm−
L

2
α2
t)E[‖∇f(xt)− gt‖22]

≤ E[F (xt)]− µ(αtm−
L

2
α2
t)(E[F (xt)]− F (x∗)) + (

αt
m

+ αtm−
L

2
α2
t)E[‖∇f(xt)− gt‖22]

(29)

12

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Take αt = m/L and minus F (x)∗ on both sides, we get

E[F (xt+1)]− F (x∗) ≤ (1− µ(αtm−
L

2
α2
t)(E[F (xt)]− F (x∗)) + (

αt
m

+ αtm−
L

2
α2
t)E[‖∇f(xt)− gt‖22]

= (1− µm
2

2L
)(E[F (xt)]− F (x∗)) + (

1

L
+
m2

2L
)E[‖∇f(xt)− gt‖22]

= (1− µm
2

2L
)(E[F (xt)]− F (x∗)) + (

1

L
+
m2

2L
)
σ2

bt
I(bt < n)

(30)
Let γ = 1− µm2

2L , since m2µ/L ≤ 1√
n

, γ ∈ (0, 1), divide by γt+1 on both sides, we get

E[F (xt+1)]− F (x∗)

γt+1
≤ E[F (xt)]− F (x∗)

γt
+

(1
L + m2

2L)

γt+1

σ2

bt
I(bt < n) (31)

Take summation with respect to the loop parameter t from t = 1 to t = T , assume that bt is a
constant, the inequality becomes

E[F (xT+1)]− F (x∗) ≤ γT∆F + γT
T∑
t=1

(1
L + m2

2L)

γt
σ2

bt
I(bt < n)

≤ γT∆F + (
1

L
+
m2

2L
)
1− γT

1− γ
σ2

bt
I(bt < n)

≤ γT∆F + (
1

L
+
m2

2L
)

2L

µm2

σ2

bt
I(bt < n)

= γT∆F + (
1

m2
+ 1)

1

µ

σ2

bt
I(bt < n)

(32)

Therefore when taking T = 1∨ (log 2∆F
ε)/(log 1

γ) = O(log 2∆F
ε /µ), bt = n∧ 2(1+m2)σ2

εm2µ
. Then

the total number of stochastic gradient computations is

Tb = O((n ∧ σ
2

µε
)(

1

µ
log

1

ε
))

= O((
n

µ
∧ σ2

µ2ε
) log

1

ε
)

(33)

Appendix B. Convergence of Adaptive Mirror Descent with Variance Reduction

Recall the algorithm 1 in the algorithm section, similarly define

g̃tY,k =
1

αt
(ytk − ytk+1) (34)

and its corresponding term when the algorithm uses non-stochastic full batch gradient

gtY,k =
1

αt
(ytk − yt+k+1), when yt+k+1 = argminy{αt〈∇f(ytk), y〉+ αth(x) +Bψtk

(y, ytk)} (35)

13

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Algorithm 3 Adaptive SMD with Variance Reduction Algorithm
1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1, batch sizes {Bt}Tt=1, mini-batch sizes
{bt}Tt=1

2: for t = 1 to T do
3: Randomly sample a batch It with size Bt
4: gt = ∇fIt(xt)
5: yt1 = xt
6: for k = 1 to K do
7: Randomly pick sample Ĩt of size bt
8: vtk = ∇fĨt(y

t
k)−∇fĨt(y

t
1) + gt

9: ytk+1 = argminy{αt〈vtk, y〉+ αth(x) +Bψtk
(y, ytk)}

10: end for
11: xt+1 = ytK+1

12: end for
13: Return (Smooth case) Uniformly sample xt∗ from {ytk}

K,T
k=1,t=1; (P-L case) xt∗ = xT+1

B.1. Auxiliary Lemmas for Theorem 1

Lemma 7 Let vtk be defined as in algorithm 1 and g̃tY,k be defined as in (34), then

〈vtk, g̃tY,k〉 ≥ m‖g̃tY,k‖2 +
1

αt
[h(ytk+1)− h(ytk)] (36)

Proof. The proof of this inequality is similar to that of Lemma 4. By the optimality of the mirror
descent update rule, it implies for any y ∈ X ,∇h(ytk+1) ∈ ∂h(ytk+1),

〈vtk +
1

αt
(∇ψtk(ytk+1)−∇ψtk(ytk)) +∇h(ytk+1), y − ytk+1〉 ≥ 0 (37)

Let x = ytk in the above in equality, we get

〈vtk, ytk − ytk+1〉 ≥
1

αt
〈∇ψtk(ytk+1)−∇ψtk(ytk), ytk+1 − ytk〉+ 〈∇h(ytk+1), ytk+1 − ytk〉

≥ m

αt
‖ytk+1 − ytk‖22 + [h(ytk+1)− h(ytk)]

(38)

where the second inequality is due to the m-strong convexity of the function ψtk(x) and the
convexity of h. Note from the definition that ytk − ytk+1 = αtg̃

t
Y,k , the inequality follows.

