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Abstract
Various gradient compression schemes have been proposed to mitigate the communication cost in
distributed training of large scale machine learning models. Sign-based methods, such as signSGD
[2], have recently been gaining popularity because of their simple compression rule and connection
to adaptive gradient methods, like ADAM. In this paper, we provide a unified and general analysis
of sign-based methods for non-convex optimization. Our analysis (i) is built on intuitive bounds
on success probabilities allowing biased estimators, (ii) does not rely on special noise distributions
nor on the boundedness of the variance of stochastic gradients, (iii) recovers existing convergence
rates as a special case and (iv) extending the theory to distributed setting within a parameter server
framework, we guarantee exponentially fast variance reduction with respect to number of nodes,
maintaining 1-bit compression in both directions and using small mini-batch sizes. (v) We also
discuss a simple idea to fix the convergence issues of signSGD. Finally, we validate our theoretical
findings experimentally.

1. Introduction

One of the key factors behind the success of modern machine learning models is the availability
of large amounts of training data [4, 9, 12]. However, the state-of-the-art deep learning models
deployed in industry typically rely on datasets too large to fit the memory of a single computer, and
hence the training data is typically split and stored across a number of compute nodes capable of
working in parallel. Training such models then amounts to solving optimization problems of the
form

minx∈Rd f(x) := 1
M

M∑
m=1

fm(x), (1)

where fm : Rd → R represents the non-convex loss of a deep learning model parameterized by
x ∈ Rd associated with data stored on node m. Arguably, stochastic gradient descent (SGD) [10,
11, 15] in of its many variants [5, 6, 8, 13, 17] is the most popular algorithm for solving (1). In its
basic implementation, all workers m ∈ {1, 2, . . . ,M} in parallel compute a random approximation
ĝm(xk) of ∇fm(xk), known as the stochastic gradient. These approximations are then sent to a
master node which performs the aggregation ĝ(xk) := 1

M

∑M
m=1 ĝ

m(xk). The aggregated vector is
subsequently broadcast back to the nodes, each of which performs an update of the form

xk+1 = xk − γkĝ(xk),

updating their local copies of the parameters of the model.

c© M. Safaryan & P. Richtárik.
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Table 1: Summary of the theoretical results obtained in this work. Õ notation ignores logarithmic
factors and O∗ notation shows the rate to a neighbourhood of the solution.
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1.1. Contributions

We now summarize the main contributions of this work.
• 2 methods for 1-node setup. In the M = 1 case, we study two general classes of sign based

methods for minimizing a smooth non-convex function f . The first method has the standard form2

xk+1 ← xk − γk sign ĝ(xk), (2)

while the second has a new form not considered in the literature before (see Section C.6):

xk+1 ← arg min{f(xk), f(xk − γk sign ĝ(xk))}. (3)

•Key novelty. The key novelty of our methods is in a substantial relaxation of the requirements
that need to be imposed on the gradient estimator ĝ(xk) of the true gradient ∇f(xk). In sharp
contrast with existing approaches, we allow ĝ(xk) to be biased. Remarkably, we only need one
additional and rather weak assumption on ĝ(xk) for the methods to provably converge: we require
the signs of the entries of ĝ(xk) to be equal to the signs of the entries of ∇f(xk) with a probability
strictly larger than 1/2 (see Assumption 1). We show through a counterexample that a slight violation
of this assumption breaks the convergence.
• Convergence theory. While our complexity bounds have the same O(1/

√
K) dependence on

the number of iterations, they have a better dependence on the smoothness parameters associated
with f . Theorem 2 is the first result on signSGD for non-convex functions which does not rely
on mini-batching, and which allows for step sizes independent of the total number of iterations K.

2. sign g is applied element-wise to the entries g1, g2, . . . , gd of g ∈ Rd. For t ∈ R we define sign t = 1 if t > 0,
sign t = 0 if t = 0, and sign t = −1 if t < 0.

2



ON STOCHASTIC SIGN DESCENT METHODS

Finally, Theorem 1 in [3] can be recovered from our general Theorem 2. Our bounds are cast in
terms of a novel norm-like function, which we call the ρ-norm, which is a weighted l1 norm with
positive variable weights.
• Distributed setup. We extend our results to the distributed setting with arbitrary M , where

we also consider sign-based compression of the aggregated gradients. We guarantee exponentially
fast variance reduction with respect to the number of nodes.
• A simple fix. We introduce stochastic sign, which fixes the convergence issues of SIGNSGD.

2. Success Probabilities and Gradient Noise

In this section we describe our key (and weak) assumption on the gradient estimator ĝ(x), and give
an example which shows that without this assumption, SIGNSGD can fail to converge.

Assumption 1 (SPB: Success Probability Bounds) For any x ∈ Rd, we have an independent
(and not necessarily unbiased) estimator ĝ(x) of the true gradient g(x) := ∇f(x) that if gi(x) 6= 0,
then for all x ∈ Rd and all i ∈ {1, 2, . . . , d}

ρi(x) := Prob (sign ĝi(x) = sign gi(x)) > 1
2 . (4)

We will refer to the probabilities ρi as success probabilities. As we will see, they play a central
role in the convergence of sign based methods. We stress that Assumption 1 is the only assumption
on gradient noise in this paper. Moreover, we argue that it is reasonable to require from the sign of
stochastic gradient to show true gradient direction more likely than the opposite one. Extreme cases
of this assumption are the absence of gradient noise, in which case ρi = 1, and an overly noisy
stochastic gradient, in which case ρi ≈ 1

2 .
• 2.1. A counterexample to SIGNSGD. Here we analyze a counterexample to signSGD discussed
in [7]. Consider the following least-squares problem with unique minimizer x∗ = (0, 0):

min
x∈R2

f(x) = 1
2

[
〈a1, x〉2 + 〈a2, x〉2

]
, a1 =

[
1+ε
−1+ε

]
, a2 =

[−1+ε
1+ε

]
,

where ε ∈ (0, 1) and ĝ(x) = ∇〈ai, x〉2 = 2〈ai, x〉ai with probabilities 1/2. Then sign ĝ(x) =
(−1)i sign〈ai, x〉

[−1
1

]
with probabilities 1/2. Notice that signSGD with any step-size remains stuck

since x ∈ H := {(z1, z2) : z1 + z2 = 2} implies sign ĝ(x) = ±(1,−1) ‖ H . In this case, SPB
assumption (4) is violated as ρi(x) ≤ 1/2 when 〈a1, x〉 · 〈a2, x〉 > 0.
• 2.2. Sufficient conditions for SPB. To motivate our SPB assumption, we compare it with 4 dif-
ferent conditions commonly used in the literature and show that it holds under general assumptions
on gradient noise. Below, we assume that for any point x ∈ Rd, we have access to an independent
and unbiased estimator ĝ(x) of the true gradient g(x) = ∇f(x).

1. If for each coordinate ĝi has a unimodal and symmetric distribution with variance σ2
i =

σ2
i (x), 1 ≤ i ≤ d and gi 6= 0, then ρi ≥ 1

2 + 1
2

|gi|
|gi|+

√
3σi

> 1
2 .

