
OPT2019: 11th Annual Workshop on Optimization for Machine Learning

Linearly Convergent Frank-Wolfe Made Practical

Geoffrey Négiar GEOFFREY_NEGIAR@BERKELEY.EDU

Armin Askari AASKARI@BERKELEY.EDU

Martin Jaggi MARTIN.JAGGI@EPFL.CH

Fabian Pedregosa PEDREGOSA@GOOGLE.COM

Abstract
Structured constraints in Machine Learning have recently brought the Frank-Wolfe (FW) family of
algorithms back in the spotlight. Recently, the Away-steps (A) and Pairwise (P) FW variants have
been shown to converge linearly for polytopic constraints. However, these improved variants suffer
from two practical limitations: each iteration requires solving a 1-dimensional minimization problem
to determine the step-size along with an exact solution to the Frank-Wolfe linear subproblems. In this
paper, we propose simple modifications of AFW and PFW that lift both restrictions simultaneously.
Our method relies on a sufficient decrease condition to determine the step-size. It only requires
evaluation and gradient oracles on the objective, along with an approximate solution to the Frank-
Wolfe linear subproblems. Furthermore, the theoretical convergence rates of our methods match ones
for the exact line-search versions. Benchmarks on different machine learning problems illustrate
large practical performance gains of the proposed variants.

1. Introduction

The Frank-Wolfe (FW) or conditional gradient [3, 5] is a method to solve problems of the form

minimize
x∈conv(A)

f(x) , (OPT)

where f is a smooth function for which we have access to its gradient and conv(A) is the convex
hull of a bounded set of elements which we will refer to as atoms in Rp.

The FW algorithm is one of the oldest methods for non-linear constrained optimization and
has experienced a renewed interest in recent years due to its applications in machine learning [10].
Although the original FW algorithm only achieves a sublinear convergence rate, other variants
like the Away-steps (AFW) and Pairwise (PFW) achieve linear convergence for strongly con-
vex functions over a polytope domain [12]. Unfortunately, both variants rely on an exact line-
search, that is, at each iteration, they require the solution of 1-dimensional subproblems of the
form argminγ∈[0,γmax] f(xt + γdt), where dt is the update direction and γmax is the maximum
admissible step-size. This can be a costly optimization problem if the objective is not quadratic,
making these methods impractical for more general objectives. It is therefore of great practical
interest to have linearly-convergent practical variants of AFW and PFW.

Contributions. Our main contribution is a variant of AFW and PFW for which only we only require
access to an oracle for evaluating the objective and its gradient, along with an approximate oracle
for linear minimization over the constraint set. In particular we do not know the Lipschitz constant
of its gradient. We provide an open source implementation of our adaptive variants, AdaAFW and
AdaPFW in the copt library.

c© G. Négiar, A. Askari, M. Jaggi & F. Pedregosa.

https://github.com/openopt/copt

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Related work
non-convex approximate linear adaptive bounded

analysis subproblems convergence step size backtracking
This work 3 3 3 3 3

Lacoste-Julien and Jaggi [12] 7 7 3 7 N/A
Beck et al. [1] 7 3† 7 3 7

Dunn [4] 3 7 7 3 7

Table 1: Comparison with related work. non-convex analysis: convergence guarantees for non-
convex objectives. approximate subproblems: convergence guarantees when solving linear
subproblems approximately. linear convergence: guaranteed linear rate of convergence
(under hypothesis). bounded backtracking: explicit bound for the number of inner loops in
adaptive step size methods. †: assumes domain with cartesian product structure.

Related Work. We improve on the Away-Steps [7] and Pairwise [12] variants of FW. In the case
of polytope constraints, they were recently shown to converge linearly for strongly convex objectives
[6, 12]. These methods require solving the exact line-search at every iteration. In practice, this
limits these methods to a small class of objective functions: quadratic objectives. Adaptive step size
variants for the classical FW have been described in [4] and [1], but no method to the best of our
knowledge derived them for the linearly-convergent Frank-Wolfe variants.

2. Methods

Notation. We say a function f is L-smooth if it is differen-
tiable and its gradient is L-Lipschitz continuous, that is, if it
verifies ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x,y in the do-
main. A function is µ-strongly convex if f − µ

2‖ · ‖
2 is convex

for µ > 0. ‖ · ‖ denotes the euclidean norm.
A general Frank-Wolfe-like algorithm. Our contributions
can be applied broadly to variants of FW algorithms, such as
AFW, PFW, vanilla FW and Matching Pursuit (MP), there-
fore we describe it in the context of a general FW-like al-
gorithm, detailed in Alg 1. It relies on two key subroutines:
update_direction and step_size. The first solves a
linear subproblem to decide on the direction dt we then follow
to compute the next iterate. The second yields how far along
this line we move our iterate: xt+1 = xt + γtdt and is detailed
in Alg 2.
The update_direction routine. This routine varies ac-
cording to the FW variant. All of them require to solve one or
two linear problems, often referred to as linear minimization
oracles (LMOs).
These subproblems consist in finding atoms st and vt in the
domain such that:

〈∇f(xt), st − xt〉 ≤ δmin
s∈A
〈∇f(xt), s− xt〉 , (1)

〈∇f(xt),xt − vt〉 ≤ δ min
v∈St

〈∇f(xt),xt − v〉 . (2)

Input: x0 ∈ conv(A), initial Lipschitz esti-
mate L−1 > 0, tolerance ε ≥ 0, subproblem
quality δ ∈ (0, 1]
for t = 0, 1 . . . do

dt, γ
max
t = update_direction(xt,∇ft)

gt = 〈−∇f(xt),dt〉
if gt ≤ δε then return xt;
γt, Lt = step_size(f,dt,xt, gt, Lt−1, γ

max
t)

xt+1 = xt + γtdt
end

Algorithm 1: FW variants with adaptive step-
size

Procedure step_size(f ,dt, xt, gt, Lt−1,
γmax)

Choose τ > 1, η ≤ 1
Choose M ∈ [ηLt−1, Lt−1]
γ = min

{
gt/(M‖dt‖2), γmax

}
while f(xt + γdt) > Qt(γ,M) do

M = τM
γ = min

{
gt/(M‖dt‖2), γmax

}
end
return γ, M

Algorithm 2: Adaptive step-size for FW vari-
ants

2

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Note that the second LMO is only useful for the Away-steps and Pairwise variants of FW. The
atom vt belongs to the typically small subset of the atoms called the active set: the set of atoms with
non-zero weight αs,t > 0 in the expansion xt =

∑
s∈St αv,ts.

FW, AFW, PFW and MP then combine the solution to these linear subproblems in different ways,
which we describe in the pseudo code of Appendix A.

The step_size routine. To set the step size, we find a local quadratic approximation of our
function. We then perform exact line search on this quadratic, which amounts to computing the
minimum of a second degree polynomial. The form of our local approximation is

Qt(γ,M) = f(xt) + γ〈∇f(xt),dt〉+
γ2M

2
‖dt‖2 ,

where γ belongs to the interval [0, γmax] to stay in our constraint set. This gives the step size
γt = min

{
gt/(M‖dt‖2), γmax

}
. We consider that our approximation is satisfactory when the

following condition is verified:

f(xt + γdt) ≤ Qt(γ,M) , γ = min
{
gt/(M‖dt‖2), γmax}. (3)

We call this condition the sufficient decrease condition. Once this condition is verified, the current
step-size is accepted and the value of M is assigned the name Lt. Geometrically, the sufficient
decrease condition ensures that the quadratic surrogate Qt(·,M) at its constrained minimum γt is
an upper bound of γ 7→ f(xt + γdt). We emphasize that unlike the “exact line search on quadratic
upper bound” approach [3], in this case the surrogate Qt need not be a global upper bound on the
objective. This allows for smaller Lt, and therefore larger step sizes, which empirically induce faster
convergence.

3. Theoretical Results

In this section, we provide convergence rates for the proposed methods. We show that they enjoy a
O(1/

√
t) convergence rate for non-convex objectives (Theorem 1), a stronger O(1/t) convergence

rate for convex objectives (Theorem 2), and linear convergence for strongly convex objectives for
polytope domains (Theorem 3).
Notation. In this section we make use of the following extra notation:

• We denote the objective suboptimality at step t as ht = f(xt)−minx∈D f(x).
• Good and bad steps. Following Lacoste-Julien and Jaggi [12], our analysis relies on a notion

of “good” and “bad” steps: bad steps verify γt = γmax
t and γmax

t < 1 and good steps don’t.
For bad steps, we can only guarantee that the objective won’t increase, but not lower bound the
improvement. However, as in [12], we can lower bound the number of good steps Nt by

Nt ≥ t/2 for AdaAFW , and Nt ≥ t/(3|A|! + 1) for AdaPFW. (4)

In practice the fraction of bad/good steps is negligible, commonly of the order of 10−5 (see last
column of the table in Figure 1).

As a byproduct of our adaptive scheme, our convergence rates make use of the average of the
previous Lipschitz estimates over good steps. Let Gt denote the indices of good steps up to iteration t.

3

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

We define the average Lipschitz estimate as Lt
def
= 1

Nt

∑
k∈GtLk. In practice Lt is often more than

100 times smaller than L (see second to last column of the table in Figure 1), which greatly improves
convergence in practice.

Our new convergence rates are presented in the following theorems, which consider the cases of
non-convex, convex and strongly convex objectives. Proofs can be found in our full length paper.