Lemma 8 Let gtY,k, g̃
t
Y,k be defined as in (34) and (35) respectively, then

‖g̃tY,k − gtY,k‖2 ≤
1

m
‖∇f(ytk)− vtk‖2 (39)

Proof. The proof is similar to Lemma 5. By definition of g̃tY,k and gtY,k,

‖g̃tY,k − gtY,k‖2 =
1

αt
‖(ytk − ytk+1)− (ytk − yt+k+1)‖2 =

1

αt
‖ytk − yt+k+1‖2 (40)

14

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

As in Lemma 7, by the optimality of the mirror descent update rule, we have the following two
inequalities

〈vtk +
1

αt
(∇ψtk(ytk+1)−∇ψtk(ytk)) +∇h(ytk+1), y − ytk+1〉 ≥ 0,∀y ∈ X ,∇h(ytk+1) ∈ ∂h(ytk+1)

〈∇f(ytk) +
1

αt
(∇ψtk(yt+k+1)−∇ψtk(ytk)) +∇h(yt+k+1), y − yt+k+1〉 ≥ 0,∀y ∈ X ,∇h(yt+1

k+1) ∈ ∂h(yt+k+1)

(41)
Take y = yt+k+1 in the first inequality and y = ytk+1 in the second one, we can get

〈vtk, yt+k+1 − y
t
k+1〉 ≥

1

αt
〈∇ψtk(ytk+1)−∇ψtk(ytk), ytk+1 − yt+k+1〉+ h(ytk+1)− h(yt+k+1)

〈∇f(ytk), y
t
k+1 − yt+k+1〉 ≥

1

αt
〈∇ψtk(ytk)−∇ψtk(yt+k+1), yt+k+1 − y

t
k+1〉+ h(yt+k+1)− h(ytk+1)

(42)
Summing up the above inequalities, we can get

〈vtk −∇f(ytk), y
t+
k+1 − y

t
k+1〉

≥ 1

αt
〈∇ψtk(ytk+1)−∇ψtk(ytk), ytk+1 − yt+k+1〉+

1

αt
〈∇ψtk(ytk)−∇ψtk(yt+k+1), yt+k+1 − y

t
k+1〉

=
1

αt
(〈∇ψtk(ytk+1)−∇ψtk(yt+k+1), ytk+1 − yt+k+1〉)

≥ m

αt
‖ytk+1 − yt+k+1‖

2
2

(43)
where the last inequality is due to the strong convexity of ψtk(x). Therefore by Cauchy Schwarz

inequality,

1

m
‖∇f(ytk)− vtk‖2 ≥

1

αt
‖ytk+1 − yt+k+1‖2 ≥ ‖g̃

t
Y,k − gtY,k‖2 (44)

Hence the inequality in the lemma follows.

Lemma 9 Let ∇f(ytk), v
t
k be the full batch gradient and the , then

E[‖∇f(ytk)− vtk‖22] ≤ L2

bt
E[‖ytk − xt‖2] +

I(Bt < n)σ2

Bt
(45)

Proof. Note that the large batch Ij and the mini-batch Ĩj are independent, hence

15

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

E[‖∇f(ytk)− vtk‖22]

= E[‖ 1

bt

∑
i∈Ĩk

(∇fi(ytk)−∇fi(xt))− (∇f(ytk)− gt)‖22]

= E[‖ 1

bt

∑
i∈Ĩk

(∇fi(ytk)−∇fi(xt))− (∇f(ytk)−
1

Bt

∑
i∈It

∇fi(xt))‖22]

= E[‖ 1

bt

∑
i∈Ĩk

(∇fi(ytk)−∇fi(xt))−∇f(ytk) +∇f(xt) +
1

Bt

∑
i∈It

(∇fi(xt)−∇f(xt))‖22]

= E[‖ 1

bt

∑
i∈Ĩk

(∇fi(ytk)−∇fi(xt))−∇f(ytk) +∇f(xt)‖22 + E‖ 1

Bt

∑
i∈It

(∇fi(xt)−∇f(xt))‖22]

= E[‖ 1

bt

∑
i∈Ĩk

(∇fi(ytk)−∇f(ytk))− (∇fi(xt)−∇f(xt))‖22 + E‖ 1

Bt

∑
i∈It

(∇fi(xt)−∇f(xt))‖22]

≤ E[‖ 1

bt

∑
i∈Ĩk

(∇fi(ytk)−∇f(ytk))− (∇fi(xt)−∇f(xt))‖22 +
I(Bt < n)σ2

Bt

=
1

b2t
E[

∑
i∈Ĩk

‖∇fi(ytk)−∇fi(xt))−∇f(ytk) +∇f(xt)‖2] +
I(Bt < n)σ2

Bt

≤ 1

b2t
E[

∑
i∈Ĩk

‖∇fi(ytk)−∇fi(xt))‖2] +
I(Bt < n)σ2

Bt

≤ L2

bt
E[‖ytk − xt‖2] +

I(Bt < n)σ2

Bt
(46)

where the fourth equality is because of the independence between Ij and Ĩj . The first and the
second inequalities are by Lemma 6. The third inequality follows from E[‖x− E(x)‖2] = E[‖x‖2]
and the last inequality follows from the L-smoothness of f(x)

