
OPT2019: 11th Annual Workshop on Optimization for Machine Learning

Scaling parallel Gaussian process optimization
with adaptive batching and resparsification

Daniele Calandriello DANIELE.CALANDRIELLO@IIT.IT
LCSL - Istituto Italiano di Tecnologia, Genova, Italy

Luigi Carratino LUIGI.CARRATINO@DIBRIS.UNIGE.IT
LCSL - University of Genova, Genova, Italy

Alessandro Lazaric LAZARIC@FB.COM
FAIR - Facebook AI Research, Paris, France

Michal Valko VALKOM@DEEPMIND.COM
Deepmind, Paris, France

Lorenzo Rosasco LROSASCO@MIT.EDU

LCSL - University of Genova &, IIT, Genova, Italy & MIT, Cambridge, USA

Abstract
Gaussian processes (GP) are one of the most successful frameworks to model uncertainty. However,
classical GP optimization (e.g., GP-UCB) suffers from major scalability limitations. Selecting each
query point has a computational cost at least quadratic in the number of dimensions and iterations,
which quickly becomes unfeasible. Moreover, to reduce experimental time costs queries must be
selected in batches (e.g., using GP-BUCB) and evaluated in parallel.

In this paper, we introduce BBKB (Batch Budgeted Kernel Bandit), the first sparse GP-UCB
approximation that provably runs in constant per-step amortized time and achieves the same regret
as GP-UCB. Moreover, it is capable of batching queries, while greatly reducing the computational
complexity compared to GP-BUCB. This is obtained by adaptively delaying costly updates to the
sparse approximation of the GP, in combination with a novel bound for the evolution of the posterior
variances that allows us to accurately choose when a resparsification is necessary. Moreover, the
same bound can be used to decide how much to delay feedback, allowing us to choose larger batches
compared to GP-BUCB. Finally, we show experimentally that BBKB is much faster than existing
methods.

1. Introduction
Gaussian process optimization (GP-Opt) is a principled way to optimize a black-box function from
noisy evaluations (i.e., sometimes referred to as bandit feedback). Due to the presence of noise,
the optimization process is modeled as a sequential learning problem, where the goal is learning
the optimum of the function with the least number of evaluations. This can be formalized using a
sequential regret minimization protocol where at each step t: 1) the learner must choose an alternative
xt out of a finite decision set A = {xi}Ai=1 of alternatives (also called arms) in Rd; 2) the learner
receives a reward yt , f(xt) + ηt, where f is the unknown function we wish to optimize and εt is
an additive noise drawn i.i.d. from N (0, ξ2); and 3) it must use this feedback to guide its subsequent
actions. The performance of the learner is measured by its regret RT ,

∑T
t=1 f(x?)− f(xt), where

x? ∈ argmaxx∈A f(x) is the best arm. While there many GP-Opt algorithms with strong theoretical
guarantees and proven empirical effectiveness, none of them simultaneously guarantee: G1 Sublinear

© D. Calandriello, L. Carratino, A. Lazaric, M. Valko & L. Rosasco.

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

regret, which implies that RT /T ≤ O(1) and that the optimization algorithm converges; G2 Near-
linear Õ(T) amortized time and space complexity, necessary to scale to complex problems; G3
Maintaining both G1 and G2 when feedback is provided in batches and not sequentially.

There are many GP-Opt algorithms that guarantees sub-linear regret, known as no-regret algo-
rithms [5, 14, 16], out of which the most well understood is the GP-UCB family [5, 7, 16]. However,
most of them are poorly scalable due to two possible bottleneck: poor computational scalability,
where most of the time is spent choosing the candidate to evaluate, and poor experimental scalability,
where most of the time is spent waiting for experimental feedback. The first can be addressed using
efficient approximations of GP-UCB [4, 11], while the second can be tackled by selecting query
points in batches rather than sequentially [7, 8, 10], which allows us to run experiments in the batch
in parallel and save time. Finally, note that we must not forget to avoid losing our regret guarantees
when striving for scalability: selecting queries in batches delays feedback and can lead to sub-optimal
arm choices, and GP approximations lead to similar problems.

To solve these problems we introduce the Batched Budgeted Kernelized Bandit (BBKB), the
first GP-Opt algorithm that truly achieves near-linear runtime while incurring the same near-optimal
regret rate of GP-UCB. Moreover, our algorithm can operate both in a sequential and batch setting,
which allows it to avoid experimental bottlenecks and achieve practical applicability.