Gap function and non-convex objectives. In the case of non-convex objectives, as is common
for first order methods, we will only be able to guarantee convergence to a stationary point, defined
as any element x? ∈ D such that 〈∇f(x?),x − x?〉 ≥ 0 for all x ∈ D [2]. Following Lacoste-
Julien [11], Reddi et al. [18], we express our convergence rate in terms of the FW gap, gFW(x) =
maxs∈D〈∇f(x),x − s〉. It is clear that the FW gap is nonnegative and zero only at a stationary
point.

Overhead of the adaptive step-size strategy. Evaluation of the sufficient decrease condition
requires two extra evaluations of the objective function. If the condition is verified, then it is only
evaluated at the current and next iterate. This makes for negligible overhead in this case. On the
other hand, we can bound the total number of evaluations of the sufficient decrease condition by[
1 + log η

log τ

]
(t+ 1) + 1

log τ max
{

log τL
L−1

, 0
}
. Using this bound, we recommend η = 1.001, τ = 2.

Using these values and for L−1 ≥ L/10 the above bounds imply that for t ≥ 1000, 99% of the
iterations will only perform one evaluation of the sufficient decrease condition.

Theorem 1 (General objectives) Let xt denote the iterate generated by any of the proposed algo-
rithms after t iterations, with Nt+1 ≥ 1. Then we have:

lim
t→∞

g(xt) = 0 and min
k=0,...,t

g(xk) ≤
Ct

δ
√
Nt+1

= O
(

1

δ
√
t

)
, (5)

where Ct = max{2h0, Lmax
t diam(A)2} and g = gFW is the FW gap for AdaAFW, AdaPFW

Convex Objectives. In the convex case, we need to define the primal-dual gap. We define the
dual objective function ψ(u)

def
= −f∗(u) − σD(−u). f∗ denotes the convex conjugate of f and

σD(x)
def
= sup{x · a : a ∈ D} is the support function over D, which is the convex conjugate

of the indicator function. Note that ψ is concave and that when f convex, we have by duality
minx∈D f(xt) = maxu∈Rp ψ(u).

Theorem 2 (Convex objectives) Let f be convex, xt denote the iterate generated by any of the
proposed FW variants (AdaAFW, AdaPFW) after t iterations, with Nt ≥ 1, and let ut be defined
recursively as u0 = ∇f(x0), ut+1 = (1 − ξt)ut + ξt∇f(xt), where ξt = 2/(δNt + 2) if t is a
good step and ξt = 0 otherwise. Then we have:

ht ≤ f(xt)− ψ(ut) ≤
2Lt diam(A)2

δ2Nt + δ
+

2(1− δ)
δ2N2

t + δNt

(
f(x0)− ψ(u0)

)
= O

(
1

δ2t

)
. (6)

Strongly convex objectives and polytope constraints. For strongly convex objectives and poly-
tope constraints, we use the notions of pyramidal width (PWidth) [11]. We note that the pyramidal
width of a set A is strictly greater than zero if the number of atoms is finite.

4

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Theorem 3 (Linear convergence rate for strongly convex objectives) Let f be µ–strongly con-
vex. Then for AdaAFW and AdaPFW, we have the following linear decrease for each good step
t:

ht+1 ≤ (1− δ2ρt)ht, where ρt =
µ

4Lt

(
PWidth(A)

diam(A)

)2

for AdaAFW and AdaPFW, (7)

The previous theorem gives a geometric decrease on good steps. Combining this theorem with the
bound for the number of bad steps in (4), and noting that the sufficient decrease guarantees that the
objective is monotonically decreasing, we obtain a global linear convergence for AdaAFW, AdaPFW.

4. Empirical results

We also apply our method to vanilla FW and to Matching Pursuit (MP). Cf Appendix and [15] for
details.

Dataset #samples #features density Lt/L (t−Nt)/t

Madelon [8] 4400 500 1. 3.3× 10−3 5.0× 10−5

RCV1 [13] 697641 47236 10−3 1.3× 10−2 7.5× 10−5

MovieLens 1M [9] 6041 3707 0.04 1.1× 10−2 –

0 100 200 300 40010 8

10 5

10 2

A RCV1 (high reg.)

0 250 500 750 100010 8

10 5

10 2

B RCV1 (low reg.)

0 2 410 8

10 5

10 2

C Madelon (high reg.)

0 5 10 15 2010 8

10 5

10 2

D Madelon (low reg.)

0 500 1000 1500 2000
Time (in seconds)

10 3

10 2

10 1

100

E

A

Movielens (high reg.)

0 500 1000 1500 2000
Time (in seconds)

10 3

10 2

10 1

100

F

B

Movielens (low reg.)

0 500 1000 1500 2000
Time (in seconds)

10 6

10 4

10 2

100
G

C

RCV1 (MP)

0 10 20 30
Time (in seconds)

10 6

10 4

10 2

100
H

D

Madelon (MP)

O
bj

ec
tiv

e
m

in
us

 o
pt

im
um

AdaFW
AdaPFW

AdaAFW
FW

PFW
AFW

D-FW
B-FW

MP
AdaMP

Figure 1: Top table: description of the datasets. Bottom figure: Benchmark of different FW and
MP variants. Adaptive variants proposed in this paper are in dashed lines. Problem in A,
B, C, D = logistic regression with `1-constrained coefficients, in E, F = Huber regression
with on the nuclear norm constrained coefficients and in G, H = unconstrained logistic
regression (MP variants). In all the considered datasets and regularization regimes adaptive
variants have a much faster convergence than non-adaptive ones.

5

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

REFERENCES

[1] Amir Beck, Edouard Pauwels, and Shoham Sabach. The cyclic block conditional gradient
method for convex optimization problems. SIAM Journal on Optimization, 2015.

[2] Dimitri P Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[3] Vladimir Demyanov and Aleksandr Rubinov. The minimization of a smooth convex functional
on a convex set. SIAM Journal on Control, 1967.

[4] Joseph C Dunn. Convergence rates for conditional gradient sequences generated by implicit
step length rules. SIAM Journal on Control and Optimization, 1980.

[5] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics (NRL), 1956.

[6] Dan Garber and Elad Hazan. A linearly convergent conditional gradient algorithm with
applications to online and stochastic optimization. arXiv preprint arXiv:1301.4666, 2013.

[7] Jacques Guélat and Patrice Marcotte. Some comments on Wolfe’s ‘away step’. Mathematical
Programming, 1986.

[8] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A Zadeh. Feature extraction:
foundations and applications, volume 207. Springer, 2008.

[9] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS), 2015.

[10] Martin Jaggi. Revisiting Frank-Wolfe: projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, 2013.

[11] Simon Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv
preprint arXiv:1607.00345, 2016.

[12] Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-Wolfe
optimization variants. In Advances in Neural Information Processing Systems, 2015.

[13] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. RCV1: A new benchmark collection
for text categorization research. Journal of machine learning research, 5(Apr):361–397, 2004.

[14] Francesco Locatello, Rajiv Khanna, Michael Tschannen, and Martin Jaggi. A Unified Opti-
mization View on Generalized Matching Pursuit and Frank-Wolfe. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, 2017.

[15] Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Raetsch, Bernhard
Schölkopf, Sebastian Stich, and Martin Jaggi. On Matching Pursuit and Coordinate Descent.
In Proceedings of the 35th International Conference on Machine Learning, 2018.

[16] Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries.
IEEE Transactions on signal processing, 1993.

6

https://doi.org/10.1137/15M1008397
https://doi.org/10.1137/15M1008397
http://www.athenasc.com/nonlinbook.html
https://doi.org/10.1137/0305019
https://doi.org/10.1137/0305019
https://doi.org/10.1137/0318035
https://doi.org/10.1137/0318035
http://dx.doi.org/10.1002/nav.3800030109
https://arxiv.org/abs/1301.4666
https://arxiv.org/abs/1301.4666
https://doi.org/10.1007/BF01589445
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-3-540-35488-8
http://dx.doi.org/10.1145/2827872
http://proceedings.mlr.press/v28/jaggi13.pdf
https://arxiv.org/abs/1607.00345
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf
http://www.jmlr.org/papers/v5/lewis04a.html
http://www.jmlr.org/papers/v5/lewis04a.html
http://proceedings.mlr.press/v54/locatello17a/locatello17a.pdf
http://proceedings.mlr.press/v54/locatello17a/locatello17a.pdf
http://proceedings.mlr.press/v80/locatello18a.html
https://doi.org/10.1109/78.258082

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

[17] Yu Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 2013.

[18] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic Frank-Wolfe
methods for nonconvex optimization. In 54th Annual Allerton Conference on Communication,
Control, and Computing, 2016.

7

https://doi.org/10.1007/s10107-012-0629-5
https://doi.org/10.1109/ALLERTON.2016.7852377
https://doi.org/10.1109/ALLERTON.2016.7852377

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Linearly Convergent Frank-Wolfe without Prior
Knowledge

Supplementary material

Outline. The supplementary material of this paper is organized as follows.

• Appendix A provides pseudo-code for all FW Variants we consider: AdaFW, AdaAFW, AdaPFW,
AdaMP.

• Appendix B contains definitions and properties relative to the objective function and/or the domain,
such as the definition of geometric strong convexity and pyramidal width.

• Appendix C we present key inequalities on the abstract algorithm which are used by the different
convergence proofs.

• Appendix D provides a proof of convergence for non-convex objectives (Theorem 1).

• Appendix E provides a proof of convergence for convex objectives (Theorem 2).