B.2. Proof of Convergence of the adaptive SMD with Variance Reduction Algorithm
(Theorem 1)

From the L-Lipshitz gradients and Lemma 7, we know that

f(ytk+1) ≤ f(ytk) + 〈∇f(ytk), y
t
k+1 − ytk〉+

L

2
‖ytk+1 − ytk‖2

= f(ytk)− αt〈∇f(ytk), g̃
t
Y,k〉+

L

2
α2
t ‖g̃tY,k‖22

= f(ytk)− αt〈vtk, g̃tY,k〉+
L

2
α2
t ‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g̃

t
Y,k〉

≤ f(ytk) +
L

2
α2
t ‖g̃tY,k‖22 − αtm‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g̃

t
Y,k〉 − [h(ytk+1)− h(ytk)]

(47)

16

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Since F (x) = f(x) + h(x), we can get

F (ytk+1) = F (ytk)− (αtm−
L

2
α2
t)‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g

t
Y,k〉+ αt〈vtk −∇f(ytk), g̃

t
Y,k − gtY,k〉

≤ F (ytk)− (αtm−
L

2
α2
t)‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g

t
Y,k〉+ αt‖∇f(ytk)− vtk‖2‖g̃tY,k − gtY,k‖2

≤ F (ytk)− (αtm−
L

2
α2
t)‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g

t
Y,k〉+

αt
m
‖∇f(ytk)− vtk‖22

(48)
where the second last inequality is from Cauchy Schwartz inequality and the last inequality is

from Lemma 8. Define the filtration F tk = σ(y1
1, · · · y1

K+1, y
2
1, · · · , y2

K+1, · · · , yt1, · · · , ytk). Note
that E[〈∇f(ytk)− vtk, gtY,k〉|F tk] = 0. Take expectation on both sides and use Lemma 9, we get

E[F (ytk+1)] ≤ E[F (ytk)]− (
m

αt
− L

2
)E[‖ytk+1 − ytk‖22] +

L2αt
btm

E[‖ytk − xt‖2] +
αtI(Bt < n)σ2

mBt

≤ E[F (ytk)]− (
m

2αt
− L

4
)E[‖ytk+1 − ytk‖22] +

L2αt
btm

E[‖ytk − xt‖2] +
αtI(Bt < n)σ2

mBt

+ (
m

2αt
− L

4
)
α2
tL

2

m2bt
E[‖ytk − xt‖2] + (

m

2αt
− L

4
)
α2
t I(Bt < n)σ2

m2Bt
− (

m

4αt
− L

8
)E[‖yt+k+1 − y

t
k‖22]

= E[F (ytk)]− (
m

2αt
− L

4
)E[‖ytk+1 − ytk‖22]− (

m

4αt
− L

8
)E[‖yt+k+1 − y

t
k‖22]

+ (
3L2αt
2btm

− α2
tL

3

4m2bt
)E[‖ytk − xt‖2] + (

3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

= E[F (ytk)]− (
m

2αt
− L

4
)E[‖ytk+1 − ytk‖22]− (

mαt
4
− Lα2

t

8
)E[‖gtY,k‖22]

+ (
3L2αt
2btm

− α2
tL

3

4m2bt
)E[‖ytk − xt‖2] + (

3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt
(49)

where the second inequality uses the fact that by Lemma 9

E[‖yt+k+1 − y
t
k‖22] = α2

tE[‖gtY,k‖22] ≤ 2α2
tE[‖g̃tY,k‖22] + 2α2

tE[‖gtY,k − g̃tY,k‖22]

≤ 2α2
tE[‖g̃tY,k‖22] +

2α2
t

m2
E[‖∇f(ytk)− vtk‖22]

≤ 2E[‖ytk+1 − ytk‖22] +
2α2

t

m2
(
L2

bt
E[‖ytk − xt‖2] +

I(Bt < n)σ2

Bt
)

= 2E[‖ytk+1 − ytk‖22] +
2α2

tL
2

m2bt
E[‖ytk − xt‖2] +

2I(Bt < n)σ2α2
t

Btm2

(50)

Since by Young’s inequality, we know that

‖ytk+1 − xt‖ ≤ (1 +
1

p
)‖ytk − xt‖22 + (1 + p)‖ytk+1 − ytk‖22, ∀p ∈ R (51)

Hence substitute into equation 49, we can get

17

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

E[F (ytk+1)] ≤ E[F (ytk)]− (
m

2αt
− L

4
)E(
‖ytk+1 − xt‖22

1 + p
−
‖ytk − xt‖22

p
)− (

mαt
4
− Lα2

t

8
)E[‖gtY,k‖22]

+ (
3L2αt
2btm

− α2
tL

3

4m2bt
)E[‖ytk − xt‖2] + (

3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

≤ E[F (ytk)]− (
m

2αt
− L

4
)E(
‖ytk+1 − xt‖22

1 + p
)− (

mαt
4
− Lα2

t

8
)E[‖gtY,k‖22]