2. Batch Budgeted Kernelized Bandits

In this section we introduce BBKB and postpone a theoretical analysis to the next section.
Nyström embeddings and approximate GP posterior. Gaussian processes are usually defined

in terms of a prior mean function µ, which we will assume to be zero, and a prior covariance defined
by the kernel function k : A×A → [0, κ2]. To introduce notation necessary in the rest of the paper,
we will now express the GP posterior using a less common but more general formulation based on
inducing points [9, 12], also known as sparse GP approximations. Given a so-called dictionary of
inducing points S , {xi}mi=1, let KS ∈ Rt×t be the kernel matrix constructed using the evaluations
k(xi,xj) for all the points in S, and similarly let kS(x) = [k(x1,x), . . . , k(xm,x)]

T. Then we
define a Nyström embedding as z(·,S) , K

+/2
S kS(·) : Rd → Rm, where (·)+/2 indicates the

square root of the pseudo-inverse. We further denote the matrix with all actions selected so far as
Xt , [x1, . . . ,xt]

T ∈ Rt×d with corresponding rewards yt , [y1, . . . , yt]
T, and associated matrices

Z(Xt,S) = [z(x1,S), . . . , z(xt,S)]T ∈ Rt×m and Vt = Z(Xt,S)TZ(Xt,S) + λI ∈ Rm×m.
Reformulating from [4, Eq. 4], the approximate posterior mean and variance1 of an action xi are

µ̃t(xi,S) = z(xi,S)TV−1t Z(xi,S)Tyt, (1)

σ̃2t (xi,S) = 1
λ(k(xi,xi)− z(xi,S)Tz(xi,S) + z(xi,S)TV−1t z(xi,S), (2)

where λ is a parameter to be tuned. Note that the t subscript in the µ̃t and σ̃t notation indicates what
we already observed (i.e. Xt and yt), and S indicates the dictionary used for the embedding. For
example, if we set Sexact = Xt, i.e. keep in the dictionary all arms selected so far, then we can write
the usual posterior mean and covariance of a GP as µt(x) , µ̃t(x,Sexact) and σt(x) , σ̃t(x,Sexact).

The GP-UCB family. There are several ways to leverage a GP posterior to choose promising
arms to evaluate. The GP-UCB algorithm [16] uses ut(x) = µt(x) + βtσt(x) as an upper confi-
dence bounds (UCB) for f(x) and sequentially chooses xt+1 = argmaxx∈A ut(x). However this is

1. This is also known as the Bayesian DTC approximation [12] and as the BKB approximation [4].

2

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

computationally and experimentally slow, as evaluating ut(x) requiresO(t2) per-step and no parallel
experiments are possible. To improve computations, BKB [4] replaces ut with an approximate
ũt(x) = µ̃t(x,St) + β̃tσ̃t(x,St), which they prove is sufficiently close to ut to achieve low regret.
However, maintaining accuracy requires O(t) per step to update the dictionary St at each iteration,
and the queries are still selected sequentially. GP-BUCB [7] tries to increase GP-UCB’s experimen-
tal efficiency by selecting a batch of queries that are all evaluated in parallel. To relate individual
arm choices with their batch we use a vector fb[] ∈ RT such that fb[t] contains the index of the
last step of the batch, i.e. at step t we have access only to feedback yfb[t] up to step fb[t]. Then
GP-BUCB approximate the UCB as ũt = µfb[t](x) + βtσt(x), where the mean is not updated until
new feedback arrives, while due to its definition the variance only depends on Xt and can be updated
in an unsupervised manner. Nonetheless, GP-BUCB is as computationally slow as GP-UCB.

The BBKB algorithm. The pseudocode of BBKB is presented in Algorithm 1. The dictionary
and approximate posterior are initialized by choosing uniformly at random an initial arm x1, and
then the optimization loop start. At the beginning of each iteration BBKB chooses the next arm to
query xt+1 as the argmax on a vector ũt of pre-computed upper confidence bounds for each arm.
The UCB ũt(x) = µ̃fb[t](x,Sfb[t]) + α̃fb[t]σ̃t(x,Sfb[t]) is a combination of BKB and GP-BUCB’s
approaches, with a new element. Not only we delay feedback updates to not be forced to update the
posterior mean, but compared to BKB we also delay dictionary updates, and continue to use the same
dictionary Sfb[t] for all iterations in a batch. Fixing the dictionary has important computational conse-
quences, which we will soon discuss. However, delaying feedback and dictionary updates can result
in poor UCB approximation, and therefore after selecting xt+1 we run a check (L5) to decide whether
to continue the batch, which we call a normal step, or not, which we call a resparsification step.