• Appendix F provides a proof of linear convergence for all variants except FW (Theorem 3).

Appendix A Pseudocode
In this Appendix, we give detailed pseudo-code for the Adaptive variants of FW (AdaFW), Away-
Steps FW (AdaAFW), Pairwise FW (AdaPFW) and Matching Pursuit (AdaMP).

Appendix A.1 Adaptive FW

x0 ∈ A, initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem quality δ ∈ (0, 1],
adaptivity params τ > 1, η ≥ 1
for t = 0, 1 . . . do

Choose any st ∈ A that satisfies 〈∇f(xt), st − xt〉 ≤ δmins∈A〈∇f(xt), s− xt〉
Set dt = st − xt and γmax = 1
Set gt = 〈−∇f(xt),dt〉
if gt ≤ δε then return xt;
γt, Lt = step_size(f,dt,xt, gt, Lt−1, γ

max
t)

xt+1 = xt + γtdt
end

Algorithm 3: Adaptive FW (AdaFW)

8

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix A.2 Adaptive Away-steps FW

x0 ∈ A, initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem quality δ ∈ (0, 1],
adaptivity params τ > 1, η ≥ 1
Let S0 = {x0} and α0,v = 1 for v = x0 and α0,v = 0 otherwise.
for t = 0, 1 . . . do

Choose any st ∈ A that satisfies 〈∇f(xt), st − xt〉 ≤ δmins∈A〈∇f(xt), s− xt〉
Choose any vt ∈ St that satisfies 〈∇f(xt),xt − vt〉 ≤ δminv∈St〈∇f(xt),xt − v〉
if 〈∇f(xt), st − xt〉 ≤ 〈∇f(xt),xt − vt〉 then

dt = st − xt and γmax
t = 1

else
dt = xt − vt, and γmax

t =αvt,t/(1−αvt,t)
end
Set gt = 〈−∇f(xt),dt〉
if gt ≤ δε then return xt;
γt, Lt = step_size(f,dt,xt, gt, Lt−1, γ

max
t)

xt+1 = xt + γtdt
Update active set St+1 and αt+1 (see text)

end
Algorithm 4: Adaptive Away-Steps FW (AdaAFW)

The active set is updated as follows.

• In the case of a FW step, we update the support set St+1 = {st} if γt = 1 and otherwise
St+1 = St ∪ {st}, with coefficients αv,t+1 = (1− γt)αv,t for v ∈ St \ {st} and αst,t+1 =
(1− γt)αst,t + γt.

• In the case of an Away step: If γt = γmax, then St+1 = St \ {vt}, and if γt < γmax, then
St+1 = St. Finally, we update the weights as αv,t+1 = (1 + γt)αv,t for v ∈ St \ {vt} and
αvt,t+1 = (1 + γt)αvt,t − γt for the other atoms.

9

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix A.3 Adaptive Pairwise FW

Input: x0 ∈ A, initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem quality δ ∈ (0, 1],
adaptivity params τ > 1, η ≥ 1
Let S0 = {x0} and α0,v = 1 for v = x0 and α0,v = 0 otherwise.
for t = 0, 1 . . . do

Choose any st ∈ A that satisfies 〈∇f(xt), st − xt〉 ≤ δmins∈A〈∇f(xt), s− xt〉
Choose any vt ∈ St that satisfies 〈∇f(xt), st − xt〉 ≤ δmins∈A〈∇f(xt), s− xt〉
dt = st − vt and γmax

t =αvt,t

Set gt = 〈−∇f(xt),dt〉
if gt ≤ δε then return xt;
γt, Lt = step_size(f,dt,xt, gt, Lt−1, γ

max
t)

xt+1 = xt + γtdt
Update active set St+1 and αt+1 (see text)

end
Algorithm 5: Adaptive Pairwise FW (AdaPFW)

AdaPFW only moves weight from vt to st. The active set update becomes αst,t+1 = αst,t + γt,
αvt,t+1 = αvt,t−γt, with St+1 = (St \{vt})∪{st} if αvt,t+1 = 0 and St+1 = St∪{st} otherwise.

Appendix A.4 Adaptive Matching Pursuit
Matching Pursuit [14, 16] is an algorithm to solve optimization problems of the form

minimize
x∈lin(A)

f(x) , (8)

where lin(A)
def
=
{∑

v∈A λvv
∣∣λv ∈ R

}
is the linear span of the set of atomsA. As for the Adaptive

FW algorithm, we assume that f is L-smooth andA a potentially infinite but bounded set of elements
in Rp.

The MP algorithm relies on solving at each iteration a linear subproblem over the setB def
= A∪−A,

with −A = {−a |a ∈ A}. The linear subproblem that needs to be solved at each iteration is the
following, where as for previous variants, we allow for an optional quality parameter δ ∈ (0, 1]:

〈∇f(xt), st〉 ≤ δmin
s∈B
〈∇f(xt), s〉 . (9)

In Algorithm Appendix A.4 we detail a novel adaptive variant of the MP algorithm, which we name
AdaMP.

10

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Input: x0 ∈ A, initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem quality δ ∈ (0, 1]
for t = 0, 1 . . . do

Choose any st ∈ A that satisfies (9)
dt = st
Set gt = 〈−∇f(xt),dt〉
if gt ≤ δε then return xt;
γt, Lt = step_size(f,dt,xt, gt, Lt−1,∞)
xt+1 = xt + γtdt

end
Algorithm 6: Adaptive Matching Pursuit (AdaMP)

11

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix B Basic definitions and properties
In this section we give basic definitions and properties relative to the objective function and/or the
domain, such as the definition of geometric strong convexity and pyramidal width. These definitions
are not specific to our algorithms and have appeared in different sources such as Lacoste-Julien and
Jaggi [12], Locatello et al. [14]. We merely gather them here for completeness.

Definition 4 (Geometric strong convexity) We define the geometric strong convexity constant µAf
as

µAf
def
= inf

x,x?∈conv(A)
〈∇f(x),x?−x〉<0

2

γ(x,x?)2

(
f(x?)− f(x)− 〈∇f(x),x? − x〉

)
(10)

where γ(x,x?)
def
=

〈−∇f(x),x? − x〉
〈−∇f(x), sf (x)− vf (x)〉

, (11)

where

sf (x)
def
= argmin

v∈A
〈∇f(x),v〉 (12)

vf (x)
def
= argmin

v=vS(x)
S∈Sx

〈∇f(x),v〉 (13)

vS(x)
def
= argmax

v∈S
〈∇f(x),v〉 (14)

where S ⊆ A and Sx
def
= {S|S ⊆ A such that x is a proper convex combination of all the elements

in S} (recall x is a proper convex combination of elements in S when x =
∑

i αisi where si ∈ S
and αi ∈ (0, 1)).

Definition 5 (Pyramidal width) The pyramidal width of a set A is the smallest pyramidal width of
all its faces, i.e.

PWidth(A)
def
= min

x∈K
K∈faces(conv(A))
r∈cone(K−x)\{0}

PdirW(K ∩A, r,x) (15)

where PdirW is the pyramidal directional width, defined as

PdirW(W)(A, r,x)
def
= min
S∈Sx

max
s∈A,v∈S

〈 r

‖r‖2
, s− v

〉
(16)

We now relate these two geometric quantities together.

Lemma 6 (Lower bounding µAf) Let f µ–strongly convex on conv(A) = conv(A). Then

µAf ≥ µ · (PWidth(A))2 (17)

Proof We refer to [12, Theorem 6].

12

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Proposition 7 PWidth(A) ≤ diam(conv(A)) where diam(X)
def
= supx,y∈X ‖x− y‖2.

Proof First note that given r ∈ R, s ∈ S, v ∈ V withR, S, V ⊆ Rn, we have

〈r/‖r‖2, s− v〉 ≤ ‖s− v‖2 ∀r ∈ R, s ∈ S,v ∈ V (18)

⇒ max
s∈S,v∈V

〈r/‖r‖2, s− v〉 ≤ max
s∈S,v∈V

‖s− v‖2 ∀r ∈ R (19)

⇒ min
r∈R

max
s∈S,v∈V

〈r/‖r‖2, s− v〉 ≤ max
s∈S,v∈V

‖s− v‖2 (20)

Applying this result to the definition of pyramidal width we have

PWidth(A) = min
x∈K

K∈faces(conv(A))
r∈cone(K−x)\{0}

PdirW(K ∩A, r,x) (21)

= min
x∈K

K∈faces(conv(A))
r∈cone(K−x)\{0}

min
S∈Sx

max
s∈A,v∈S

〈 r

‖r‖
, s− v

〉
(22)

= min
r∈R

max
s∈A,v∈V

〈 r

‖r‖
, s− v

〉
(23)

(24)

whereR = {cone(K − x)\{0} : for some x ∈ K, K ∈ faces(conv(A))} and V is some subset of
A. Applying the derived result we have that

PWidth(A) ≤ max
s∈A,v∈V

‖s− v‖2

≤ max
s,v∈conv(A)

‖s− v‖2

= diam(conv(A))

Definition 8 The minimal directional width mDW(A) of a set of atoms A is defined as

mDW(A) = min
d∈lin(A)

max
z∈A

〈z,d〉
‖d‖

. (25)

Note that in contrast to the pyramidal width, the minimal directional width here is a much simpler
and robust property of the atom set A, not depending on its combinatorial face structure of the
polytope. As can be seen directly from the definition above, the mDW(A) is robust when adding a
duplicate atom or small perturbation of it to A.