2. Let coordinate-wise variances σ2
i (x) ≤ ci g

2
i (x) are bounded for some constants ci. Choose

mini-batch size τ > 2 maxi ci. If further gi 6= 0, then ρi ≥ 1− ci
τ >

1
2 .

3. Let σ2
i = σ2

i (x) be the variance and ν3
i = ν3

i (x) be the 3th central moment of ĝi(x), 1 ≤ i ≤
d. Then SPB assumption holds if mini-batch size τ > 2 min (σ2

i/g2i , ν
3
i/|gi|σ2

i ) .
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4. Differential entropy of a probability distribution under the bounded variance assumption is
bounded, while under the SPB assumption it could be arbitrarily large.

We introduce a norm-like function ρ-norm, induced from success probabilities and used to mea-
sure gradients in our convergence rates (see Section A).

Definition 1 (ρ-norm) Let ρ := {ρi(x)}di=1 be the collection of probability functions from the SPB
assumption. We define the ρ-norm of gradient g(x) via ‖g(x)‖ρ :=

∑d
i=1(2ρi(x)− 1)|gi(x)|.

3. Convergence Theory

Throughout the paper we assume that nonconvex f : Rd → R is lower bounded, i.e., f(x) ≥ f∗

for all x ∈ Rd, and L-smooth with some non-negative constants L = (Li)
d
i=1, i.e., f(y) ≤ f(x) +

〈∇f(x), y − x〉+
∑d

i=1
Li
2 (yi − xi)2 for all x, y ∈ Rd. Let L̄ := 1

d

∑
i Li and Lmax := maxi Li.

Algorithm 1 SIGNSGD
1: Input: step size γk, current point xk
2: ĝk ← StochasticGradient(xk)
3: xk+1 ← xk − γk sign ĝk

• 3.1. Convergence Analysis for M = 1. We now state our convergence result for signSGD (2).

Theorem 2 (Non-convex convergence of signSGD) Under the SPB assumption, signSGD (Algo-
rithm 1) with step sizes γk = γ0/

√
k + 1 converges as follows

min0≤k<K E‖∇f(xk)‖ρ ≤ 1√
K

[
f(x0)−f∗

γ0
+ γ0dL̄

]
+ γ0dL̄

2
logK√
K

. (5)

If γk ≡ γ > 0, we get 1/K convergence to a neighbourhood of the solution:

1
K

∑K−1
k=0 E‖∇f(xk)‖ρ ≤ f(x0)−f∗

γK + γdL̄
2 . (6)

• Generalization. Theorem 2 is the first general result on signSGD for non-convex functions
without mini-batching, and with step sizes independent of the total number of iterations K. Known
convergence results [2, 3] on signSGD use mini-batches and/or step sizes dependent on K. More-
over, they also use unbiasedness and unimodal symmetric noise assumptions, which are stronger
assumptions than our SPB assumption (see Lemma 1). Finally, Theorem 1 in [3] can be recovered
from Theorem 2 (see Section E).
• Convergence rate. Rates (5) and (6) can be arbitrarily slow, depending on the probabilities

ρi. This is to be expected. At one extreme, if the gradient noise was completely random, i.e., if
ρi ≡ 1/2, then the ρ-norm would become identical zero for any gradient vector and rates would be
trivial inequalities, leading to divergence as in the counterexample. At other extreme, if there was
no gradient noise, i.e., if ρi ≡ 1, then the ρ-norm would be just the l1 norm and from (5) we get the
rate Õ(1/

√
K) with respect to the l1 norm. However, if we know that ρi > 1/2, then we can ensure

that the method will eventually converge.
• 3.2. Convergence Analysis in Distributed Setting. In this part we present the convergence
result of distributed signSGD (Algorithm 2) with majority vote introduced in [2]. Majority vote

4
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is considered within a parameter server framework, where for each coordinate parameter server
receives one sign from each node and sends back the sign sent by the majority of nodes.

Algorithm 2 DISTRIBUTED SIGNSGD WITH MAJORITY VOTE

1: Input: step sizes {γk}, current point xk, # of nodes M
2: on each node
3: ĝm(xk)← StochasticGradient(xk)
4: on server
5: pull sign ĝm(xk) from each node
6: push sign

[∑M
m=1 sign ĝm(xk)

]
to each node

7: on each node
8: xk+1 ← xk − γk sign

[∑M
m=1 sign ĝm(xk)

]
Before presenting the convergence rate, we briefly discuss the case when dataset is partitioned

among the nodes in distributed setup. In this case each machine m has its own loss function fm(x)
for m = 1, 2, . . . ,M . Under this setting even signGD (with full-batch gradients and no noise)
fails to converge. Indeed, if we multiply each loss function fm(x) of m-th node by an arbitrary
positive scalars wm > 0, then the overall loss function fw(x) = 1

M

∑M
i=mwmfm(x) changes

arbitrarily while the iterates of signGD are not changed at all as the master aggregates the same
signs sign(wm∇fm(x)) = sign∇fm(x) no matter what wm factors are. Thus, the convergence of
distributed signSGD is considered in the case when all machines have full access to dataset.

Known convergence results [2, 3] use O(K) mini-batch size as well as O(1/K) constant step
size. In the sequel we remove this limitations extending Theorem 2 to distributed training. In
distributed setting the number of nodes M get involved in geometry introducing new ρM -norm,
which is defined by the regularized incomplete beta function I (see Appendix for the details).

Definition 3 (ρM -norm) Let M ≥ 1 be the number of nodes and l =
[
M+1

2

]
. Define ρM -norm of

gradient g(x) at x ∈ Rd via ‖g(x)‖ρM :=
∑d

i=1 (2I(ρi(x); l, l)− 1) |gi(x)|

Now we can state the convergence rate of distributed signSGD with majority vote.

Theorem 4 (Non-convex convergence of distributed signSGD) Under SPB assumption, distributed
signSGD (Algorithm 2) with step sizes γk = γ0/

√
k + 1 converges as

min0≤k<K E‖∇f(xk)‖ρM ≤ 1√
K

[
f(x0)−f∗

γ0
+ γ0dL̄

]
+ γ0dL̄

2
logK√
K
. (7)

For constant step sizes γk ≡ γ > 0, we have convergence up to a level proportional to step size γ:

1
K

∑K−1
k=0 E‖∇f(xk)‖ρM ≤

f(x0)−f∗
γK + γdL̄

2 . (8)

Using Hoeffding’s inequality, we show that ‖g(x)‖ρM → ‖g(x)‖1 exponentially fast as M → ∞,

namely
(

1− e−(2ρ(x)−1)2l
)
‖g(x)‖1 ≤ ‖g(x)‖ρM ≤ ‖g(x)‖1, where ρ(x) = min1≤i≤d ρi(x) >

1/2. Hence, we have exponential variance reduction in terms of number of nodes.
• 3.3. A Simple Fix to signSGD: Stochastic signSGD. The issue with signSGD is that sign com-
pression of stochastic gradient is biased estimator, which also complicates the analysis. One way to

5
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overcome SPB assumption and make signSGD to converge in general is to incorporate a scaling fac-
tor together with error feedback mechanism [7], which can handle biased compressions. Another,
and more natural, way of fixing the convergence issue is to introduce stochastic s̃ign operator.