+ (
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αtp
− L

4p
)E[‖ytk − xt‖2] + (

3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt
(52)

Let p = 2k − 1 and take summation with respect to the inner loop parameter k, we can get

E[F (xt+1)]

≤ E[F (xt)]−
K∑
k=1

(
m

2αt(2k)
− L

4(2k)
)E(‖ytk+1 − xt‖22)−

K∑
k=1

(
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22]

+

K∑
k=1

(
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2] +

K∑
k=1

(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

≤ E[F (xt)]−
K−1∑
k=1

(
m

2αt(2k)
− L

4(2k)
)E(‖ytk+1 − xt‖22)−

K∑
k=1

(
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22]

+

K∑
k=2

(
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2] +

K∑
k=1

(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

≤ E[F (xt)]−
K∑
k=1

(
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22] +

K∑
k=1

(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

+

K−1∑
k=1

(
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αt(2k + 1)
− L

4(2k + 1)
− (

m

2αt(2k)
− L

4(2k)
))E[‖ytk − xt‖2]

= E[F (xt)]−
K∑
k=1

(
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22] +

K∑
k=1

(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

+
K−1∑
k=1

(
3L2αt
2btm

− α2
tL

3

4m2bt
+ (

L

4
− m

2αt
)(

1

2k(2k + 1)
))E[‖ytk − xt‖2]

(53)
where the second inequality is due to the fact that xt = yt1 and ‖xt+1−xt‖ > 0. Take αt = m/L

18

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

E[F (xt+1)] ≤ E[F (xt)]−
K∑
k=1

m2

8L
E[‖gtY,k‖22] +

K∑
k=1

(
5

4L
)
I(Bt < n)σ2

Bt
+
K−1∑
k=1

(
5L

4bt
− L

8k(2k + 1)
)E[‖ytk − xt‖2]

≤ E[F (xt)]−
K∑
k=1

m2

8L
E[‖gtY,k‖22] +

K∑
k=1

(
5

4L
)
I(Bt < n)σ2

Bt

(54)
where the last inequality follows from the setting K ≤

⌊√
bt/20

⌋
and therefore

5L

4bt
− L

8(K − 1)(2(K − 1) + 1)
≤ 5L

4bt
− L

16K2
≤ 0 (55)

Take sum with respect to the outer loop parameter t and re-arrange the inequality

T∑
t=1

K∑
k=1

m2

8L
E[‖gtY,k‖22] ≤ E[F (x1)− F (xT+1)] +

T∑
t=1

K∑
k=1

(
5

4L
)
I(Bt < n)σ2

Bt

≤ ∆F + TK(
5

4L
)
I(Bt < n)σ2

Bt

(56)

Therefore when taking Bt = n ∧ 20σ2/(m2ε2), T = 1 ∨ 16∆FL/(m
2ε2K)

E[‖gX,t∗‖22] ≤ 8∆FL

m2TK
+

10I(Bt < n)σ2

Btm2
≤ ε2

2
+
ε2

2
≤ ε2 (57)

The total number of stochastic gradient computations is

TB + TKb = O((n ∧ σ
2

ε2
+ b
√
b)(1 +

1

ε2
√
b
))

= O(n ∧ σ
2

ε2
+ b
√
b+

n

ε2
√
b
∧ σ2

ε4
√
b

+
b

ε2
)

= O(
n

ε2
√
b
∧ σ2

ε4
√
b

+
b

ε2
)

(58)

where the last inequality is because b2 ≤ ε−4 when b ≤ ε−2 and
√
b ≤ ε−2 when ε−4. However,we

will never let b to be as large as ε−4 as it is even larger than the batch size Bt and doing so will make
the number of gradient computations O(ε−6), which is undesirable.

Appendix C. Convergence under the PL Condition

C.1. Convergence under the PL condition

Now we provide the convergence of Algorithm 2 and 1 under the Polyak-Lojasiewicz(PL) condition
[21]. Because of the existence of h(x), we utilize the definition of the generalized PL condtion in Li
and Li [18] to show the linear convergence rate of our generalized mirror descent algorithm with
variance reduction under the condition. The generalized PL condition is defined as

∃µ > 0, s.t.‖gX,t‖2 ≥ 2µ(F (xt)− F (x∗)),∀xt (59)

19

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

where gX,t is the non-stochastic generalized gradient defined as in (2). Similar to Reddi et al.
[22] and Li and Li [18], we assume the condition L/(m2µ) ≥

√
n for simplicity. The condition

is assumed only because we want to use same step size αt = m/L as in Theorem 1 and if it is
not satisfied, we can simply use a more complicated step size setting as in Li and Li [18]. We first
provide the convergence result of Algorithm 2.