13

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix C Preliminaries: Key Inequalities
In this appendix we prove that the sufficient decrease condition verifies a recursive inequality. This
key result is used by all convergence proofs.

Lemma 9 The following inequality is verified for all proposed algorithms (with γmax
t = +∞ for

AdaMP):

f(xt+1) ≤ f(xt)− ξgt +
ξ2Lt

2
‖dt‖2 for all ξ ∈ [0, γmax

t]. (26)

Proof We start the proof by proving an optimality condition of the step-size. Consider the following
quadratic optimization problem:

minimize
ξ∈[0,γmax

t]
−ξgt +

Ltξ
2

2
‖dt‖2 . (27)

Deriving with respect to ξ and noting that on all the considered algorithms we have 〈∇f(xt),dt〉 ≤ 0,
one can easily verify that the global minimizer is achieved at the value

min

{
gt

Lt‖dt‖2
, γmax
t

}
, (28)

where gt = 〈−∇f(x),dt〉. This coincides with the value of γt+1 computed by the backtracking
procedure on the different algorithms and so we have:

− γtgt +
Ltγt

2

2
‖dt‖2 ≤ −ξgt +

Ltξ
2

2
‖dt‖2 for all ξ ∈ [0, γmax] . (29)

We can now write the following sequence of inequalities, that combines the sufficient decrease
condition with this last inequality:

f(xt+1) ≤ f(xt)− γtgt +
Ltγ

2
t

2
‖dt‖2 (30)

(27)
≤ f(xt)− ξgt +

Ltξ
2

2
‖dt‖2 for any ξ ∈ [0, γmax] . (31)

Proposition 10 The Lipschitz estimate Lt is bounded as Lt ≤ max{τL, L−1}.

Proof
If the sufficient decrease condition is verified then we have Lt = ηLt−1 and so Lt ≤ Lt−1. If

its not, we at least have that the Lipschitz estimate cannot larger than τL by definition of Lipschitz
constant. Combining both bounds we obtain

Lt ≤ max{τL, Lt−1} . (32)

Applying the same bound recursively on Lt−1 leads to the claimed bound Lt ≤ max{τL, L−1}.

14

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Lemma 11 Let g(·) be as in Theorem 1, i.e., g(·) = gFW(·) for FW variants (AdaFW, AdaAFW,
AdaPFW) and g(·) = gMP(·) for MP variants (AdaMP). Then for any of these algorithms we have

gt ≥ δg(xt) . (33)

Proof

• For AdaFW and AdaMP, Eq. (33) follows immediately from the definition of gt and g(xt).

• For AdaAFW, by the way the descent direction is selected in Line Appendix A.2, we always have

gt ≥ 〈∇f(xt),xt − st〉 ≥ δg(xt) , (34)

where the last inequality follows from the definition of st

• For AdaPFW, we have

gt = 〈∇f(xt),vt − st〉 = 〈∇f(xt),xt − st〉+ 〈∇f(xt),vt − xt〉 (35)

≥ 〈∇f(xt),xt − st〉 ≥ δg(xt) (36)

where the term 〈∇f(xt),vt − xt〉 is positive by definition of vt since xt is necessarily in the
convex envelope of St. The second inequality follows from the definition of st.

Theorem ?? Let Nt be the total number of evaluations of the sufficient decrease condition up to
iteration t. Then we have

nt ≤
[
1− log η

log τ

]
(t+ 1) +

1

log τ
max

{
log

τL

L−1
, 0

}
. (37)

Proof This proof follows roughly that of [17, Lemma 3], albeit with a slightly different bound on Lt
due to algorithmic differences.

Denote by ni ≥ 1 the number of evaluations of the sufficient decrease condition. Since the
algorithm multiplies by τ every time that the sufficient condition is not verified, we have

Li = ηLi−1τ
ni−1 . (38)

Taking logarithms on both sides we obtain

ni ≤ 1− log η

log τ
+

1

τ
log

Li
Li−1

. (39)

Summing from i = 0 to i = t gives

nt ≤
t∑
i=0

ni =

[
1− log η

log τ

]
(t+ 1) +

1

log τ
log

(
Lt
L−1

)
(40)

Finally, from Proposition 10 we have the bound Lt ≤ max{τL, L−1}, which we can use to bound
the numerator’s last term. This gives the claimed bound

nt ≤
t∑
i=0

ni =

[
1− log η

log τ

]
(t+ 1) +

1

log τ
max

{
log

τL

L−1
, 0

}
. (41)

15

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix C.1 A bound on the number of bad steps
To prove the linear rates for the adaptive AFW and adaptive PFW algorithm it is necessary to bound
the number of bad steps. There are two different types of bad steps: “drop” steps and “swap” steps.
These names come from how the active set St changes. In a drop step, an atom is removed from
the active set (i.e. |St+1| < |St|). In a swap step, the size of the active set remains unchanged (i.e.
|St+1| = |St|) but one atom is swapped with another one not in the active set. Note that drop steps
can occur in the (adaptive) Away-steps and Pairwise, but swap steps can only occur in the Pairwise
variant.

For the proofs of linear convergence in Appendix F, we show that these two types of bad steps
are only problematic when γt = γmax

t < 1. In these scenarios, we cannot provide a meaningful
decrease bound. However, we show that the number of bad steps we take is bounded. The following
two lemmas adopted from [12, Appendix C] bound the number of drop steps and swap steps the
adaptive algorithms can take.

Lemma 12 After T steps of AdaAFW or AdaPFW, there can only be T/2 drop steps. Also, if there
is a drop step at step t+ 1, then f(xt+1)− f(xt) < 0.

Proof Let At denote the number of steps that added a vertex in the expansion, and let Dt be the
number of drop steps. Then 1 ≤ |St| = |S0|+At−Dt and we clearly haveAt−Dt ≤ t. Combining
these two inequalities we have that Dt ≤ 1

2(|S0| − 1 + t) = t
2 .

To show f(xt+1)− f(xt) < 0, because of Lemma 9, it suffices to show that

−γtgt +
1

2
γ2t Lt‖dt‖2 < 0 , (42)

with γt = γmax
t (recall drop steps only occur when γt = γmax

t). Note this is a convex quadratic
in γt which is precisely less than or equal to 0 when γt ∈ [0, 2gt/Lt‖dt‖2]. Thus in order to show
f(xt+1)− f(xt) < 0 it suffices to show γmax

t ∈ (0, 2gt/Lt‖dt‖2). This follows immediately since
0 < γmax

t ≤ gt/Lt‖dt‖2.

Since in the AdaAFW algorithm all bad steps are drop steps, the previous lemma implies that we
can effectively bound the number of bad steps by t/2, which is the bound claimed in (4).

Lemma 13 There are at most 3|A|! bad steps between any two good steps in AdaPFW. Also, if
there is a swap step at step t+ 1, then f(xt+1)− f(xt) < 0.

Proof Note that bad steps only occur when γt = γmax
t = αvt,t. When this happens there are two

possibilities; we either move all the mass from vt to a new atom st 6∈ St (i.e. αvt,t+1 = 0 and
αst,t+1 = αvt,t) and preserve the cardinality of our active set (|St+1| = |St|) or we move all the
mass from vt to an old atom st ∈ St (i.e. αst,t+1 = αst,t + αvt,t) and the cardinality of our active
set decreases by 1 (|St+1| < |St|). In the former case, the possible values of the coordinates αv do
not change, but they are simply rearranged in the possible |A| slots. Note further every time the
mass from vt moves to a new atom st 6∈ St we have strict descent, i.e. f(xt+1) < f(xt) unless
xt is already optimal (see Lemma 12) and hence we cannot revisit the same point unless we have
converged. Thus the maximum number of possible consecutive swap steps is bounded by the number
of ways we can assign |St| numbers in |A| slots, which is |A|!/(|A| − |St|)!. Furthermore, when the

16

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

cardinality of our active set drops, in the worst case we will do a maximum number of drop steps
before reducing the cardinality of our active set again. Thus starting with |St| = r the maximum
number of bad steps B without making any good steps is upper bounded by

B ≤
r∑

k=1

|A|!
(|A| − k)!

≤ |A|!
∞∑
k=0

1

k!
= |A|!e ≤ 3|A|!

17

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix D Proofs of convergence for non-convex objectives
In this appendix we provide the convergence proof of Theorem 1. Although this theorem provides a
unified convergence proof for both variants of FW and MP, for convenience we split the proof into
one for FW variants (Theorem 1.A) and another one for variants of MP (Theorem 1.B)

Theorem 1.A Let xt denote the iterate generated by either AdaFW, AdaAFW or AdaPFW after
t iterations. Then for any iteration t with Nt+1 ≥ 0, we have the following suboptimality bound
in terms of the FW gap:

lim
k→∞

gFW(xk) = 0 and min
k=0,...,t

gFW(xk) ≤
max{2h0, Lmax

t diam(A)2}
δ
√
Nt+1

= O
(

1

δ
√
t

)
(43)

Proof By Lemma 9 we have the following inequality for any k and any ξ ∈ [0, γmax
k],

f(xk+1) ≤ f(xk)− ξgk +
ξ2Ck

2
, (44)

where we define Ck
def
= Lk‖dk‖2 for convenience. We consider now different cases according to the

relative values of γk and γmax
k , yielding different upper bounds for the right hand side.