Algorithm 1 BBKB
Require: Arm set A, {α̃fb[t]}Tt=1, T

1: Sample x1 uniformly, receive y1

2: Initialize S1 = {x1}, fb[1] = 1
3: for t = {1, . . . , T − 1} do
4: Select xt+1 = argmaxxi∈A ũt(xi,Sfb[t])
5: if 1 +

∑t+1
s=fb[t]+1 σ̃fb[t](xs,Sfb[t]) ≤ C̃ then

6: fb[t+ 1] = fb[t], i.e. Sfb[t+1] = Sfb[t]
7: Update ũt+1(xt,Sfb[t+1]) with the new σ̃t+1

8: Update ũt+1(xi,Sfb[t+1]) for all
{xi : ũt(xi,Sfb[t]) ≥ ũt+1(xt+1,Sfb[t])}

9: else
10: fb[t+ 1] = t+ 1
11: Initialize Sfb[t+1] = ∅
12: for xs ∈ Xfb[t+1] do
13: Set p̃fb[t+1],s = q · σ̃2

fb[t](xs)

14: Draw zfb[t+1],s ∼ Bernoulli(p̃fb[t+1],s)
15: If zfb[t+1],s = 1, add xs in Sfb[t+1]

16: end for
17: Get feedbacks {ys}fb[t+1]

s=fb[t]+1

18: Update µ̃fb[t+1] and σ̃fb[t+1] for all xi ∈ A
with yfb[t+1] and Sfb[t+1]

19: end if
20: end for

While this approach of adaptive batch ter-
mination has been introduced in GP-UCB,
the specific formulation of our condition in
L5 is crucial to guarantee near-linear run-
time, and improves over the terminating con-
dition of GP-BUCB. If we continue with a
normal step, the embedding z(·,Sfb[t]) does
not change so we can pre-embed arms for
computational efficiency, and use efficient
rank-one update formulas to update the pos-
terior variance. Most importantly, for a
fixed Sfb[t] σ̃t+1(x,Sfb[t]) ≤ σ̃t(x,Sfb[t]),
and since µ̃fb[t](x,Sfb[t]) and α̃fb[t] remain
fixed in-batch, the UCBs ũt(x,Sfb[t]) are
strictly decreasing in-batch. Therefore, af-
ter selecting xt+1 we only need to recompute
ũt+1(xt+1,Sfb[t]) and the UCBs for arms
that had ũt(xi,Sfb[t]) ≥ ũt+1(xt+1,Sfb[t])
to guarantee that we are still selecting the
argmax correctly. Although it is only an im-
plementation detail, this lazy UCB evaluation
brings important practical speedups. If instead
our condition on L5 determines that the ap-

3

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

proximation error might be growing too much
it is time to update the sparse GP approximation, i.e. to resparsify. To do this we employ BKB’s
posterior sampling procedure in L11-16 (see [4] for more details), and then fully update both the
posterior and UCBs for all arms since changing the dictionary makes the lazy updates invalid. Note
that BBKB extends and generalizes both BKB and GP-BUCB. If instead of performing the check in
L5 we update dictionary and feedback at each step BBKB is equivalent to BKB, up to an improved
α̃t as we will see in the next section. If St = Xt we recover GP-BUCB, but with an improved
terminating rule for batches.

3. Computational and Regret Analysis

To quantify the complexity of the optimization process we will denote with deff(Xt) ,
∑t

s=1 σt(xs)
the so-called effective dimension of the set of arms selected so far. Intuitively, if captures the effective
number of parameters in f , i.e. f can be represented using roughly deff(Xt) weights. Moreover, it is
connected to the maximal mutual information gain γT [16], and Õ(γT) u Õ(deff(XT)) [2, Lem. 1].

Computational analysis. BBKB’s complexity can be easily computed (see Appendix B)
based on the size of the dictionary/embedding mfb[t] = |Sfb[t]|, and by knowing the number B
of resparsification steps since they are more expensive than normal steps. However, mt and B are
random quantities, and to guarantee that BBKB is scalable we must prove that they are small w.h.p.

Theorem 1 Given δ ∈ (0, 1), 1 ≤ C̃, and 1 ≤ λ, run BBKB with q ≥ 8 log(4T/δ). Then,
w.p. 1− δ

1) For all t ∈ [T] we have |St| ≤ 9C̃(1 + κ2/λ)qdeff(Xt).

2) Moreover, the total number of resparsification performed by BBKB is at most O(deff(Xt)).