Theorem 10 Suppose that f satisfies the Lipschitz gradients and bounded variance assumptions A2,
A3 and ψtk(x) satisfy the m-strong convexity assumption A1. Further assume that the PL condition
(59) is satisfied. The learning rate, the batch sizes, the mini-batch sizes, the number of inner loop
iterations are set to be αt = m/L, bt = n ∧ (2(1 +m2)σ2/(εm2µ)). Then the output of algorithm
2 converges with gradient computations

O((
n

µ
∧ σ2

µ2ε
) log

1

ε
) (60)

Remark. The proof is relegated to Appendix A. The above result is Õ(nµ−1 ∧ µ−2ε−1) when
we hide logarithm terms and treat σ2 as a constant. Similar to Theorem 3, the SFO complexity
matches the smaller complexity of ProxSGD and ProxGD under the PL condition [13].

Next we present the convergence of the variance reduced Algorithm 1.

Theorem 11 Suppose that f satisfies the Lipschitz gradients and bounded variance assumptions A2,
A3 and ψtk(x) satisfy the m-strong convexity assumption A1. Further assume that the PL condition
(59) is satisfied. The learning rate, the batch sizes, the mini-batch sizes, the number of inner loop
iterations are set to be αt = m/L,Bt = n ∧ (10σ2/(εm2µ)), bt = b,K = b

√
b/32c ∨ 1. Then the

output of algorithm 1 converges with gradient computations

O((n ∧ σ
2

µε
)

1

µ
√
b

log
1

ε
+
b

µ
log

1

ε
) (61)

Remark. The proof is relegated to Appendix C. The above result is Õ((n ∧ (µε)−1)(µ
√
b)−1 +

bµ−1) when we hide logarithm terms and treat σ2 as a constant. Similar to results in Theorem 1, the
gradient complexity is asymptotically the same as ProxSVRG+, as shown in Table 1. Compared with
the complexity of Algorithm 2, our complexity can be arguably better when we choose appropriate
mini batch sizes b, which further proves our conclusion that variance reduction can be applied to any
adaptive SMD algorithm to reduce the gradient complexity. We provide the following corollary for
one choice of b to show its effectiveness.

Corollary 12 With all the assumptions and parameter settings in Theorem 11, further assume that
b = (µε)−2/3. Then the output of algorithm 1 converges with gradient computations

O((
nε1/3

µ2/3
∧ ε
−2/3

µ5/3
+
ε−2/3

µ5/3
) log

1

ε
) (62)

Remark. The above complexity is the same as the best complexity of ProxSVRG+, with the
same choice of mini-batch sizes b. Moreover, it generalizes the best results of ProxSVRG/ProxSAGA
and SCSG, without the need to perform any restarts as in ProxSVRG [22]. Therefore, as ProxSVRG+,
it automatically switch to fast convergence in regions satisfying the PL condition.

20

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

C.2. Proof. of Convergence under the PL condition

Recall the definition of the PL condition and modify the notations a little bit, we get

∃µ > 0, s.t.‖gtY,k‖2 ≥ 2µ(F (ytk)− F (x∗)) (63)

By the proof in appendix B, we know that

E[F (ytk+1)] ≤ E[F (ytk)]− (
m

2αt
− L

4
)E(
‖ytk+1 − xt‖22

1 + p
−
‖ytk − xt‖22

p
)− (

mαt
4
− Lα2

t

8
)E[‖gtY,k‖22]

+ (
3L2αt
2btm

− α2
tL

3

4m2bt
)E[‖ytk − xt‖2] + (

3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

≤ E[F (ytk)]− (
m

2αt
− L

4
)E(
‖ytk+1 − xt‖22

1 + p
)− (

mαt
2
− Lα2

t

4
)µ(E[F (ytk)]− F (x∗))

+ (
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αtp
− L

4p
)E[‖ytk − xt‖2] + (

3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt
(64)

Therefore when p = 2k − 1, define γ := (1− (mαtµ
2 − Lα2

tµ
4)), we obtain

E[F (ytk+1)]− F (x∗)

γk+1
≤

(E[F (ytk)]− F (x∗))

γk
− (

m

2αtγk+1
− L

4γk+1
)E(
‖ytk+1 − xt‖22

2k
)

+
1

γk+1
(
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2]

+
1

γk+1
(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt
(65)

Summing up with respect to the inner loop parameter k

E[F (xt+1)]− F (x∗) ≤ γK(E[F (xt)]− F (x∗))− γK+1
K∑
k=1

(
m

2αtγk+1
− L

4γk+1
)E(
‖ytk+1 − xt‖22

2k
)

+ γK+1
K∑
k=1

1

γk+1
(
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2]

+ γK+1
K∑
k=1

1

γk+1
(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

= γK(E[F (xt)]− F (x∗))− γK+1
K∑
k=1

(
m

2αtγk+1
− L

4γk+1
)E(
‖ytk+1 − xt‖22

2k
)

+ γK+1
K∑
k=1

1

γk+1
(
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2]

+
1− γK

1− γ
(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt
(66)

21

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

By the fact that xt = xt1, and ‖xt+1 − xt‖ > 0, we know that

E[F (xt+1)]− F (x∗)