Case 1: γk < γmax
k

In this case, γk maximizes the right hand side of the (unconstrained) quadratic in inequality (44)
which then becomes:

f(xk+1) ≤ f(xk)−
g2k

2Ck
≤ f(xk)−

gk
2

min

{
gk
Ck
, 1

}
(45)

Case 2: γk = γmax
k ≥ 1

By the definition of γt, this case implies that Ck ≤ gk and so using ξ = 1 in (44) gives

f(xk+1)− f(xk) ≤ −gk +
Ck
2
≤ −gk

2
. (46)

Case 3: γk = γmax
k < 1

This corresponds to the problematic drop steps for AdaAFW or possibly swap steps for AdaPFW,
in which we will only be able to guarantee that the iterates are non-increasing. Choosing ξ = 0 in
(44) we can at least guarantee that the objective function is non-increasing:

f(xk+1)− f(xk) < 0 . (47)

Combining the previous cases. We can combine the inequalities obtained for the previous cases
into the following inequality, valid for all k ≤ t,

f(xk+1)− f(xk) ≤ −
gk
2

min

{
gk
Ck
, 1

}
1{k is a good step} (48)

18

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Adding the previous inequality from k = 0 up to t and rearranging we obtain

f(x0)− f(xt+1) ≥
t∑

k=0

gk
2

min

{
gk

Lk‖dk‖2
, 1

}
1{k is a good step} (49)

≥
t∑

k=0

gk
2

min

{
gk

Cmax
k

, 1

}
1{k is a good step} (50)

with Cmax
t

def
= Lmax

t diam(conv(A))2. Taking the limit for t→ +∞ we obtain that the right hand
side is bounded by the compactness assumption on the domain conv(A) and L-smoothness on f .
The left hand side is an infinite sum, and so a necessary condition for it to be bounded is that gk → 0,
since gk ≥ 0 for all k. We have hence proven that limk→∞ gk = 0, which by Lemma 11 implies
limk→∞ g(xk) = 0. This proves the first claim of the Theorem.

We will now aim to derive explicit convergence rates for convergence towards a stationary point.
Let g̃t = min0≤k≤t gk, then from Eq. (50) we have

f(x0)− f(xt+1) ≥
t∑

k=0

g̃t
2

min

{
g̃t

Cmax
t

, 1

}
1{k is a good step} (51)

= Nt+1
g̃t
2

min

{
g̃t

Cmax
t

, 1

}
. (52)

We now make a distinction of cases for the quantities inside the min.

• If g̃t ≤ Cmax
t , then (52) gives f(x0)− f(xt+1) ≥ Nt+1g̃t

2/(2Cmax
t), which reordering gives

g̃t ≤

√
2Cmax

t (f(x0)− f(xt+1))

Nt+1
≤

√
2Cmax

t h0
Nt+1

≤ 2h0 + Cmax
t

2
√
Nt+1

≤ max{2h0, Cmax
t }√

Nt+1
.

(53)

where in the third inequality we have used the inequality
√
ab ≤ a+b

2 with a =
√

2h0, b =√
Cmax
t .

• If g̃t > Cmax
t we can get a better 1

Nt
rate, trivially bounded by 1√

Nt
.

g̃t ≤
2h0
Nt+1

≤ 2h0√
Nt+1

≤ max{2h0, Cmax
t }√

Nt+1
. (54)

We have obtained the same bound in both cases, hence we always have

g̃t ≤
max{2h0, Cmax

t }√
Nt+1

. (55)

Finally, from Lemma 11 we have g(xk) ≤ 1
δ gk for all k and so

min
0≤k≤t

g(xk) ≤
1

δ
min
0≤k≤t

gk =
1

δ
g̃t ≤

max{2h0, Cmax
t }

δ
√
Nt+1

, (56)

and the claimed bound follows by definition of Cmax
t . The O(1/δ

√
t) rate comes from the fact

that both Lt and h0 are upper bounded. Lt is bounded by Proposition 10 and h0 is bounded by
assumption.

19

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix D.1 Matching Pursuit
In the context of Matching Pursuit, we propose the following criterion which we name the MP gap:
gMP(x) = maxs∈B〈∇f(x), s〉, where B is as defined in Appendix A.4. Note that gMP is always
non-negative and gMP(x?) = 0 implies 〈∇f(x?), s〉 = 0 for all s ∈ B. By linearity of the inner
product we then have 〈∇f(x?),x−x?〉 = 0 for any x in the domain, since x−x? lies in the linear
span of A. Hence x? is a stationary point and gMP is an appropriate measure of stationarity for this
problem.

Theorem 1.B Let xt denote the iterate generated by AdaMP after t iterations. Then for t ≥ 0
we have the following suboptimality bound in terms of the MP gap:

lim
k→∞

gMP(xk) = 0 and min
0≤k≤t

gMP(xk) ≤
radius(A)

δ

√
2h0Lt
t+ 1

= O
(

1

δ
√
t

)
.

(57)

Proof The proof similar than that of Theorem 1.A, except that in this case the expression of the
step-size is simpler and does not depend on the minimum of two quantities. This avoids the case
distinction that was necessary in the previous proof, resulting in a much simpler proof.

For all k = 0, . . . , t, using the sufficient decrease condition, and the definitions of γk and gk:

f(xk+1)− f(xk) ≤ γk〈∇f(xk),dk〉+
γ2kLk

2
‖dk‖2 (58)

≤ min
η≥0

{
−ηgk +

1

2
η2Lk‖dk‖2

}
(59)

≤ −
g2k

2Lk‖dk‖2
, (60)

where the last inequality comes from minimizing with respect to η. Summationg over k from 0 to t
and negating the previous inequality, we obtain:

∑
0≤k≤t

g2k
Lk
≤ (f(x0)− f(xt)) radius(A)2 ≤ 2h0 radius(A)2 . (61)

Taking the limit for t→∞ we obtain that the left hand side has a finite sum since the right hand side
is bounded by assumption. Therefore, gk → 0, which by Lemma 11 implies limk→∞ g(xk) = 0.
This proves the first claim of the Theorem.

We now aim to derive explicit convergence rates. Taking the min over the gks and taking a square
root for the last inequality

min
0≤k≤t

gk ≤
√

2h0 radius(A)2∑
0≤k≤t Lk

−1 (62)

20

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

The term
(
n/
∑

0≤k≤t Lk
−1
)

is the harmonic mean of the Lks, which is always upper bounded by

the average Lt. Hence we obtain

min
0≤k≤t

gk ≤
radius(A)

δ

√
2h0Lt
t+ 1

. (63)

The claimed rate then follows from using the bound g(xk) ≤ 1
δ gk from Lemma 11, valid for all

k ≥ 0.
The O(1/δ

√
t) rate comes from the fact that both Lt and h0 are upper bounded. Lt is bounded

by Proposition 10 and h0 is bounded by assumption.

Note: Harmonic mean vs arithmetic mean. The convergence rate for MP on non-convex objec-
tives (Theorem 1) also holds by replacingLt by its harmonic meanHt

def
= Nt/(

∑t−1
k=0 L

−1
k 1{k is a good step})

respectively. The harmonic mean is always less than the arithmetic mean, i.e., Ht ≤ Lt, although for
simplicity we only stated both theorems with the arithmetic mean. Note that the Harmonic mean is
Schur-concave, implying that Ht ≤ tmin{Lk : k ≤ t}, i.e. it is controlled by the smallest Lipschitz
estimate encountered so far.

21

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix E Proofs of convergence for convex objectives
In this section we provide a proof the convergence rates stated in the theorem for convex objectives
(Theorem 2). The section is structured as follows. We start by proving a technical result which is a
slight variation of Lemma 9 and which will be used in the proof of Theorem 2. This is followed by
the proof of Theorem 2.

Appendix E.1 Frank-Wolfe variants
Lemma 14 For any of the proposed FW variants, if t is a good step, then we have

f(xt+1) ≤ f(xt)− ξgt +
ξ2Lt

2
‖dt‖2 for all ξ ∈ [0, 1]. (64)

Proof If γmax
t ≥ 1, the result is obvious from Lemma 9. If γmax

t < 1, then the inequality is only
valid in the smaller interval [0, γmax

t]. However, since we have assumed that this is a good step, if
γmax
t < 1 then we must have γt < γmax

t . By Lemma 9, we have

f(xt+1) ≤ f(xt) + min
ξ∈[0,γmax

t]

{
ξ〈∇f(xt),dt〉+

Ltξ
2

2
‖dt‖2

}
(65)

Because γt < γmax
t and since the expression inside the minimization term of the previous equation

is a quadratic function of ξ, γt is the unconstrained minimum and so we have

f(xt+1) ≤ f(xt) + min
ξ≥0

{
ξ〈∇f(xt),dt〉+

Ltξ
2

2
‖dt‖2

}
(66)

≤ f(xt) + min
ξ∈[0,1]

{
ξ〈∇f(xt),dt〉+

Ltξ
2

2
‖dt‖2

}
. (67)

The claimed bound then follows from the optimality of the min.

The following lemma allows to relate the quantity 〈∇f(xt),xt − st〉 with a primal-dual gap and
will be essential in the proof of Theorem 2.