Definition 5 (Stochastic Sign) Let ‖ · ‖ be any norm. Define the stochastic sign operator s̃ign :
Rd → Rd via (

s̃ign g
)
i

=

{
+1, with prob. 1

2 + 1
2
gi
‖g‖

−1, with prob. 1
2 −

1
2
gi
‖g‖

,

for 1 ≤ i ≤ d and s̃ign0 = 0 with probability 1.

Stochastic s̃ign operator unlike the deterministic sign operator is unbiased with the scaling factor
‖g‖. Indeed, if ĝ is an unbiased estimator of g, i.e. E[ĝ] = g, then

E
[
‖ĝ‖ s̃ign ĝ

]
= E

[
E
[
‖ĝ‖ s̃ign ĝ | ĝ

]]
= E

[
‖ĝ‖

(
1
2 + 1

2
ĝ
‖ĝ‖

)
− ‖ĝ‖

(
1
2 −

1
2
ĝ
‖ĝ‖

)]
= g.
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Appendix: “On Stochastic Sign Descent
Methods”
Appendix A. A New “Norm” for Measuring the Gradients

In this section we introduce the concept of a norm-like function, which we call ρ-norm, induced
from success probabilities. Used to measure gradients in our convergence rates, ρ-norm is a techni-
cal tool enabling the analysis.

Definition 6 (ρ-norm) Let ρ := {ρi(x)}di=1 be the collection of probability functions from the SPB
assumption. We define the ρ-norm of gradient g(x) via

‖g(x)‖ρ :=
∑d

i=1(2ρi(x)− 1)|gi(x)|.

Note that ρ-norm is not a norm as it may not satisfy the triangle inequality. However, under SPB
assumption, it is positive definite as it is a weighted l1 norm with positive (and variable) weights
2ρi(x) − 1 > 0. That is, ‖g‖ρ ≥ 0, and ‖g‖ρ = 0 if and only if g = 0. Under the assumptions
of Lemma 2, ρ-norm can be lower bounded by a weighted l1 norm with positive constant weights
1 − 2ci/τ > 0: ‖g‖ρ =

∑d
i=1(2ρi − 1)|gi| ≥

∑d
i=1(1 − 2ci/τ)|gi|. Under the assumptions of

Lemma 1, ρ-norm can be lower bounded by a mixture of the l1 and squared l2 norms:

‖g‖ρ =
d∑
i=1

(2ρi − 1)|gi| ≥
d∑
i=1

g2i
|gi|+

√
3σi

:= ‖g‖l1,2 . (9)

Note that l1,2-norm is again not a norm. However, it is positive definite, continuous and order
preserving, i.e., for any gk, g, g̃ ∈ Rd we have: i) ‖g‖l1,2 ≥ 0 and ‖g‖l1,2 = 0 if and only if g = 0;
ii) gk → g (in l2 sense) implies ‖gk‖l1,2 → ‖g‖l1,2 , and iii) 0 ≤ gi ≤ g̃i for any 1 ≤ i ≤ d implies
‖g‖l1,2 ≤ ‖g̃‖l1,2 . From these three properties it follows that ‖gk‖l1,2 → 0 implies gk → 0. These
properties are important as we will measure convergence rate in terms of the l1,2 norm in the case
of unimodal and symmetric noise assumption. To understand the nature of the l1,2 norm, consider
the following two cases when σi(x) ≤ c|gi(x)|+ c̃ for some constants c, c̃ ≥ 0. If the iterations are
in ε-neighbourhood of a minimizer x∗ with respect to the l∞ norm (i.e., max1≤i≤d |gi| ≤ ε), then
the l1,2 norm is equivalent to scaled l2 norm squared: 1

(1+
√

3c)ε+
√

3c̃
‖g‖22 ≤ ‖g‖l1,2 ≤ 1√

3c̃
‖g‖22. On

the other hand, if iterations are away from a minimizer (i.e., min1≤i≤d |gi| ≥ L), then the l1,2-norm
is equivalent to scaled l1 norm: 1

1+
√

3(c+c̃/L)
‖g‖1 ≤ ‖g‖l1,2 ≤ 1

1+
√

3c
‖g‖1. These equivalences are

visible in Figure 1, where we plot the level sets of g 7→ ‖g‖l1,2 at various distances from the origin.
Similar mixed norm observation for signSGD was also noted in [3].

Appendix B. Experiments

We verify our theoretical results experimentally using the MNIST dataset with feed-forward neural
network (FNN) and the well known Rosenbrock (non-convex) function with d = 10 variables:

f(x) =
∑d−1

i=1 fi(x) =
∑d−1

i=1 100(xi+1 − x2
i )

2 + (1− xi)2.
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Figure 1: Contour plots of the l1,2 norm (9) at 4 different scales with fixed noise σ = 1.

B.1. Minimizing the Rosenbrock function

The Rosenbrock function is a classic example of non-convex function, which is used to test the
performance of optimization methods. We chose this low dimensional function in order to estimate
the success probabilities effectively in a reasonable time and to expose theoretical connection.

Stochastic formulation of the minimization problem for Rosenbrock function is as follows: at
any point x ∈ Rd we have access to biased stochastic gradient ĝ(x) = ∇fi(x) + ξ, where index i
is chosen uniformly at random from {1, 2, . . . , d− 1} and ξ ∼ N (0, ν2I) with ν > 0.

Figure 4 illustrates the effect of multiple nodes in distributed training with majority vote. As we
see increasing the number of nodes improves the convergence rate. It also supports the claim that in
expectation there is no improvement from 2l − 1 nodes to 2l nodes.

Figure 2 shows the robustness of SPB assumption in the convergence rate (6) with constant
step size. We exploited four levels of noise in each column to demonstrate the correlation between
success probabilities and convergence rate. In the first experiment (first column) SPB assumption is
violated strongly and the corresponding rate shows divergence. In the second column, probabilities
still violating SPB assumption are close to the threshold and the rate shows oscillations. Next
columns express the improvement in rates when success probabilities are pushed to be close to 1.