≤ γK(E[F (xt)]− F (x∗))− γK+1
K−1∑
k=1

(
m

2αtγk+1
− L

4γk+1
)E(
‖ytk+1 − xt‖22

2k
)

+ γK+1
K∑
k=2

1

γk+1
(
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2]

+
1− γK

1− γ
(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

= γK(E[F (xt)]− F (x∗)) +
1− γK

1− γ
(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

− γK+1
K−1∑
k=1

(
m

2αtγk+1
− L

4γk+1
)E(
‖ytk+1 − xt‖22

2k
)

+ γK+1
K−1∑
k=1

1

γk+1
(

3L2αt
2btmγ

− α2
tL

3

4m2btγ
+

m

2αt(2k + 1)γ
− L

4(2k + 1)γ
)E[‖ytk − xt‖2]

= γK(E[F (xt)]− F (x∗)) +
1− γK

1− γ
(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

+ γK+1
K−1∑
k=1

1

γk+2
(
3L2αt
2btm

− α2
tL

3

4m2bt
+

m

2αt(2k + 1)
− L

4(2k + 1)
+
Lγ

8k
− mγ

4kαt
)E[‖ytk − xt‖2]

= γK(E[F (xt)]− F (x∗)) +
1− γK

1− γ
(
3αt
2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

+ γK+1
K−1∑
k=1

1

γk+2
(
3L2αt
2btm

− α2
tL

3

4m2bt
− (

m

2αt
− L

4
)(
γ

2k
− 1

2k + 1
))E[‖ytk − xt‖2]

(67)
By the definition γ = 1− mαtµ

2 +
Lα2

tµ
4 , we know that

γ

2k
− 1

2k + 1
=

1

2k(2k + 1)
− mαtµ

4k
+
Lα2

tµ

8k

=
1

2k(2k + 1)
− α2

tµ

2k
(
m

2αt
− L

4
)

(68)

Therefore when taking αt = m
L and with the assumption L/(µm2) >

√
n, the last term in the

inequality (67) is

22

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

γK+1
K−1∑
k=1

1

γk+2
(
3L2αt
2btm

− α2
tL

3

4m2bt
− (

m

2αt
− L

4
)(
γ

2k
− 1

2k + 1
)E[‖ytk − xt‖2]

= γK+1
K−1∑
k=1

1

γk+2
(
3L2αt
2btm

− α2
tL

3

4m2bt
− (

m

2αt
− L

4
)(

1

2k(2k + 1)
− α2

tµ

2k
(
m

2αt
− L

4
)))E[‖ytk − xt‖2]

= γK+1
K−1∑
k=1

1

γk+2
(
3L2αt
2btm

− α2
tL

3

4m2bt
− (

m

2αt
− L

4
)(

1

2k(2k + 1)
) +

α2
tµ

2k
(
m

2αt
− L

4
)2))E[‖ytk − xt‖2]

≤ γK+1
K−1∑
k=1

1

γk+2
(
5L

4bt
− L

4
(

1

2k(2k + 1)
) +

L

32k
√
n

)E[‖ytk − xt‖2]

(69)
Define H(x) := − 1

2x(2x+1) + 1
8x
√
n

+ 5
bt

, H ′(x) = 8x+2
4x2(2x+1)2

− 1
8x2
√
n

= 1
4x2

(8x+2
4x2+4x+1

−
1

2
√
n

) = 1
4x2

(2(8x+2)
√
n−(4x2+4x+1)

2(4x2+4x+1)
√
n

). When x ≤ K − 1 < K <
√

bt
16 ≤

√
n
16 , 8x+2

4x2+4x+1
− 1

2
√
n
≥

8K+2
4K2+4K+1

− 1
2
√
n
≥ 0. Therefore H(x) ≤ H(K − 1) ≤ 5

bt
− 14K+1

32K(K−1)(2K−1) ≤ 0 when

K = b
√

bt
32c. which means the inequality above is smaller than zero. Hence

E[F (xt+1)]− F (x∗) ≤ γK(E[F (xt)]− F (x∗)) +
1− γK

1− γ
5L

4

I(Bt < n)σ2

Bt
(70)

Therefore

E[F (xt+1)]− F (xt)

γK(t+1)
≤ (E[F (xt)]− F (x∗))

γKt
+

1− γK

(1− γ)γK(t+1)
(
5L

4

I(Bt < n)σ2

Bt
) (71)

Now take sum with respect to the outer loop parameter t and take Bt as a constant, we can get

E[F (xT+1)]− F (x∗) ≤ γKT (F (x1)− F (x∗)) + γK(T+1)
T∑
t=1

1− γK

(1− γ)γK(t+1)

5L

4

I(Bt < n)σ2

Bt

≤ γKT∆F + γK(T+1) 1− γK

1− γ

T∑
t=1

1

γK(t+1)

5L

4

I(Bt < n)σ2

Bt

= γKT∆F + γK(T+1) 1− γK

1− γ

T∑
t=1

1

γK(t+1)