3) As a consequence, BBKB runs in at most Õ(TAdeff(Xt)
2) near-linear time.

By summing the well understood complexity of the basic linear algebra primitives used to
implement BBKB, we can show that it requiresO(

∑
tAm

2
t +maxtB(Am2

t +m
3
t + tmt)) time and

O(maxt tmt+m
2
t) space. Combining this with the bounds provided by part (1) and (2) of Theorem 1,

we obtain part (3), i.e. the proof that BBKB runs provably in near-linear time. Among sequential
GP-Opt algorithms, BBKB is not only much faster than the original GP-UCB Õ(AT 3) runtime,
but also much faster when compared to BKB’s quadratic Õ(T max{A, T}d2eff). BBKB’s runtime
also improves over GP-Opt algorithm that are specialized for stationary kernels (e.g. Gaussian), such
as QFF-TS [11] Õ(TA2dd2eff) runtime, without making any assumption on the kernel and without
an exponential dependencies on the input dimension d. When compared to batch algorithms, such
as GP-BUCB, the improvement is even sharper as all existing batch GP-Opt algorithms that are
provably no-regret [6, 7, 15] also share GP-UCB’s Õ(AT 3) runtime. One of the central elements
of this result is BBKB’s adaptive batch terminating condition. As a comparison, GP-BUCB [7]
adaptively terminates a batch based on the product

∏t+1
s=fb[t]+1(1 + σfb[t](xs), which always give

smaller batches than BBKB’s due to Weierstrass product inequality 1 +
∑t+1

s=fb[t]+1 σfb[t](xs) ≤∏t+1
s=fb[t]+1(1+σfb[t](xs). Finally, note that the A factor reported in the runtime is pessimistic, since

BBKB recomputes only a small fraction of UCB’s at each step thanks to lazy evaluations.
Regret analysis. To provide regret bounds for BBKB we must guarantee that our ũt = µ̃fb[t] +

α̃tσ̃t is a valid upper confidence bound. This is true at the beginning of a batch, since we have all

4

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

0 2000 4000 6000 8000 10000
t

0

250

500

750

1000

1250

1500

1750

2000
R t

Abalone Cumulative regret
BKB
EpsGreedy
GP-UCB
BBKB

0 2000 4000 6000 8000 10000
t

0

10

20

30

40

50

60

70

Se
c

Abalone Times (secs)
BKB
EpsGreedy
GP-UCB
BBKB

0 2000 4000 6000 8000 10000
t

0

1000

2000

3000

4000

5000

6000

7000

R t

Cadata Cumulative regret
BKB
EpsGreedy
GP-UCB
BBKB

0 2000 4000 6000 8000 10000
t

0

50

100

150

200

250

Se
c

Cadata Times (secs)
BKB
EpsGreedy
GP-UCB
BBKB

Fig. 1: Comulative regret and time on Abalone and Cadata datasets

feedback and just performed a resparsification, which makes BBKB’s UCB equal to that of BKB
and therefore valid [4]. This can change during a batch where, due to both the lack of feedback
and delay in resparsification, µ̃fb[t] remains fixed while σ̃2t keeps decreasing, potentially becoming
smaller than f(x∗) and losing its UCB property. The key insight to solve this is to prove that, thanks
to the adaptive batch termination rule, even in the worst case σ̃2t is still larger than σ̃2fb[t]/C̃. Then,

inspired by [7], it is sufficient to rescale all σ̃2t by C̃ to make them a valid UCB, balancing not only
the feedback delay but also the resparsification delay introduced by BBKB.

Theorem 2 Assume ‖f‖H ≤ F <∞. For any desired, 0 < δ < 1, 1 ≤ λ, 1 ≤ C̃, if we run BBKB
with q ≥ 72C̃ log(4T/δ), α̃fb[t] = C̃β̃fb[t], and

β̃fb[t] = 2ξ

√∑fb[t]
s=1 log

(
1 + 3σ̃2fb[s−1](xs)

)
+ log (1/δ) +

(
1 +
√
2
)√

λF,

then, with prob. 1− δ, BBKB’s regret is bounded as

RBBKB
T ≤ 55C̃2

RGP-BUCB
T

C̃
√
T

(
ξ
∑T

t=1 σ
2
t−1(xt) + ξ log(1/δ) +

√
λF 2

∑T
t=1 σ

2
t−1(xt)

)
RGP-UCB

T

.