B.2. Training FNN on the MNIST dataset

We trained a single layer feed-forward network on the MNIST with two different batch construction
strategies. The first construction is the standard way of training networks: before each epoch we
shuffle the training dataset and choose batches sequentially. In the second construction, first we split
the training dataset into two parts, images with labels 0, 1, 2, 3, 4 and images with labels 5, 6, 7,
8, 9. Then each batch of images were chosen from one of these parts with equal probabilities. We
make the following observations based on our experiments depicted in Figure 3 and Figure 5.
• Convergence with multi-modal and skewed gradient distributions. Due to the split batch

construction strategy we unfold multi-modal and asymmetric distributions for stochastic gradients
in Figure 3. With this experiment we conclude that sign based methods can converge under various
gradient distributions which is allowed from our theory.
• Effectiveness in the early stage of training. Both experiments show that in the beginning of

the training, signSGD is more efficient than SGD when we compare accuracy against communica-
tion. This observation is supported by the theory as at the start of the training success probabilities
are bigger (see Lemma 1) and lower bound for mini-batch size is smaller (see Lemma 3).
• Bigger batch size, better convergence. Figure 5 shows that the training with larger batch

size improves the convergence as backed by the theory (see Lemmas 2 and 3).

9
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• Generalization effect. Another aspect of sign based methods which has been observed to be
problematic, in contrast to SGD, is the generalization ability of the model (see also [1], Section 6.2
Results). In the experiment with standard batch construction (see Figure 5) we notice that test
accuracy is growing with training accuracy. However, in the other experiment with split batch
construction (see Figure 3), we found that test accuracy does not get improved during the second
half of the training while train accuracy grows consistently with slow pace.
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Figure 2: Performance of signSGD with constant step size (γ = 0.25) under four different noise
levels (mini-batch size 1, 2, 5, 8) using Rosenbrock function. Each column represent
a separate experiment with function values, evolution of minimum success probabilities
and the histogram of success probabilities throughout the iteration process. Dashed blue
line in the first row is the minimum value. Dashed red lines in second and third rows are
thresholds 1/2 of success probabilities. The shaded area in first and second rows shows
standard deviation obtained from ten repetitions.
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Figure 3: Convergence of signSGD and comparison with SGD on the MNIST dataset using the split
batch construction strategy. The budget of gradient communication (MB) is fixed and the
network is a single hidden layer FNN. We first tuned the constant step size over logarith-
mic scale {1, 0.1, 0.01, 0.001, 0.0001} and then fine tuned it. First column shows train
and test accuracies with mini-batch size 128 and averaged over 3 repetitions. We chose
two weights (empirically, most of the network biases would work) and plotted histograms
of stochastic gradients before epochs 5, 25 and 50. Dashed red lines on histograms indi-
cate the average values.

Figure 4: Experiments on distributed signSGD with majority vote using Rosenbrock function. Plots
show function values with respect to iterations averaged over 10 repetitions. Left plot
used constant step size γ = 0.02, right plot used variable step size with γ0 = 0.02.
We set mini-batch size 1 and used the same initial point. Dashed blue lines mark the
minimum.
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Figure 5: Comparison of signSGD and SGD on the MNIST dataset with a fixed budget of gradient
communication (MB) using single hidden layer FNN and the standard batch construction
strategy. For each batch size, we first tune the constant step size over logarithmic scale
{10, 1, 0.1, 0.01, 0.001} and then fine tune it. Shaded area shows the standard deviation
from 3 repetition.
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Figure 6: Performance of signSGD with variable step size (γ0 = 0.25) under four different noise
levels (mini-batch size 1, 2, 5, 7) using Rosenbrock function. As in the experiments
of Figure 2 with constant step size, these plots show the relationship between success
probabilities and the convergence rate (5). In low success probability regime (first and
second columns) we observe oscillations, while in high success probability regime (third
and forth columns) oscillations are mitigated substantially.
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Figure 7: In this part of experiments we investigated convergence rate (6) to a neighborhood of
the solution. We fixed gradient noise level by setting mini-batch size 2 and altered the
constant step size. For the first column we set bigger step size γ = 0.25 to detect the
divergence (as we slightly violated SPB assumption). Then for the second and third
columns we set γ = 0.1 and γ = 0.05 to expose the convergence to a neighborhood of
the minimizer. For the forth column we set even smaller step size γ = 0.01 to observe a
slower convergence.
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Figure 8: Unit balls in l1,2 norm (9) with different noise levels.
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Appendix C. Proofs

C.1. Sufficient conditions for SPB: Proof of Lemma 1

Here we state the well-known Gauss’s inequality on unimodal distributions3.

Theorem 7 (Gauss’s inequality) Let X be a unimodal random variable with mode m, and let σ2
m

be the expected value of (X −m)2. Then for any positive value of r,

Prob(|X −m| > r) ≤

{
4
9

(
σm
r

)2
, if r ≥ 2√

3
σm

1− 1√
3
r
σm
, otherwise

Applying this inequality on unimodal and symmetric distributions, direct algebraic manipula-
tions give the following bound:

Prob(|X − µ| ≤ r) ≥

{
1− 4

9

(
σ
r

)2
, if σr ≤

√
3

2
1√
3
r
σ , otherwise

≥ r/σ

r/σ +
√

3
,

where m = µ and σ2
m = σ2 are the mean and variance of unimodal, symmetric random variable X ,

and r ≥ 0. Now, using the assumption that each ĝi(x) has unimodal and symmetric distribution, we
apply this bound for X = ĝi(x), µ = gi(x), σ2 = σ2

i (x) and get a bound for success probabilities

Prob(sign ĝi = sign gi) =

{
Prob(ĝi ≥ 0), if gi > 0

Prob(ĝi ≤ 0), if gi < 0

=

{
1
2 + Prob(0 ≤ ĝi ≤ gi), if gi > 0
1
2 + Prob(gi ≤ ĝi ≤ 0), if gi < 0

=

{
1
2 + 1

2Prob(0 ≤ ĝi ≤ 2gi), if gi > 0
1
2 + 1

2Prob(2gi ≤ ĝi ≤ 0), if gi < 0

=
1

2
+

1

2
Prob(|ĝi − gi| ≤ |gi|)

≥ 1

2
+

1

2

|gi|/σi
|gi|/σi +

√
3

=
1

2
+

1

2

|gi|
|gi|+

√
3σi

Improvement on Lemma 1 and l1,2 norm: The bound after Gauss inequality can be improved
including a second order term

Prob(|X − µ| ≤ r) ≥

{
1− 4

9

(
σ
r

)2
, if σr ≤

√
3

2
1√
3
r
σ , otherwise

≥ 1− 1

1 + r/
√

3σ + (r/
√

3σ)2
.

Indeed, letting z := r/
√

3σ ≥ 2/3, we get 1−4
9

1
3z2
≥ 1− 1

1+z+z2
as it reduces to 23z2−4z−4 ≥ 0.

Otherwise, if 0 ≤ z ≤ 2/3, then z ≥ 1 − 1
1+z+z2

as it reduces to 1 ≥ 1 − z3. The improvement is

3. see https://en.wikipedia.org/wiki/Gauss%27s_inequality
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tighter as
r/σ

r/σ +
√

3
= 1− 1

1 + r/
√

3σ
≤ 1− 1

1 + r/
√

3σ + (r/
√

3σ)2
.