5L

4

I(Bt < n)σ2

Bt

= γKT∆F +
5LI(Bt < n)σ2

4Bt

1− γK

1− γ
1− γKT

1− γK

= γKT∆F +
5LI(Bt < n)σ2

4Bt

1− γKT

1− γ
(72)

Since 1− γKT < 1, γ = 1− mαtµ
2 +

Lα2
tµ

4 = 1− m2µ
2L + m2µ

4L = 1− m2µ
4L , hence

23

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

E[F (xT+1)]− F (x∗) ≤ γKT∆F +
5LI(Bt < n)σ2

4Bt(1− γ)

= γKT∆F +
5I(Bt < n)σ2

Btm2µ

(73)

Therefore when taking T = 1 ∨ (log 2∆F
ε)/(K log 1

γ) = O((log 2∆F
ε)/(Kµ)), Bt = n ∧ 10σ2

εm2µ
.

Then the total number of stochastic gradient computations is

TB + TKb = O((n ∧ σ
2

µε
+ b
√
b)(

1

µ
√
b

log
1

ε
))

= O((n ∧ σ
2

µε
)

1

µ
√
b

log
1

ε
+
b

µ
log

1

ε
)

(74)

Appendix D. Algorithm Implementation and More Experimental Details

Datasets. We used two datasets in our experiments. The MNIST [23] dataset has 50k training images
and 10k testing images of handwritten digits. The images were normalized before fitting into the
neural networks. The CIFAR10 dataset [15] also has 50k training images and 10k testing images of
different objects in 10 classes. The images were normalized with respect to each channel (3 channels
in total) before fitting into the network.

Network Architecture. For the MNIST dataset, we used a one-hidden layer fully connected
neural network as the architecture. The hidden layer size was 64 and we used the Relu activation
function [20]. The logsoftmax activation function was applied to the final output. For CIFAR-10,
we used the standard LeNet [16] with two layers of convolutions of size 5. The two layers have 6
and 16 channels respectively. Relu activation and max pooling are applied to the output of each
convolutional layer. The output is then applied sequentially to three fully connected layers of size
120, 84 and 10 with Relu activation functions.

Implementations and Parameter Tuning. All experiments are conducted independently on
NVIDIA Tesla P100 GPUs. Except for normalization, we did not perform any additional data
transformation or augmentation techniques such as rotation, flipping, and cropping on the images,
which was the same as what Zhou et al. [27] did in their experiments. For the constant m added to
the denominator matrix Ht in these two algorithms, we choose a reasonable value of m = 0.001,
which is common in real implementations [14]. The other parameters are set to be the default
values. For example, the exponential moving average parameter β in RMSProp is set to be 0.999.
For the step sizes αt, we tuned over {0.1, 0.01, 0.005, 0.002, 0.001} for all the algorithms. For
the mini batch sizes of AdaGrad and RMSProp, we tuned over {256, 512, 1024, 2048, 4096}. For
the batch sizes and mini batch sizes Bt and bt in VR-AdaGrad, VR-RMSProp, we used a slightly
different notation of batch size ratio r = Bt/bt. We tuned over bt = {64, 128, 256, 512, 1024}
and r = {4, 8, 16, 32, 64} and reported the best results for each algorithm on each dataset. The
parameters that generated the reported results were provided in Table 2 and 3 in Appendix D. No
step size decay was applied to any algorithms in our experiments. However, according to our theory,
step size decay would not affect our conclusions since the step sizes were upper bounded.

We provide the implementation of Variance Reduced AdaGrad (VR-AdaGrad) in Algorithm
4. Note that this implementation is actually a simple combination of the AdaGrad algorithm and

24

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Algorithm 4 AdaGrad with Variance Reduction Algorithm
1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1, batch sizes {Bt}Tt=1, mini-batch sizes
{bt}Tt=1, constant m

2: for t = 1 to T do
3: Randomly sample a batch It with size Bt
4: gt = ∇fIt(xt)
5: yt1 = xt
6: for k = 1 to K do
7: Randomly pick sample Ĩt of size bt
8: vtk = ∇fĨt(y

t
k)−∇fĨt(y

t
1) + gt

9: ytk+1 = ytk − αtvtk/(
√

1
(t−1)K+k (

∑t−1
t=1

∑K
i=1 v

t2
k +

∑k
i=1 v

t2
k) +m)

10: end for
11: xt+1 = ytK+1

12: end for
13: Return (Smooth case) Uniformly sample xt∗ from {ytk}

K,T
k=1,t=1; (P-L case) xt∗ = xT+1

the SVRG algorithm with h(x) = 0. The implementation can be further extended to the case
when h(x) 6= 0, but the form would depend on the regularization function h(x). For example, the
AdaGrad algorithm with h(x) = ‖x‖1, a non-smooth regularization, can be found in Duchi et al. [7].
The VR-AdaGrad algorithm with h(x) = ‖x‖1 will therefore have a similar form. To change the
algorithm into VR-RMSProp, one can simply replace the global average design of the denominator
with the exponential moving average in line 9.