Since C̃ is a small constant chosen by the user, Theorem 2 shows that BBKB achieves essentially
the same regret as GP-BUCB and GP-UCB, but at a fraction of the computational cost. Note that∑T

t=1 σ
2
t−1(xt) ≈ deff ≈ γT [16, Lem. 5.4], and therefore any bound on deff or γT can be applied

also to BBKB. (e.g. γT ≤ O(log(T)d+1) for the Gaussian kernel [16]). Such a tight bound is
achieved thanks in part to a new confidence interval radius β̃t. In particular Calandriello et al. [4]
contains an extra log det(KT /λ + I) ≤ deff(λ,XT) log(T) bounding step that we do not have to
make. While in the worst case this is only a log(T) improvement, empirically the data adaptive
bound seems to lead to much better regret.

4. Experiments
For each experimental result we report mean and std over 10 repetitions. The experiments are run on a
single core. We compare BBKB on the Abalone (A = 4177, d = 8) and Cadata (A = 20640, d = 8)
datasets. BBKB uses a Gaussian kernel with width σ2 = 5, F = 20, δ = 1/T , q = 2, λ = 0.2 on a
horizon of T = 104 iterations. In Figure 1 we compare BBKB with EpsGreedy, GP-UCB and BKB
(with the same parameters) in terms of regret Rt and time (secs). We can see how BBKB is able
to achieve sub-linear regret for both datasets in a fraction of the time of the competitors. Moreover
the time is measured without parallelization during the batches of BBKB, which grows up to 3700
and 3900 in size for Abalone and Cadata respectively (see Figure 2 in Appendix), giving BBKB a
potential further speedup.

5

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

ACKNOWLEDGMENTS

This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM),
funded by NSF STC award CCF-1231216, and the Italian Institute of Technology. We gratefully
acknowledge the support of NVIDIA Corporation for the donation of the Titan Xp GPUs and the
Tesla k40 GPU used for this research. L. R. acknowledges the financial support of the AFOSR
projects FA9550-17-1-0390 and BAA-AFRL-AFOSR-2016-0007 (European Office of Aerospace
Research and Development), and the EU H2020-MSCA-RISE project NoMADS - DLV-777826.

References

[1] Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel methods with statistical
guarantees. In Neural Information Processing Systems, 2015.

[2] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Second-order kernel online convex
optimization with adaptive sketching. In International Conference on Machine Learning, 2017.

[3] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Distributed adaptive sampling for
kernel matrix approximation. In AISTATS, 2017.

[4] Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, and Lorenzo Rosasco.
Gaussian process optimization with adaptive sketching: Scalable and no regret. In Conference
on Learning Theory, 2019.

[5] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In Interna-
tional Conference on Machine Learning, pages 844–853, 2017.

[6] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel Gaussian
process optimization with upper confidence bound and pure exploration. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 225–240.
Springer, 2013.

[7] Thomas Desautels, Andreas Krause, and Joel W. Burdick. Parallelizing exploration-exploitation
tradeoffs in Gaussian process bandit optimization. The Journal of Machine Learning Research,
15(1):3873–3923, 2014.

[8] Philipp Hennig and Christian J. Schuler. Entropy Search for Information-Efficient Global
Optimization. Journal of Machine Learning Research, 13:1809–1837, 2012.

[9] Jonathan H Huggins, Trevor Campbell, Mikołaj Kasprzak, and Tamara Broderick. Scalable
gaussian process inference with finite-data mean and variance guarantees. International
Conference on Artificial Intelligence and Statistics, 2019.

[10] Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli. Batched gaussian process bandit
optimization via determinantal point processes. In Advances in Neural Information Processing
Systems, pages 4206–4214, 2016.

[11] Mojmir Mutny and Andreas Krause. Efficient High Dimensional Bayesian Optimization
with Additivity and Quadrature Fourier Features. In S. Bengio, H. Wallach, H. Larochelle,

6

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 9019–9030. Curran Associates, Inc., 2018.

[12] Joaquin Quinonero-Candela, Carl Edward Rasmussen, and Christopher KI Williams. Approxi-
mation methods for gaussian process regression. Large-scale kernel machines, pages 203–224,
2007.

[13] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press, Cambridge, Mass, 2006.
ISBN 978-0-262-18253-9. OCLC: ocm61285753.

[14] Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
In Advances in Neural Information Processing Systems, pages 1583–1591, 2014.

[15] Amar Shah and Zoubin Ghahramani. Parallel predictive entropy search for batch global
optimization of expensive objective functions. In Advances in Neural Information Processing
Systems, pages 3330–3338, 2015.