Hence, continuing the proof of Lemma 1, we get

Prob(sign ĝi = sign gi) ≥ 1− 1

2

1

1 + |gi|/
√

3σi + (|gi|/
√

3σi)2

and we could have defined l1,2-norm in a bit more complicated form as

‖g‖l1,2 :=

d∑
i=1

(
1− 1

1 + |gi|/
√

3σi + (|gi|/
√

3σi)2

)
|gi|.

C.2. Sufficient conditions for SPB: Proof of Lemma 2

Let ĝ(τ) be the gradient estimator with mini-batch size τ . It is known that the variance for ĝ(τ) is
dropped by at least a factor of τ , i.e.

E[(ĝ
(τ)
i − gi)

2] ≤ σ2
i

τ
.

Hence, estimating the failure probabilities of sign ĝ(τ) when gi 6= 0, we have

Prob(sign ĝ
(τ)
i 6= sign gi) = Prob(|ĝ(τ)

i − gi| = |ĝ
(τ)
i |+ |gi|)

≤ Prob(|ĝ(τ)
i − gi| ≥ |gi|)

= Prob((ĝ
(τ)
i − gi)

2 ≥ g2
i )

≤
E[(ĝ

(τ)
i − gi)2]

g2
i

=
σ2
i

τg2
i

,

which imples

ρi = Prob(sign ĝi = sign gi) ≥ 1− σ2
i

τg2
i

≥ 1− ci
τ
.

C.3. Sufficient conditions for SPB: Proof of Lemma 3

We will split the derivation into three lemmas providing some intuition on the way. The first two
lemmas establish success probability bounds in terms of mini-batch size. Essentially, we present
two methods: one works well in the case of small randomness, while the other one in the case of
non-small randomness. In the third lemma, we combine those two bounds to get the condition on
mini-batch size ensuring SPB assumption.

Lemma 8 Let X1, X2, . . . , Xτ be i.i.d. random variables with non-zero mean µ := EX1 6= 0,
finite variance σ2 := E|X1 − µ|2 <∞. Then for any mini-batch size τ ≥ 1

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
≥ 1− σ2

τµ2
. (10)
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Proof Without loss of generality, we assume µ > 0. Then, after some adjustments, the proof
follows from the Chebyshev’s inequality:

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
= Prob

(
1

τ

τ∑
i=1

Xi > 0

)

≥ Prob

(∣∣∣∣∣1τ
τ∑
i=1

Xi − µ

∣∣∣∣∣ < µ

)

= 1− Prob

(∣∣∣∣∣1τ
τ∑
i=1

Xi − µ

∣∣∣∣∣ ≥ µ
)

≥ 1− 1

µ2
Var

[
1

τ

τ∑
i=1

Xi

]

= 1− σ2

τµ2
,

where in the last step we used independence of random variables X1, X2, . . . , Xτ .

Obviously, bound (10) is not optimal for big variance as it becomes a trivial inequality. In the
case of non-small randomness a better bound is achievable additionally assuming the finitness of
3th central moment.

Lemma 9 Let X1, X2, . . . , Xτ be i.i.d. random variables with non-zero mean µ := EX1 6= 0,
positive variance σ2 := E|X1 − µ|2 > 0 and finite 3th central moment ν3 := E|X1 − µ|3 < ∞.
Then for any mini-batch size τ ≥ 1

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
≥ 1

2

(
1 + erf

(
|µ|
√
τ√

2σ

)
− ν3

σ3
√
τ

)
, (11)

where error function erf is defined as

erf(x) =
2√
π

∫ x

0
e−t

2
dt, x ∈ R.

Proof Again, without loss of generality, we may assume that µ > 0. Informally, the proof goes as
follows. As we have an average of i.i.d. random variables, we approximate it (in the sense of distri-
bution) by normal distribution using the Central Limit Theorem (CLT). Then we compute success
probabilities for normal distribution with the error function erf . Finally, we take into account the
approximation error in CLT, from which the third term with negative sign appears. More formally,
we apply Berry–Esseen inequality4 on the rate of approximation in CLT [14]:∣∣∣∣∣Prob

(
1

σ
√
τ

τ∑
i=1

(Xi − µ) > t

)
− Prob (N > t)

∣∣∣∣∣ ≤ 1

2

ν3

σ3
√
τ
, t ∈ R,

4. see https://en.wikipedia.org/wiki/Berry-Esseen_theorem
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where N ∼ N (0, 1) has the standard normal distribution. Setting t = −µ
√
τ/σ, we get∣∣∣∣∣Prob

(
1

τ

τ∑
i=1

Xi > 0

)
− Prob

(
N > −µ

√
τ

σ

)∣∣∣∣∣ ≤ 1

2

ν3

σ3
√
τ
. (12)

It remains to compute the second probability using the cumulative distribution function of nor-
mal distribuition and express it in terms of the error function:

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
= Prob

(
1

τ

τ∑
i=1

Xi > 0

)
(12)

≥ Prob

(
N > −µ

√
τ

σ

)
− 1

2

ν3

σ3
√
τ

=
1√
2π

∫ ∞
−µ
√
τ/σ

e−t
2/2 dt− 1

2

ν3

σ3
√
τ

=
1

2

(
1 +

√
2

π

∫ µ
√
τ/σ

0
e−t

2/2 dt− ν3

σ3
√
τ

)

=
1

2

(
1 + erf

(
µ
√
τ√

2σ

)
− ν3

σ3
√
τ

)
.

Clearly, bound (11) is better than (10) when randomness is high. On the other hand, bound (11)
is not optimal for small randomness (σ ≈ 0). Indeed, one can show that in a small randomness
regime, while both variance σ2 and third moment ν3 are small, the ration ν/σ might blow up to
infinity producing trivial inequality. For instance, takingXi ∼ Bernoulli(p) and letting p→ 1 gives
ν/σ = O

(
(1− p)−1/6

)
. This behaviour stems from the fact that we are using CLT: less randomness

implies slower rate of approximation in CLT.
As a result of these two bounds on success probabilities, we conclude a condition on mini-batch

size for the SPB assumption to hold.

Lemma 10 Let X1, X2, . . . , Xτ be i.i.d. random variables with non-zero mean µ 6= 0 and finite
variance σ2 <∞. Then

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
>

1

2
, if τ > 2 min

(
σ2

µ2
,
ν3

|µ|σ2

)
, (13)

where ν3 is (possibly infinite) 3th central moment.

Proof First, if σ = 0 then the lemma holds trivially. If ν = ∞, then it follows immediately from
Lemma 8. Assume both σ and ν are positive and finite.

In case of τ > 2σ2/µ2 we apply Lemma 8 again. Consider the case τ ≤ 2σ2/µ2, which
implies µ

√
τ√

2σ
≤ 1. It is easy to check that erf(x) is concave on [0, 1] (in fact on [0,∞)), therefore

erf(x) ≥ erf(1)x for any x ∈ [0, 1]. Setting x = µ
√
τ√

2σ
we get

erf

(
µ
√
τ√

2σ

)
≥ erf(1)√

2

µ
√
τ

σ
,
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which together with (11) gives

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
≥ 1

2

(
1 +

erf(1)√
2

µ
√
τ

σ
− ν3

σ3
√
τ

)
.