The parameter settings that we used to generate the best results in our section 4 are reported in
Table 2 and Table 3. The tuning details are presented in section 4. Note that for variance reduced
AdaGrad (VR-AdaGrad) and variance reduced RMSProp (VR-RMSProp), we have two parameters
Bt and bt. To compute the batch size Bt, we simply need to multiply bt by r.

We provide the performances of AdaGrad, RMSProp and their variance reduced variants with
different step sizes in figure 3 and 4. Note that variance reduction always works in these figures, and
it results in faster convergence and better testing accuracy. Therefore for different step sizes, we can
always apply variance reduction to get faster training and better performances.

Table 2: Best parameter settings on the MNIST dataset. The batch size Bt is equal to bt ∗ r.
Algorithms Step size Mini batch size bt Batch size ratio r
SGD 0.01 1024 N.A.
AdaGrad 0.001 2048 N.A.
RMSProp 0.001 1024 N.A.
ProxSVRG+ 0.01 256 32
VR-AdaGrad 0.001 256 32
VR-RMSProp 0.001 256 64

25

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

AdaGrad, lr=1e-3

VR-AdaGrad, lr=1e-3

AdaGrad, lr=1e-2

VR-AdaGrad, lr=1e-2

(a) CIFAR-10 Training Loss

20 40 60 80 100
Epochs

10

20

30

40

50

60

70

T
e
st

in
g
 T

o
p
-1

 A
cc

u
ra

cy

AdaGrad, lr=1e-3

VR-AdaGrad, lr=1e-3

AdaGrad, lr=1e-2

VR-AdaGrad, lr=1e-2

(b) CIFAR-10 Testing Acc.

Figure 3: Comparison of AdaGrad and VR-AdaGrad on CIFAR-10 using different learning rates.
The other parameters are the same as in Table 3. “lr” stands for learning rate, which is a
different name for step size. The results are averaged over 5 independent runs

20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

RMSProp, lr=1e-3

VR-RMSProp, lr=1e-3

RMSProp, lr=2e-3

VR-RMSProp, lr=2e-3

(a) CIFAR-10 Training Loss

20 40 60 80 100
Epochs

20

25

30

35

40

45

50

55

60

65

T
e
st

in
g
 T

o
p
-1

 A
cc

u
ra

cy

RMSProp, lr=1e-3

VR-RMSProp, lr=1e-3

RMSProp, lr=2e-3

VR-RMSProp, lr=2e-3

(b) CIFAR-10 Testing Acc.

Figure 4: Comparison of RMSProp and VR-RMSProp on CIFAR-10 using different learning rates.
The other parameters are the same as in Table 3. “lr” stands for learning rate, which is a
different name for step size. lr=1e-2 is too large for RMSProp and the algorithm diverges.
The results are averaged over 5 independent runs

Table 3: Best parameter settings on the CIFAR-10 dataset. The batch size Bt is equal to bt ∗ r.
Algorithms Step size Mini batch size bt Batch size ratio r
SGD 0.01 1024 N.A.
AdaGrad 0.001 1024 N.A.
RMSProp 0.001 1024 N.A.
ProxSVRG+ 0.01 512 32
VR-AdaGrad 0.001 512 32
VR-RMSProp 0.001 512 64

26

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra

in
in

g
 L

o
ss

SGD

ProxSVRG+, r = 32

ProxSVRG+, r = 16

ProxSVRG+, r = 8

ProxSVRG+, r = 4

(a) ProxSVRG+ on MNIST

20 40 60 80 100
Epochs

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T
ra

in
in

g
 L

o
ss

SGD

ProxSVRG+, r = 32

ProxSVRG+, r = 16

ProxSVRG+, r = 8

ProxSVRG+, r = 4

(b) ProxSVRG+ on CIFAR-10

Figure 5: 5(a)subfigure training loss of SGD and ProxSVRG+ with different r on MNIST.
5(b)subfigure training loss of SGD and ProxSVRG+ with different r on CIFAR-10. The
other parameters are the same as in Table 2, 3. The mini batch size is set to be the same as
AdaGrad and RMSProp to ensure fair comparisons. The results were averaged over three
independent runs.

27

	Introduction
	Preliminaries
	Algorithm and Convergence
	Convergence of Adaptive SMD with Variance Reduction
	Extension to Adaptive Subgradient Algorithms

	Experiments
	Convergence of Mini-batch Adaptive Mirror Descent
	Auxiliary Lemmas for Theorem 3
	Proof of the Convergence of the Adaptive SMD Algorithm (Theorem 3)
	Convergence of Algorithm 2 under the PL condition

	Convergence of Adaptive Mirror Descent with Variance Reduction
	Auxiliary Lemmas for Theorem 1
	Proof of Convergence of the adaptive SMD with Variance Reduction Algorithm (Theorem 1)

	Convergence under the PL Condition
	Convergence under the PL condition
	Proof. of Convergence under the PL condition

	Algorithm Implementation and More Experimental Details