[16] Niranjan Srinivas, Andreas Krause, Matthias Seeger, and Sham M Kakade. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. In International
Conference on Machine Learning, pages 1015–1022, 2010.

[17] David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

7

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

Appendix A. Preliminary results

We present in Appendix A.1 a sketch of the proof to guide the reader to the more detailed version in
Appendix A.2

A.1. Sketch of the Proof

Compared to GP-UCB, to provide guarantees for BBKB we must control several sources of error,
some novel: not only we have delayed feedback due to batching as in [7], and approximation error
due to the dictionary as in [4], but we also delay resparsification updates to St to the end of a each
batch. Moreover, we have to guarantee that the size of the dictionary and the overall number of
resparsification remains small, in order to guarantee a near-linear amortized runtime.

The first tool used in our analysis connects σfb[t] to the approximation σ̃fb[t] at the beginning of
each batch, extending [4, Thm. 1] to our setting with delayed resparsifications.

Lemma 3 Under the same conditions as Theorem 1, w.p. 1 − δ, ∀ fb[t] ∈ [T] and ∀ x ∈ A we
have σ2fb[t](x)/3 ≤ σ̃

2
fb[t](x,Sfb[t]) ≤ 3σ2fb[t](x).

Controlling accuracy at the beginning of the batch however is not enough, and the stochastic
argument used for Theorem 3 break down when the dictionary is not updated. Instead, we can use
this novel deterministic relationship that holds even in a worst case scenario.

Lemma 4 For any kernel k, dictionary S , set of points Xt, xi ∈ A, and fb[t] < t,

σ̃fb[t](x,S)/(1 +
∑t

s=fb[t] σ̃fb[t](x,S)) ≤ σ̃t(x,S) ≤ σ̃fb[t](x,S).

Following Theorem 4, BBKB terminates each batch when 1 +
∑t

s=fb[t] σ̃fb[t](x,Sfb[t]) ≤ C̃,

and therefore its estimates σ̃t remain accurate during the batch up to a constant C̃. Combining
Theorems 3 and 4, and the terminating condition we can also control the exact posterior w.h.p.

Lemma 5 Under the same conditions as Theorems 3 and 4, σfb[t](x)/(3C̃) ≤ σt(x) ≤ σfb[t](x).

Combined, these results allow us to accurately compare approximate and exact posteriors, both
at the beginning and during each batch. We leverage them to prove that BBKB is scalable and
no-regret.

A.2. Proof of Preliminary Results

In this section we collect most results related to providing guarantees that exact and approximate
posteriors remain close during the whole optimization process.

Several results presented in this appendix are easier to express and prove using the so-called
feature-space view of a GP [13]. In particular, to every covariance k(·, ·) and reproducing kernel
Hilbert spaceH we can associate a feature map φ(·) such that k(xi,xj) = φ(xi)

Tφ(xj), and that
k(xi,xi) = φ(xi)

Tφ(xi) = ‖φ(xi)‖2. Let Φ(Xt) = [φ(x1), . . . ,φ(xt)]
T be the map where each

row corresponds to a row of the matrix Xt after the application of φ(·). Finally, given operator
A, we use ‖A‖ to indicate its `2 operator norm, also known as sup norm. For symmetric positive
semi-definite matrices, this corresponds simply to its largest eigenvalue.

8

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

Using the feature-space view of a GP we can introduce an important reformulation of the posterior
variance σ2t (xi)

σ2t (xi) = φ(xi)
T(Φ(Xt)

TΦ(Xt) + λI)−1φ(xi).

In particular, this quadratic form is well known in randomized numerical linear algebra as ridge
leverage scores (RLS) [1], and used extensively in linear sketching algorithms [17]. Therefore, some
of the results we will present now are inspired from this parallel literature. For example the proof of
Theorem 3, restated here for convenience, is based on concentration results for RLS sampling.

Lemma 6 Under the same conditions as Theorem 1, w.p. 1 − δ, ∀ fb[t] ∈ [T] and ∀ x ∈ A we
have σ2fb[t](x)/3 ≤ σ̃

2
fb[t](x,Sfb[t]) ≤ 3σ2fb[t](x).

Proof We briefly show here that we can apply Calandriello et al. [4, Thm. 1]’s result from sequential
RLS sampling to our batch setting. In particular, [4, Thm. 1] gives identical guarantees as Theorem 3,
but only when the dictionary is resparsified at each step, and we must compensate for the delays.