Hence, SPB assumption holds if

τ >

√
2

erf(1)

ν3

µσ2
.

It remains to show that erf(1) > 1/
√

2. Convexity of ex on x ∈ [−1, 0] implies ex ≥ 1 + (1− 1/e)x
for any x ∈ [−1, 0]. Therefore

erf(1) =
2√
π

∫ 1

0
e−t

2
dt

≥ 2√
π

∫ 1

0

(
1− (1− 1/e)t2

)
dt

=
2√
π

(
2

3
+

1

3e

)
>

2√
4

(
2

3
+

1

3 · 3

)
=

7

9
>

1√
2
.

Lemma (3) follows from Lemma (10) applying it to i.i.d. data ĝ1
i (x), ĝ2

i (x), . . . , ĝMi (x).

C.4. Sufficient conditions for SPB: Proof of Lemma 4

This observation is followed by the fact that for continuous random variables, the Gaussian dis-
tribution has the maximum differential entropy for a given variance5. Formally, let pG(x) be the
probability density function (PDF) of a Gaussian random variable with variance σ2 and p(x) be the
PDF of some random variable with the same variance. Then H(p) ≤ H(pG), where

H(p) = −
∫
R
p(x) log p(x) dx

is the differential entropy of probability distribution p(x) or alternatively differential entropy of
random variable with PDF p(x). Differential entropy for normal distribution can be expressed
analytically by H(pG) = 1

2 log(2πeσ2). Therefore

H(p) ≤ 1

2
log(2πeσ2)

for any distribution p(x) with variance σ2. Now, under the bounded variance assumption E
[
|ĝ − g|2

]
≤

C (where g is the expected value of ĝ) we have the entropy of random variable ĝ bounded by
1
2 log(2πeC). However, under the SPB assumption Prob (sign ĝ = sign g) > 1/2 the entropy is un-
bounded. In order to prove this, it is enough to notice that under SPB assumption random variable
ĝ could be any Gaussian random variable with mean g 6= 0. In other words, SPB assumption holds
for any Gaussian random variable with non-zero mean. Hence the entropy could be arbitrarily large
as there is no restriction on the variance.

5. see https://en.wikipedia.org/wiki/Differential_entropy or https://en.wikipedia.
org/wiki/Normal_distribution#Maximum_entropy
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Remark 11 (see also Remark 12) Note that SPB assumption describes the convergence of sign
descent methods, which is known to be problem dependent (e.g. see [1], section 6.2 Results). One
should view the SPB condition as a criteria to problems where sign based methods are useful.

Remark 12 Differential entropy argument is an attempt to bridge our new SPB assumption to one
of the most basic assumptions in the literature, bounded variance assumption. Clearly, they are not
comparable in the usual sense, and neither one is implied by the other. Still, we propose another
viewpoint to the situation and compare such conditions through the lens of information theory.
Practical meaning of such observation is that SPB handles a much broader (though not necessarily
more important) class of gradient noise than bounded variance condition. In other words, this gives
an intuitive measure on how much restriction we put on the noise.

C.5. Convergence Analysis: Proof of Theorem 2

First, from L-smoothness assumption we have

f(xk+1) = f(xk − γk sign ĝk)

≤ f(xk)− 〈gk, γk sign ĝk〉+
d∑
i=1

Li
2

(γk sign ĝk,i)
2

= f(xk)− γk〈gk, sign ĝk〉+
dL̄

2
γ2
k ,

where gk = g(xk), ĝk = ĝ(xk), ĝk,i is the i-th component of ĝk and L̄ is the average value of Li’s.
Taking conditional expectation given current iteration xk gives

E[f(xk+1)|xk] ≤ f(xk)− γkE[〈gk, sign ĝk〉] +
dL̄

2
γ2
k . (14)

Using the definition of success probabilities ρi we get

E[〈gk, sign ĝk〉] = 〈gk,E[sign ĝk]〉 (15)

=
d∑
i=1

gk,i · E[sign ĝk,i] =
∑

1≤i≤d
gk,i 6=0

gk,i · E[sign ĝk,i] (16)

=
∑

1≤i≤d
gk,i 6=0

gk,i (ρi(xk) sign gk,i + (1− ρi(xk))(− sign gk,i)) (17)

=
∑

1≤i≤d
gk,i 6=0

(2ρi(xk)− 1)|gk,i| =
d∑
i=1

(2ρi(xk)− 1)|gk,i| = ‖gk‖ρ. (18)

Plugging this into (14) and taking full expectation, we get

E‖gk‖ρ ≤
E[f(xk)]− E[f(xk+1)]

γk
+
dL̄

2
γk. (19)
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Therefore
K−1∑
k=0

γkE‖gk‖ρ ≤ (f(x0)− f∗) +
dL̄

2

K−1∑
k=0

γ2
k . (20)

Now, in case of decreasing step sizes γk = γ0/
√
k + 1

min
0≤k<K

E‖gk‖ρ ≤
K−1∑
k=0

γ0√
k + 1

E‖gk‖ρ
/K−1∑

k=0

γ0√
k + 1

≤ 1√
K

[
f(x0)− f∗

γ0
+
dL̄

2
γ0

K−1∑
k=0

1

k + 1

]

≤ 1√
K

[
f(x0)− f∗

γ0
+ γ0dL̄+

γ0dL̄

2
logK

]
=

1√
K

[
f(x0)− f∗

γ0
+ γ0dL̄

]
+
γ0dL̄

2

logK√
K

.

where we have used the following standard inequalities

K∑
k=1

1√
k
≥
√
K,

K∑
k=1

1

k
≤ 2 + logK. (21)

In the case of constant step size γk = γ

1

K

K−1∑
k=0

E‖gk‖ρ ≤
1

γK

[
(f(x0)− f∗) +

dL̄

2
γ2K

]
=
f(x0)− f∗

γK
+
dL̄

2
γ.

C.6. Convergence Analysis: Proof of Theorem 13

Here we present slightly modified version of signSGD, where function evaluations are feasible.
Algorithm 3 with Option 1 is the same Algorithm 1. We now state a general convergence rate for
Algorithm 3 with Option 2.

Algorithm 3 SIGNSGD
1: Input: step size γk, current point xk
2: ĝk ← StochasticGradient(xk)
3: Option 1: xk+1 ← xk − γk sign ĝk
4: Option 2: xk+1 ← arg min{f(xk), f(xk − γk sign ĝk)}

Theorem 13 Under the SPB assumption, Algorithm 3 (Option 2) with step sizes γk = γ0/
√
k + 1

converges as follows:

1
K

K−1∑
k=0

E‖∇f(xk)‖ρ ≤ 1√
K

[
f(x0)−f∗

γ0
+ γ0dL̄

]
.