Lemma 15 Let st be as defined in any of the FW variants. Then for any iterate t ≥ 0 we have

〈∇f(xt),xt − st〉 ≥ δ(f(xt)− ψ(∇f(xt))) . (68)

Proof

〈∇f(xt),xt − st〉
(1)
≥ δ max

s∈conv(A)
〈∇f(xt),xt − s〉 (69)

= δ〈∇f(xt),xt〉+ δ max
s∈conv(A)

〈−∇f(xt), s〉 (70)

= δ
(
〈∇f(xt),xt〉+ σconv(A)(−∇f(xt))

)
(71)

= δ
(
f(xt) + f∗(∇f(xt)) + σconv(A)(−∇f(xt))︸ ︷︷ ︸

=−ψ(∇f(xt))

)
= δ
(
f(xt)− ψ(∇f(xt))

)
(72)

22

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

where the first identity uses the definition of st, the second one the definition of convex conjugate
and the last one is a consequence of the Fenchel-Young identity. We recall σconv(A) is the support
function of conv(A).

23

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Theorem 2.A Let f be convex, xt denote the iterate generated by any of the proposed FW
variants (AdaFW, AdaAFW, AdaPFW) after t iterations, with Nt ≥ 1, and let ut be defined
recursively as u0 = ∇f(x0), ut+1 = (1− ξt)ut + ξt∇f(xt), where ξt = 2/(δNt + 2) if t is
a good step and ξt = 0 otherwise. Then we have:

ht ≤ f(xt)−ψ(ut) ≤
2Lt diam(A)2

δ2Nt + δ
+

2(1− δ)
δ2N2

t + δNt

(
f(x0)−ψ(u0)

)
= O

(
1

δ2t

)
. (73)

Proof The proof is structured as follows. First, we derive a bound for the case that k is a good step.
Second, we derive a bound for the case that k is a bad step. Finally, we add over all iterates to derive
the claimed bound.
Case 1: k is a good step:
By Lemma 14, we have the following sequence of inequalities, valid for all ξt ∈ [0, 1]:

f(xk+1) ≤ f(xk)− ξkgk +
ξ2kLk

2
‖dk‖2 (74)

≤ f(xk)− ξk〈∇f(xk),xk − sk〉+
ξ2kLk

2
‖dk‖2 (75)

≤ (1− δξk)f(xk) + δξkψ(∇f(xk)) +
ξ2kLt

2
‖dk‖2 , (76)

where the second inequality follows from the definition of gk (this is an equality for AdaFP but an
inequality for the other variants) and the last inequality follows from Lemma 15.

We now introduce the auxiliary variable σk. This is defined recursively as σ0 = ψ(∇f(xk)),
σk+1 = (1− δξk)σk + δξkψ(∇f(xk)). Subtracting σk+1 from both sides of the previous inequality
gives

f(xk+1)− σk+1 ≤ (1− δξk)
[
f(xk)− σk

]
+
ξ2kLk

2
‖sk − xk‖2 (77)

Let ξk = 2/(δNk + 2) and ak
def
= 1

2((Nk − 2)δ + 2)((Nk − 1)δ + 2). With these definitions, we
have the following trivial identities that we will use soon:

ak+1(1− δξk) =
1

2
((Nk − 2)δ + 2)((Nk − 1)δ + 2) = ak (78)

ak+1
ξ2k
2

=
((Nk − 1)δ + 2)

(Nkδ + 2)
≤ 1 (79)

where in the first inequality we have used that k is a good step and so Nk+1 = Nk + 1.
Multiplying (77) by ak+1 we have

ak+1

(
f(xk+1)− σk+1) ≤ ak+1(1− δξk)

[
f(xk)− σk

]
+
Lk
2
‖sk − xk‖2 (80)

(78)
= ak

[
f(xk)− σk

]
+
Lk
2
‖sk − xk‖2 (81)

≤ ak
[
f(xk)− σk

]
+ Lk diam(A)2 (82)

24

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Case 2: k is a bad step:
Lemma 9 with ξk = 0 guarantees that the objective function is non-increasing, i.e., f(xk+1) ≤ f(xk).
By construction of σk we have σk+1 = σk, and so adding both multiplied by ak+1 we obtain

ak+1

(
f(xk+1)− σk+1

)
≤ ak+1

(
f(xk)− σk

)
(83)

= ak
(
f(xk)− σk

)
, (84)

where in the last identity we have used that its a bad step and so ak+1 = ak.
Final: combining cases and adding over iterates:
We can combine (82) and (84) into the following inequality:

ak+1

(
f(xk)− σk

)
− ak

(
f(xk)− σk

)
≤ Lk diam(A)21{k is a good step} , (85)

where 1{condition} is 1 if condition is verified and 0 otherwise.
Adding this inequality from 0 to t− 1 gives

at
(
f(xt)− σt

)
≤

t−1∑
k=0

LkQ
2
A1{k is a good step}+ a0(f(x0)− σ0) (86)

= NtLt diam(A)2 + (1− δ)(2− δ)(f(x0)− σ0) (87)

Finally, dividing both sides by at (note that at > 0 for Nt ≥ 1) and using (2− δ) ≤ 2 we obtain

f(xt)− σt ≤
2Nt

((Nt − 2)δ + 2)((Nt − 1)δ + 2)
LtQ

2
A (88)

+
4(1− δ)

((Nt − 2)δ + 2)((Nt − 1)δ + 2)
(f(x0)− σ0) (89)

We will now use the inequalities (Nt − 2)δ + 2 ≥ Ntδ and (Nt − 1)δ + 2 ≥ Ntδ + 1 for the terms
in the denominator to obtain

f(xt)− σt ≤
2LtQ

2
A

δ2Nt + δ
+

4(1− δ)
δ2tN

2
t + δNt

(f(x0)− f(x?)) . (90)

In order to prove the claimed bound we just need to prove the bound −ψ(ut) ≤ −σt. We will prove
this by induction. For t = 0 we have ψ(ut) = σt by definition and so the bound is trivially verified.
Suppose its true for t, then for t+ 1 we have

−ψ(ut+1) = −ψ((1− ξt)ut + ξt∇f(xt)) (91)

≤ −(1− ξt)ψ(ut)− ξtψ(∇f(xt)) (92)

≤ −(1− ξt)σt − ξtψ(∇f(xt)) (93)

= −σt+1 (94)

where the first inequality is true by convexity of −ψ and the second one by the induction hypothesis.
Using this bound in (90) yields the desired bound

f(xt)− ψ(ut) ≤
2LtQ

2
A

δ2Nt + δ
+

4(1− δ)
δ2tN

2
t + δNt

[
f(x0)− ψ(∇f(x0))

]
(95)

25

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

We will now prove the bound ht ≤ f(xt)−ψ(ut). Let u? be an arbitrary maximizer of ψ. Then
by duality we have that f(x?) = ψ(u?) and so

f(xt)− ψ(ut) = f(xt)− f ∗ (x?) + ψ(u?)− ψ(ut) ≥ f(xt)− f ∗ (x?) = ht (96)

Finally, the O(1
δt) rate comes from bounding the number of good steps from (4), for which we

have 1/Nt ≤ O(1/t), and bounding the Lipschitz estimate by a contant (Proposition 10).

Appendix E.2 Matching Pursuit
Lemma 16 Let st be as defined in AdaMP, RB be the level set radius defined as

RB = max
x∈lin(A)
f(x)≤f(x0)

‖x− x?‖B , (97)

and x? be any solution to (8). Then we have

〈−∇f(xt), st〉 ≥
δ

max{RB, 1}
(
f(xt)− f(x?)

)
(98)

Proof By definition of atomic norm we have

xt − x?t
‖xt − x?‖B

∈ conv(B) (99)

Since f(xt) ≤ f(x0), which is a consequence of sufficient decrease condition (Eq. (59)), we have
that RB ≥ ‖xt − x?‖B and so ζ def

= ‖xt − x?‖B/RB ≤ 1. By symmetry of B we have that

xt − x?

RB
= ζ

xt − x?

‖xt − x?‖B
+ (1− ζ)0 ∈ conv(B) . (100)

We will now use this fact to bound the original expression. By definition of st we have

〈−∇f(xt), st〉
(9)
≥ δmax

s∈B
〈−∇f(xt), s〉 (101)

(100)
≥ δ

RB
〈−∇f(xt),xt − x?〉 (102)

≥ δ

RB
(f(xt)− f(x?)) (103)

where the last inequality follows by convexity.

Theorem 2.B Let f be convex, x? be an arbitrary solution to (8) and letRB the level set radius:

RB = max
x∈lin(A)
f(x)≤f(x0)

‖x− x?‖B . (104)

26

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

If we denote by xt the iterate generated by AdaMP after t ≥ 1 iterations and β = δ/RB, then
we have:

f(xt)− f(x?) ≤ 2Lt radius(A)2

β2t+ β
+

2(1− β)

β2t2 + βt
h0 = O

(
1

β2t

)
. (105)

Proof Let x? be an arbitrary solution to (8). Then by Lemma 9, we have the following sequence of
inequalities, valid for all ξt ≥ 0:

f(xk+1) ≤ f(xk)− ξk〈−∇f(xk), sk〉+
ξ2kLk

2
‖sk‖2 (106)

≤ f(xk)− ξk
δ

RB

[
f(xk)− f(x?)

]
+
ξ2kLt

2
‖sk‖2 , (107)

where the second inequality follows from Lemma 16.
Subtracting f(x?) from both sides of the previous inequality gives

f(xk+1)− f(x?) ≤
(

1− δ

RB
ξk

)[
f(xk)− f(x?)