At a high level, their result shows that given a so-called (ε, λ)-accurate dictionary St it is possible
to sample a (ε, λ)-accurate dictionary St+1 using the posterior variance estimator σ̃t(x,St) from
Equation 2. Since all other guarantees directly follow from (ε, λ)-accuracy, we only need to show that
the same inductive argument holds if we apply it on a batch-by-batch basis instead of a step-by-step
basis. To simplify, we will also only consider the case ε = 1/2. For more details, we refer the reader
to the whole proof in [4, App. C].

In particular, consider the state of the algorithm at the beginning of the first batch, i.e. just after
initialization ended. Since the subset S1 = X1 includes all arms pulled so far (i.e. x1) it clearly
perfectly preserves X1, and is therefore infinitely accurate and also (1/2, λ)-accurate. Note that
Calandriello et al. [4] make the same reasoning for their base case.

Thereafter, assume that Sfb[t] is (1/2, λ)-accurate, and let t′ > fb[t] be the time step where we
resparsify the dictionary (i.e. the beginning of the following batch) such that fb[t′ − 1] = fb[t]
and fb[t′] = t′. To guarantee that Sfb[t′] is also (1/2, λ)-accurate we must guarantee that the
probabilities p̃fb[t′] used to sample are at least as large as the true posterior σ2fb[t′] scaled by a factor
24 log(4T/δ), i.e. p̃fb[t′] ≥ (24 log(4T/δ)) · σfb[t′]. From the inductive assumption we know that
Sfb[t] is (1/2, λ)-accurate, and therefore Theorem 3 holds and σ̃fb[t] ≥ σfb[t]/3 ≥ σ2fb[t′]/3, since it
is a well known property of RLS and σt that they are non-increasing in t [3]. Adjusting q to match
this condition, we guarantee that we are sampling at least as much as required by Calandriello et al.
[4], and therefore achieve the same accuracy guarantees.

Before moving on to Theorem 4 and Theorem 5, we will first consider exact posterior variances
σ2t (xi), which represent a simpler case since we do not have to worry about the presence of a
dictionary. The following Lemma will form a blueprint for the derivation of Theorem 4.

Lemma 7 For any kernel k, set of points Xt, xi ∈ A, and fb[t] < t,

σ2t (xi) ≤ σ2fb[t](xi) ≤
(
1 +

∑t
s=fb[t]+1 σ

2
fb[t](xs)

)
σ2t (xi)

Proof Denote with A = Φ(Xfb[t])
TΦ(Xfb[t])+λI, and with B = Φ(X[fb[t]+1,t]) the concatenation

of only the arms between rows fb[t] + 1 and t, i.e. in the context of BBKB Φ(X[fb[t]+1,t]) contains
the arms in the current batch. Then we have σ2fb[t](xi) = φ(xi)

TA−1φ(xi) and

σ2t (xi) = φ(xi)
T (Φ(Xt)

TΦ(Xt) + λI)
−1

φ(xi) = φ(xi)
T (A + BTB)

−1
φ(xi),

9

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

We can now collect A to obtain

σ2t (xi) = φ(xi)
T(A + BTB)−1φ(xi) = φ(xi)

TA−1/2(I + A−1/2BTBA−1/2)−1A−1/2φ(xi)

≥ λmin

(
(I + A−1/2BTBA−1/2)−1

)
φ(xi)

TA−1φ(xi)

= λmin

(
(I + A−1/2BTBA−1/2)−1

)
σfb[t](xi).

Focusing on the first part

λmin

(
(I + A−1/2BTBA−1/2)−1

)
=

1

λmax

(
I + A−1/2BTBA−1/2

)
=

1

1 + λmax(A−1/2BTBA−1/2)
=

1

1 + λmax(BA−1BT)
.

Expanding the definition of B, and using λmax(BA−1BT) ≤ Tr(BA−1BT) due to the fact that
BA−1BT is PSD we have

λmax(BA−1BT) ≤ Tr(BA−1BT) =
t∑

j=fb[t]+1

φ(xj)A
−1φ(xj) =

t∑
j=fb[t]+1

σ2fb[t](xj).

Putting it all together, and inverting the ratio

σ2fb[t](xi) ≤
(
1 +

∑t
s=fb[t]+1 σ

2
fb[t](xs)

)
σ2t (xi),

while to obtain the other side we simply observe that A + BTB � A since BTB � 0 and therefore
(A + BTB)−1 � A−1 and σ2t (xi) ≤ σ2fb[t](xi).

We are now ready to prove Theorem 4, which we now restate.