In the case of constant step size γk ≡ γ > 0, the same rate as (6) is achieved.
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Comparing Theorem 13 with Theorem 2, notice that a small modification in Algorithm 1 can
remove the log-dependent factor from (5); we then bound the average of past gradient norms instead
of the minimum. On the other hand, in a big data regime, function evaluations in Algorithm 1
(Option 2, line 4) are infeasible. Clearly, Option 2 is useful only when one can afford function
evaluations and has rough estimates about the gradients (i.e., signs of stochastic gradients). This
option should be considered within the framework of derivative-free optimization.
Proof Clearly, the iterations {xk}k≥0 of Algorithm 3 (Option 2) do not increase the function value
in any iteration, i.e. E[f(xk+1)|xk] ≤ f(xk). Continuing the proof of Theorem 2 from (19), we get

1

K

K−1∑
k=0

E‖gk‖ρ ≤
1

K

K−1∑
k=0

E[f(xk)]− E[f(xk+1)]

γk
+
dL̄

2
γk

=
1

K

K−1∑
k=0

E[f(xk)]− E[f(xk+1)]

γ0

√
k + 1 +

dL̄

2K

K−1∑
k=0

γ0√
k + 1

≤ 1√
K

K−1∑
k=0

E[f(xk)]− E[f(xk+1)]

γ0
+
γ0dL̄√
K

=
f(x0)− E[f(xK)]

γ0

√
K

+
γ0dL̄√
K

≤ 1√
K

[
f(x0)− f∗

γ0
+ γ0dL̄

]
,

where we have used the following inequality

K∑
k=1

1√
k
≤ 2
√
K.

The proof for constant step size is the same as in Theorem 2.

C.7. Convergence Analysis in Distributed Setting: Proof of Theorem 4

First, denote by I(p; a, b) the regularized incomplete beta function, which is defined as follows

I(p; a, b) =
B(p; a, b)

B(a, b)
=

∫ p
0 t

a−1(1− t)b−1 dt∫ 1
0 t

a−1(1− t)b−1 dt
, a, b > 0, p ∈ [0, 1]. (22)
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The proof of Theorem 4 goes with the same steps as in Theorem 2, except the derivation (15)–
(18) is replaced by

E[〈gk, sign ĝ
(M)
k 〉] = 〈gk,E[sign ĝ

(M)
k ]〉

=

d∑
i=1

gk,i · E[sign ĝ
(M)
k,i ]

=
∑

1≤i≤d
gk,i 6=0

|gk,i| · E
[
sign

(
ĝ

(M)
k,i · gk,i

)]

=
∑

1≤i≤d
gk,i 6=0

|gk,i| (2I(ρi(xk); l, l)− 1) = ‖gk‖ρM ,

where we have used the following lemma.

Lemma 14 Assume that for some point x ∈ Rd and some coordinate i ∈ {1, 2, . . . , d}, master node
receives M independent stochastic signs sign ĝmi (x), m = 1, . . . ,M of true gradient gi(x) 6= 0.
Let ĝ(M)(x) be the sum of stochastic signs aggregated from nodes:

ĝ(M) =
M∑
m=1

sign ĝm.

Then
E
[
sign

(
ĝ

(M)
i · gi

)]
= 2I(ρi; l, l)− 1, (23)

where l = [(M+1)/2] and ρi > 1/2 is the success probablity for coordinate i.

Proof Denote by Smi the Bernoulli trial of nodem corresponding to ith coordinate, where “success”
is the sign match between stochastic gradient and gradient:

Smi :=

{
1, if sign ĝmi = sign gi

0, otherwise
∼ Bernoulli(ρi). (24)

Since nodes have their own independent stochastic gradients and the objective function (or dataset)
is shared, then master node receives i.i.d. trials Smi , which sum up to a binomial random variable
Si:

Si :=
M∑
m=1

Smi ∼ Binomial(M,ρi). (25)

First, let us consider the case when there are odd number of nodes, i.e. M = 2l − 1, l ≥ 1. In this
case, taking into account (24) and (25), we have

Prob
(

sign ĝ
(M)
i = 0

)
= 0,

ρ
(M)
i := Prob

(
sign ĝ

(M)
i = sign gi

)
= Prob(Si ≥ l),

1− ρ(M)
i = Prob

(
sign ĝ

(M)
i = − sign gi

)
.
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It is well known that cumulative distribution function of binomial random variable can be ex-
pressed with regularized incomplete beta function:

Prob(Si ≥ l) = I(ρi; l,M − l + 1) = I(ρi; l, l). (26)

Therefore,

E
[
sign

(
ĝ

(M)
i · gi

)]
= ρ

(M)
i · 1 + (1− ρ(M)

i ) · (−1)

= 2ρ
(M)
i − 1

= 2Prob(Si ≥ l)− 1

= 2I(ρi; l, l)− 1.

In the case of even number of nodes, i.e. M = 2l, l ≥ 1, there is a probability to fail the vote
Prob

(
sign ĝ

(M)
i = 0

)
> 0. However using (26) and properties of beta function6 gives

E
[
sign

(
ĝ

(2l)
i · gi

)]
= Prob(Si ≥ l + 1) · 1 + Prob(Si ≤ l − 1) · (−1)

= I(ρi; l + 1, l) + I(ρi; l, l + 1)− 1

= 2I(ρi; l, l)− 1

= E
[
sign

(
ĝ

(2l−1)
i · gi

)]
.

This also shows that in expectation there is no difference between having 2l − 1 and 2l nodes.

C.8. Convergence Analysis in Distributed Setting: Variance reduction

Here we present exponential variance reduction in distributed setting in terms of number of nodes.
We first state the well-known Hoeffding’s inequality:

Theorem 15 (Hoeffding’s inequality for general bounded random variables; see [16], Theorem 2.2.6)
Let X1, X2, . . . , XM be independent random variables. Assume that Xm ∈ [Am, Bm] for every m.
Then, for any t ¿ 0, we have

Prob

(
M∑
m=1

(Xm − EXm) ≥ t

)
≤ exp

(
− 2t2∑M

m=1(Bm −Am)2

)
.

Define random variables Xm
i , m = 1, 2, . . . ,M showing the missmatch between stochastic

gradient sign and full gradient sign from node m and coordinate i:

Xm
i :=

{
−1, if sign ĝmi = sign gi

1, otherwise
(27)

Clearly EXm
i = 1− 2ρi and Hoeffding’s inequality gives

Prob

(
M∑
m=1

Xm
i −M(1− 2ρi) ≥ t

)
≤ exp

(
− t2

2M

)
, t > 0.

6. see https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
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Choosing t = M(2ρi − 1) > 0 (because of SPB assumption) yields

Prob

(
M∑
m=1

Xm
i ≥ 0

)
≤ exp

(
−1

2
(2ρi − 1)2M

)
.

Using Lemma 23, we get

2I(ρi, l; l)− 1 = E
[
sign

(
ĝ

(M)
i · gi

)]
= 1− Prob

(
M∑
m=1

Xm
i ≥ 0

)
≥ 1− exp

(
−(2ρi − 1)2l

)
,

which provides the following estimate for ρM -norm:(
1− exp

(
−(2ρ(x)− 1)2l

))
‖g(x)‖1 ≤ ‖g(x)‖ρM ≤ ‖g(x)‖1,

where ρ(x) = min1≤i≤d ρi(x) > 1/2.