]
+
ξ2kLk

2
‖sk‖2 . (108)

Let β = δ/RB and ξk = 2/(βk + 2) and ak
def
= 1

2((k − 2)β + 2)((k − 1)β + 2). With these
definitions, we have the following trivial results:

ak+1(1− βξk) =
1

2
((k − 2)β + 2)((k − 1)β + 2) = ak (109)

ak+1
ξ2k
2

=
((k − 1)β + 2)

(kβ + 2)
≤ 1 . (110)

Multiplying (108) by ak+1 we have

ak+1

(
f(xk+1)− f(x?)) ≤ ak+1(1− βξk)

[
f(xk)− f(x?)

]
+
Lk
2
‖sk‖2 (111)

(78)
= ak

[
f(xk)− f(x?)

]
+
Lk
2
‖sk‖2 (112)

≤ ak
[
f(xk)− f(x?)

]
+ Lt radius(A)2 (113)

Adding this last inequality from 0 to t− 1 gives

at
(
f(xt)− f(x?)

)
≤

t−1∑
k=0

Lk radius(A)2 + a0(f(x0)− β0) (114)

= tLt diam(A)2 + (1− δ)(2− δ)(f(x0)− β0) (115)

Finally, dividing both sides by at (note that a1 = 2− β ≥ 1 and so at is strictly positive for t ≥ 1),
and using (2− δ) ≤ 2 we obtain

f(xt)− f(x?) ≤ 2t

((t− 2)β + 2)((t− 1)β + 2)
Lt radius(A)2 (116)

+
4(1− β)

((t− 2)β + 2)((t− 1)β + 2)
(f(x0)− β0) (117)

27

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

We will now use the inequalities (t− 2)β + 2 ≥ tβ and (t− 1)β + 2 ≥ tβ + 1 to simplify the terms
in the denominator. With this we obtain to obtain

f(xt)− f(x?) ≤ 2Lt radius(A)2

β2Nt + β
+

4(1− β)

β2tN
2
t + βNt

(f(x0)− f(x?)) , (118)

which is the desired bound.

28

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix F Proofs of convergence for strongly convex objectives
The following proofs depend on some definitions of geometric constants, which are defined in
Appendix B as well as two crucial lemmas from [12, Appendix C].

Appendix F.1 Frank-Wolfe variants
We are now ready to present the convergence rate of the adaptive Frank–Wolfe variants. As we did
in Appendix D, although the original proof combines the rates for FW variants and MP, the proof
will be split into two, in which we prove separately the linear convergence rates for AdaAFW and
AdaPFW (Theorem 3.A) and AdaMP (Theorem 3.B).

Theorem 3.A Let f be µ–strongly convex. Then for each good step we have the following
geometric decrease:

ht+1 ≤ (1− ρt)ht, (119)

with

ρt =
µδ2

4Lt

(
PWidth(A)

diam(conv(A))

)2

for AdaAFW (120)

ρt = min
{δ

2
, δ2

µ

Lt

(
PWidth(A)

diam(conv(A))

)2 }
for AdaPFW (121)

Note. In the main paper we provided the simplified bound ρt =
µ

4Lt

(
PWidth(A)

diam(A)

)2

for

both algorithms AdaAFW and AdaPFW for simplicity. It is easy to see that the bound for
AdaPFW above can be trivially bounded by this quantity by noting that δ2 ≤ δ and that µ/Lt
and PWidth(A)/diam(conv(A)) are necessarily smaller than 1.
Proof The structure of this proof is similar to that of [12, Theorem 8]. We begin by upper bounding
the suboptimality ht. Then we derive a lower bound on ht+1 − ht. Combining both we arrive at the
desired geometric decrease.

Upper bounding ht
Assume xt is not optimal, ie ht > 0. Then we have 〈−∇f(xt),x

? − xt〉 > 0. Using the definition
of the geometric strong convexity bound and letting γ def

= γ(xt,x
?) we have

γ2

2
µAf ≤ f(x?)− f(xt) + 〈−∇f(xt),x

? − xt〉 (122)

= −ht + γ〈−∇f(xt), sf (xt)− vf (xt)〉 (123)

≤ −ht + γ〈−∇f(xt), st − vt〉 (124)

= −ht + γqt , (125)

where qt
def
= 〈−∇f(xt), st − vt〉. For the last inequality we have used the definition of vf (x) which

implies 〈f(xt),vf (xt)〉 ≤ 〈∇f(xt),vt〉 and the fact that st = sf (xt). Therefore

ht ≤ −
γ2

2
µAf + γqt , (126)

29

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

which can always be upper bounded by taking γ = µ−1qt (since this value of γ maximizes the
expression on the right hand side of the previous inequality) to arrive at

ht ≤
q2t

2µAf
(127)

≤ q2t
2µ∆2

, (128)

with ∆
def
= PWidth(A) and where the last inequality follows from Lemma 6.

Lower bounding progress ht − ht+1.
Let G be defined as G = 1/2 for AdaAFW and G = 1 for AdaPFW. We will now prove that for
both algorithms we have

〈−∇f(xt),dt〉 ≥ δGqt . (129)

For AdaAFW, by the way the direction dt is chosen on Line Appendix A.2, we have the following
sequence of inequalities:

2〈−∇f(xt),dt〉 ≥ 〈−∇f(xt),d
FW
t 〉+ 〈−∇f(xt),d

A
t 〉

≥ δ〈−∇f(xt), st − xt〉+ δ〈−∇f(xt),xt − vt〉
= δ〈−∇f(xt), st − vt〉
= δqt ,

For AdaPFW, since dt = st − vt, it follows from the definition of qt that 〈−∇f(xt),dt〉 ≥ δqt.
We split the rest of the analysis into three cases: γt < γmax

t , γt = γmax
t ≥ 1 and γt = γmax

t < 1.
We prove a geometric descent in the first two cases. In the case where γt = γmax

t < 1 (a bad step)
we show that the number of bad steps is bounded.

Case 1: γt < γmax
t :

By Lemma 9, we have

f(xt+1) = f(xt + γtdt) ≤ f(xt) + min
η∈[0,γmax

t]

{
η〈∇f(xt),dt〉+

Ltη
2

2
‖dt‖2

}
(130)

Because γt < γmax
t and since the expression inside the minimization term (130) is a convex function

of η, the minimizer is unique and it coincides with the minimum of the unconstrained problem.
Hence we have

min
η∈[0,γmax

t]

{
η〈∇f(xt),dt〉+

Ltη
2

2
‖dt‖2

}
= min

η≥0

{
η〈∇f(xt),dt〉+

Ltη
2

2
‖dt‖2

}
(131)

Replacing in (9), our bound becomes

f(xt+1) = f(xt + γtdt) ≤ f(xt) + min
η≥0

{
η〈∇f(xt),dt〉+

Ltη
2

2
‖dt‖2

}
(132)

≤ f(xt) + min
η≥0

{
η〈∇f(xt),dt〉+

Ltη
2

2
M2

}
(133)

≤ f(xt) + η〈∇f(xt),dt〉+
Ltη

2

2
M2, ∀η ≥ 0 (134)

30

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

where the second inequality comes from bounding ‖dt‖ by M def
= diam(conv(A)). Subtracting

f(x?) from both sides and rearranging we have

ht − ht+1 ≥ η〈−∇f(xt),dt〉 −
1

2
η2LtM

2, ∀η ≥ 0 . (135)

Using the gap inequality (129) our lower bound becomes

ht − ht+1 ≥ ηδGqt −
1

2
η2LtM

2, ∀η ≥ 0 . (136)

Noting that the lower bound in (136) is a concave function of η, we maximize the bound by
selecting η? = (LtM

2)−1δGqt. Plugging η? into the bound in (136) and then using the strong
convexity bound (128) we have

ht − ht+1 ≥
µG2∆2δ2

LtM2
ht =⇒ ht+1 ≤

(
1− µG2∆2δ2

LtM2

)
ht . (137)

Then we have geometric convergence with rate 1− ρ where ρ = (4LtM
2)−1µ∆2δ2 for AdaAFW

and ρ = (LtM
2)−1µ∆2δ2 for AdaPFW.

Case 2: γt = γmax
t ≥ 1

By Lemma 9 and the gap inequality (129), we have

ht − ht+1 = f(xt)− f(xt+1) ≥ ηδGqt −
1

2
η2LtM

2, ∀η ≤ γmax
t . (138)

Since the lower bound (138) is true for all η ≤ γmax
t , we can maximize the bound with η? =

min{(LtM2)−1δGqt, γ
max
t }. In the case when η? = (LtM

2)−1δGqt we get the same bound as we
do in (137) and hence have linear convergence with rate 1 − ρ where ρ = (4LtM

2)−1µ∆2δ2 for
AdaAFW and ρ = (LtM

2)−1µ∆2δ2 for AdaPFW. If η? = γmax
t then this implies LtM2 ≤ δGqt.

Since γmax
t is assumed to be greater than 1 and the bound holds for all η ≤ γmax

t we have in particular
that it holds for η = 1 and hence

ht − ht+1 ≥ δGqt −
1

2
LtM

2 (139)

≥ δGqt −
δGqt

2
(140)

≥ δGht
2

, (141)

where in the second line we use the inequality LtM2 ≤ δGqt and in the third we use the inequality
ht ≤ qt which is an immediate consequence of convexity of f . Then we have

ht+1 ≤ (1− ρ)ht , (142)

where ρ = δ/4 for AdaAFW and ρ = δ/2 for AdaPFW. Note by Proposition 7 and the fact µ ≤ Lt
we have δ/4 ≥ (4LtM

2)−1µ∆2δ2.