Appendix D. Convergence Result for Standard SGD

For comparison, here we state and prove non-convex convergence rates of standard SGD with the
same step sizes.

Theorem 16 (Non-convex convergence of SGD) Let ĝ be an unbiased estimator of the gradient
∇f and assume that E‖ĝ‖22 ≤ C for some C > 0. Then SGD with step sizes γk = γ0/

√
k + 1

converges as follows

min
0≤k<K

E‖∇f(xk)‖22 ≤
1√
K

[
f(x0)− f∗

γ0
+ γ0CLmax

]
+
γ0CLmax

2

logK√
K

. (28)

In the case of constant step size γk ≡ γ > 0

1

K

K−1∑
k=0

E‖∇f(xk)‖22 ≤
f(x0)− f∗

γK
+
CLmax

2
γ. (29)

Proof From L-smoothness assumption we have

E[f(xk+1)|xk] = E[f(xk − γkĝk)|xk]

≤ f(xk)− E[〈gk, γkĝk〉] +
Lmax

2
γ2
kE[‖ĝk‖22]

= f(xk)− γk‖gk‖22 +
Lmax

2
γ2
k E[‖ĝk‖22].

Taking full expectation, using variance bound assumption, we have

E[f(xk+1)]− E[f(xk)] ≤ −γk E‖gk‖22 +
Lmax

2
γ2
kC

Therefore
γkE‖gk‖22 ≤ E[f(xk)]− E[f(xk+1)] +

CLmax

2
γ2
k
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Summing k = 0, 1, . . . ,K − 1 gives

K−1∑
k=0

γkE‖gk‖22 ≤ (f(x0)− f∗) +
CLmax

2

K−1∑
k=0

γ2
k .

Now, in case of decreasing step sizes γk = γ0/
√
k + 1

min
0≤k<K

E‖gk‖22 ≤
K−1∑
k=0

γ0√
k + 1

E‖gk‖22
/K−1∑

k=0

γ0√
k + 1

≤ 1√
K

[
f(x0)− f∗

γ0
+
CLmax

2
γ0

K−1∑
k=0

1

k + 1

]

≤ 1√
K

[
f(x0)− f∗

γ0
+ γ0CLmax +

γ0CLmax

2
logK

]
=

1√
K

[
f(x0)− f∗

γ0
+ γ0CLmax

]
+
γ0CLmax

2

logK√
K

.

where again we have used inequalities (21). In the case of constant step size γk = γ

1

K

K−1∑
k=0

E‖gk‖22 ≤
1

γK

[
(f(x0)− f∗) +

CLmax

2
γ2K

]
=
f(x0)− f∗

γK
+
CLmax

2
γ.

Appendix E. Recovering Theorem 1 in [3] from Theorem 2

To recover Theorem 1 in [3], first note that choosing a particular step size γ in (6) yields

1

K

K−1∑
k=0

E‖gk‖ρ ≤
√

2dL̄(f(x0)− f∗)
K

, with γ =

√
2(f(x0)− f∗)

dL̄K
. (30)

Then, due to Lemma 1, under unbiasedness and unimodal symmetric noise assumption, we can
lower bound general ρ-norm by mixed l1,2 norm. Finally we further lower bound our l1,2 norm to
obtain the mixed norm used in Theorem 1 of [3]: let Hk = {1 ≤ i ≤ d : σi <

√
3/2|gk,i|}

5

√
dL̄(f(x0)− f∗)

K
≥ 5√

2

1

K

K−1∑
k=0

E‖gk‖ρ

≥ 5√
2

1

K

K−1∑
k=0

E‖gk‖l1,2 =
5√
2

1

K

K−1∑
k=0

[
d∑
i=1

g2
i

|gi|+
√

3σi

]

≥ 5√
2

1

K

K−1∑
k=0

E

2

5

∑
i∈Hk

|gk,i|+
√

3

5

∑
i/∈Hk

g2
k,i

σi


≥ 1

K

K−1∑
k=0

E

∑
i∈Hk

|gk,i|+
∑
i/∈Hk

g2
k,i

σi

 .
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Appendix F. Stochastic signSGD

Our experiments and the counterexample show that signSGD might fail to converge in general.
What we proved is that SPB assumption is roughly a necessary and sufficient for general conver-
gence. There are several ways to overcome SPB assumption and make signSGD to work in general,
e.g. scaled version of signSGD with error feedback [7]. Here we to present a simple way of fixing
this issue, which is more natural to signSGD. The issue with signSGD is that sign of stochastic
gradient is biased, which also complicates the analysis.

We define stochastic sign operator s̃ign, which unlike the deterministic sign operator is unbiased
with appropriate scaling factor.

Definition 17 (Stochastic Sign) Define the stochastic sign operator s̃ign : Rd → Rd as

(
s̃ign g

)
i

=

{
+1, with prob. 1

2 + 1
2

gi
‖g‖2

−1, with prob. 1
2 −

1
2

gi
‖g‖2

, 1 ≤ i ≤ d,

and s̃ign0 = 0 with probability 1.

Furthermore, we define stochastic compression operator C : Rd → Rd as C(x) = ‖x‖2 · s̃ignx,
which compresses rd bits to r+d bits (r bits per one floating point number). Then for any unbiased
estimator ĝ we get

E [C(ĝ)] = E [E[C(ĝ) | ĝ]] = E
[
‖ĝ‖2

(
1

2
+

1

2

ĝ

‖ĝ‖2

)
− ‖ĝ‖2

(
1

2
− 1

2

ĝ

‖ĝ‖2

)]
= E[ĝ] = g,

Var [C(ĝ)] = E
[
‖C(ĝ)− ĝ‖22

]
= E

[
‖C(ĝ)‖22

]
− E

[
‖ĝ‖22

]
= (d− 1)E‖ĝ‖22.

Using this relations, any analysis for SGD can be repeated for stochastic signSGD giving the
same convergence rate with less communication and with (d− 1) times worse coefficients.

Another scaled version of signSGD investigated in [7] uses non-stochastic compression operator
C′ : Rd → Rd defined as C′(x) = ‖x‖1

d signx. It is shown (see [7], Theorem II) to converge as

1

K

K−1∑
k=0

E‖∇f(xk)‖22 ≤
2 (f(x0)− f∗)

γK
+
γLmaxC

2
+ 4d(d− 1)γ2L2

maxC,

where the error of current gradient compression is stored to be used in the next step. On the other
hand, adopting the analysis of Theorem 16 for the stochastic compression operator C, we get a
bound

1

K

K−1∑
k=0

E‖∇f(xk)‖22 ≤
f(x0)− f∗

γK
+
γLmaxCd

2
,

where no data needs to be stored. Furthermore, ignoring the factor 2 at the first term, later bound is
better if γ ≥ 1/8dLmax.
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