31

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Case 3: γt = γmax
t < 1 (bad step)

In this case, we have either a drop or swap step and can make no guarantee on the progress of the
algorithm (drop and swap are defined in Appendix C). For AdaAFW, γt = γmax

t < 1 is a drop step.
From lines Appendix A.2–Appendix A.2 of AdaAFW we can make the following distinction of cases.
In case of a FW step, then St+1 = {st} and γt = γmax

t = 1, otherwise St+1 = St ∪ {st}. In case of
an Away step, St+1 = St\{vt} if γt = γmax

t < 1 , otherwise St+1 = St. Note a drop step can only
occur at an Away step. For AdaPFW, γt = γmax

t < 1 will be a drop step when st ∈ St and will be a
swap step when st 6∈ St.

Even though at these bad steps we do not have the same geometric decrease, Lemma 12 yields
that the sequence {ht} is a non-increasing sequence, i.e., ht+1 ≤ ht. Since we are guaranteed a
geometric decrease on steps that are not bad steps, the bounds on the number of bad steps of Eq. (4)
is sufficient to conclude that AdaAFW and AdaPFW exhibit a global linear convergence.

Appendix F.2 Matching Pursuit
We start by proving the following lemma, which will be crucial in the proof of the Adaptive MP’s
linear convergence rate.

Lemma 17 Suppose that A is a non-empty compact set and that f is µ–strongly convex. Let
∇Bf(x) denote the orthogonal projection of ∇f(x) onto lin(B). Then for all x? − x ∈ lin(A), we
have

f(x?) ≥ f(x)− 1

2µmDW(B)2
‖∇Bf(x)‖2B? . (143)

Proof
From Locatello et al. [15, Theorem 6], we have that if f is µ-strongly convex, then

µB
def
= inf

x,y∈lin(B),x6=y

2

‖y − x‖2B
[f(y)− f(x)− 〈∇f(x),y − x〉] (144)

is positive and verifies µB ≥ mDW(B)2µ. Replacing y = x+ γ(x? − x) in the definition above
we have

f(x+ γ(x? − x)) ≥ f(x) + γ〈∇f(x),x? − x〉+ γ2
µB
2
‖x? − x‖2B . (145)

We can fix γ = 1 on the left hand side and since the expression on the right hand side is true for all γ,
we minimize over γ to find γ∗ = −〈∇f(x),x?−x〉/µB‖x?−x‖2B. Thus the lower bound becomes

f(x?) ≥ f(x)− 1

2µB

〈∇f(x),x? − x〉
‖x? − x‖2B

(146)

≥ f(x)− 1

2µmDW(B)2
〈∇f(x),x? − x〉
‖x? − x‖2B

(147)

= f(x)− 1

2µmDW(B)2
〈∇Bf(x),x? − x〉
‖x? − x‖2B

(148)

≥ f(x)− 1

2µmDW(B)2
‖∇Bf(x)‖2B∗ , (149)

where the last inequality follows by |〈y, z〉| ≤ ‖y‖B∗‖z‖B

32

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Theorem 3.B (Convergence rate Adaptive MP) Let f be µ–strongly convex and suppose B is a
non-empty compact set. Then AdaMP verifies the following geometric decrease for each t ≥ 0:

ht+1 ≤
(

1− δ2ρt
)
ht, with ρt =

µ

Lt

(
mDW(B)

radius(B)

)2

, (150)

where mDW(B) the minimal directional width of B.

Proof By Lemma 9 and bounding ‖dt‖ by R = radius(B) we have

f(xt+1) ≤ f(xt) + min
η∈R

{
η〈∇f(xt), st〉+

η2LtR
2

2

}
(151)

= f(xt)−
〈∇f(xt), st〉2

2LtR2
(152)

≤ f(xt)− δ2
〈∇f(xt), s

?
t 〉2

2LtR2
(153)

where s?t is any element such that s?t ∈ argmins∈B〈∇f(xt), s〉 and the inequality follows
from the optimality of min and the fact that 〈∇f(xt), s

?
t 〉 ≤ 0. Let∇Bf(xt) denote as in Lemma 17

the orthogonal projection of∇f(xt) onto lin(B). Then the previous inequality simplifies to

f(xt+1) ≤ f(xt)− δ2
〈∇Bf(xt), s

?
t 〉2

2LtR2
. (154)

By definition of dual norm, we also have 〈−∇Bf(xt), s
?
t 〉 = ‖∇Bf(xt)‖2B∗. Subtracting f(x?)

from both sides we obtain the upper-bound:

ht+1 ≤ ht − δ2
‖∇Bf(xt)‖2B∗

2LtR2
(155)

To derive the lower-bound, we use Lemma 17 with x = xt and see that

‖∇Bf(xt)‖B∗ ≥ 2µmDW(B)2ht (156)

Combining the upper and lower bound together we have

ht+1 ≤
(

1− δ2µmDW(B)2

LtR2

)
ht , (157)

which is the claimed bound.

33

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix G Experiments
In this appendix we give give some details on the experiments which were omitted from the main
text, as well as an extended set of results.

Appendix G.1 `1-regularized logistic regression, Madelon dataset
For the first experiment, we consider an `1-regularized logistic regression of the form

argmin
‖x‖1≤β

1

n

n∑
i=1

ϕ(a>i x, bi) +
λ

2
‖x‖22 , (158)

where ϕ is the logistic loss. The linear subproblems in this case can be computed exactly (δ = 1)
and consists of finding the largest entry of the gradient. The regularization parameter λ is always set
to λ = 1

n .
We first consider the case in which the data ai, bi is the Madelon datset. Below are the curves

objective suboptimality vs time for the different methods considered. The regularization parmeter,
denoted `1 ball radius in the figure, is chosen as to give 1%, 5% and 20% of non-zero coefficients
(the middle figure is absent from the main text).

0 2 4
Time (in seconds)

10 8

10 6

10 4

10 2

O
bj

ec
tiv

e
m

in
us

 o
pt

im
um 1 ball radius = 13

0.0 2.5 5.0 7.5 10.0
Time (in seconds)

10 8

10 6

10 4

10 2

1 ball radius = 20

0 5 10 15 20
Time (in seconds)

10 8

10 6

10 4

10 2

1 ball radius = 30

AdaFW
AdaPFW

AdaAFW
FW

PFW
AFW

D-FW
B-FW

Figure 2: Comparison of different FW variants. Problem is `1-regularized logistic regression and
dataset is Madelon in the first, RCV1 in the second figure.

Appendix G.2 `1-regularized logistic regression, RCV1 dataset
The second experiment is identical to the first one, except the madelon datset is replaced by the larger
RCV1 datset. Below we display the results of the comparison in this dataset:

34

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

0 100 200 300 400
Time (in seconds)

10 8

10 5

10 2

101

O
bj

ec
tiv

e
m

in
us

 o
pt

im
um 1 ball radius = 100

0 200 400 600 800
Time (in seconds)

10 8

10 5

10 2

101

1 ball radius = 200

0 250 500 750 1000
Time (in seconds)

10 8

10 5

10 2

101

1 ball radius = 300

AdaFW
AdaPFW

AdaAFW
FW

PFW
AFW

D-FW
B-FW

Figure 3: Comparison of different FW variants. Problem is `1-regularized logistic regression and
dataset is RCV1.

35

LINEARLY CONVERGENT FRANK-WOLFE MADE PRACTICAL

Appendix G.3 Nuclear norm-regularized Huber regression, MovieLens dataset
For the third experiment, we consider a collaborative filtering problem with the Movielens 1M
dataset [9] as provided by the spotlight1 Python package.

In this case the dataset consists of a sparse matrix A representing the ratings for the different
movies and users. We denote by I the non-zero indices of this matrix. Then the optimization
probllem that we consider is the following

argmin
‖X‖∗≤β

1

n

n∑
(i,j)∈I

Lξ(Ai,j −Xi,j) , (159)

where H1 is the Huber loss, defined as

Lξ(a) =

{
1
2a

2 for |a| ≤ ξ,
ξ(|a| − 1

2ξ), otherwise .
(160)

The Huber loss is a quadratic for |a| ≤ ξ and grows linearly for |a| > ξ. The parameter ξ controls
this tradeoff and was set to 1 during the experiments.

We compared the variant of FW that do not require to store the active set on this problem (as
these are the only competitive variants for this problem).

0 500 1000 1500 2000
Time (in seconds)

10 3

10 2

10 1

O
bj

ec
tiv

e
m

in
us

 o
pt

im
um

trace ball radius = 10000.0

0 500 1000 1500 2000
Time (in seconds)

10 3

10 2

10 1

trace ball radius = 20000.0

AdaFW FW D-FW B-FW

Figure 4: Comparison of different FW variants. Comparison of FW variants on the Movielens
1M dataset.

1. https://github.com/maciejkula/spotlight

36

https://github.com/maciejkula/spotlight

	Introduction
	Methods
	Theoretical Results
	Empirical results
	Pseudocode
	Adaptive FW
	Adaptive Away-steps FW
	Adaptive Pairwise FW
	Adaptive Matching Pursuit

	Basic definitions and properties
	Preliminaries: Key Inequalities
	A bound on the number of bad steps

	Proofs of convergence for non-convex objectives
	Matching Pursuit

	Proofs of convergence for convex objectives
	Frank-Wolfe variants
	Matching Pursuit

	Proofs of convergence for strongly convex objectives
	Frank-Wolfe variants
	Matching Pursuit

	Experiments
	1-regularized logistic regression, Madelon dataset
	1-regularized logistic regression, RCV1 dataset
	Nuclear norm-regularized Huber regression, MovieLens dataset