Lemma 8 For any kernel k, dictionary S, set of points Xt, xi ∈ A, and fb[t] < t,

σ̃fb[t](x,S)/(1 +
∑t

s=fb[t] σ̃fb[t](x,S)) ≤ σ̃t(x,S) ≤ σ̃fb[t](x,S).

Proof Note that our approximate posterior can be similarly formulated in a feature-space view. Let
P = Φ(XS)

T(Φ(XS)Φ(XS)
T)+Φ(XS) be the projection on the arms in the arbitrary dictionary S .

Then, referring to [4] for more details, we have

σ̃2t (xi,S) = φ(xi)
T(PΦ(Xt)

TΦ(Xt)P + λI)−1φ(xi) = φ(xi)
T(Ã + B̃TB̃)−1φ(xi),

where we denote with Ã = PΦ(Xfb[t])
TΦ(Xfb[t])P + λI our approximation of A and with

B̃ = Φ(X[fb[t]+1,t])P our approximation of B. Denote φ̃(x) , Pφ(x). With the exact same
reasoning as in the proof of Theorem 7 we can derive

σ̃2t (xi,S) = φ(xi)
T(Ã + B̃TB̃)−1φ(xi) ≥ σ̃fb[t](xi,S)λmin

(
(I + Ã−1/2B̃TB̃Ã−1/2)−1

)
≥ σ̃fb[t](xi,S)/

(
1 + Tr(B̃Ã−1B̃T)

)
≥ σ̃fb[t](xi,S)/

(
1 +

∑t
s=fb[t]+1 φ̃(xs)Ã

−1φ̃(xs)
)
.

This is still not exactly what we wanted, as φ̃(xs)Ã−1φ̃(xs) 6= φ(xs)Ã
−1φ(xs) = σ̃2fb[t](xs,S),

but we can apply the following Lemma, which we will prove later, to connect the two quantities.

10

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

Lemma 9 Denote with P⊥ = I−P the orthogonal projection on the complement of P. We have

φ(xs)
TÃ−1φ(xs) = φ̃(xs)

TÃ−1φ̃(xs) + λ−1φ(xs)
TP⊥φ(xs) ≥ φ̃(xs)

TÃ−1φ̃(xs)

Putting it together and inverting the bound we have

σ̃2t (xi,S) ≥ σ̃2fb[t](xi,S)/
(
1 +

∑t
s=fb[t]+1 φ̃(xs)Ã

−1φ̃(xs)
)

≥ σ̃2fb[t](xi,S)/
(
1 +

∑t
s=fb[t]+1φ(xs)Ã

−1φ(xs)
)

≥ σ̃2fb[t](xi,S)/
(
1 +

∑t
s=fb[t]+1 σ̃fb[t](xs,S)

)
.

To obtain the other side of the bound, we simply observe that Ã + B̃TB̃ � Ã and therefore
σ̃2t (xi,S) ≤ σ2fb[t](xi,S).

Finally, combining Theorems 3 and 4, we can prove Theorem 5, which we now restate.

Lemma 10 Under the same conditions as Theorems 3 and 4, σfb[t](x)/(3C̃) ≤ σt(x) ≤ σfb[t](x).

Proof Note that Theorems 4 and 7 followed a deterministic derivation based only on linear algebra
and therefore held in any case, including the worst. To prove Theorem 5 we must instead rely on
the high probability event and guarantees from Theorem 3, and therefore this statement holds only
for BBKB run with the correct q value and using the reported batch termination condition. The
derivation is straightforward

σ2t (x)
(a)

≥ σ2fb[t](xi)/
(
1 +

∑t
s=fb[t]+1 σfb[t](xs)

)
(b)

≥ σ2fb[t](xi)/
(
1 + 3

∑t
s=fb[t]+1 σ̃fb[t](xs,Sfb[t])

)
≥ σ2fb[t](xi)/

(
3
(
1 +

∑t
s=fb[t]+1 σ̃fb[t](xs,Sfb[t])

)) (c)

≥ σ2fb[t](xi)/(3C̃),

where (a) is due to Theorem 7, (b) is due to Theorem 3, and (c) is due to the fact that by construction
each batch is terminated at a step t where 1 +

∑t
s=fb[t]+1 σ̃fb[t](xs,Sfb[t]) ≤ C̃ still holds.

To conclude the section, we report the proof of Theorem 9
Proof [Proof of Theorem 9] We have

φ(xs)
TÃ−1fb[t]φ(xs) = φ(xs)

T(Φ̃fb[t](Xfb[t])Φ̃fb[t](Xfb[t])
T + λI)−1φ(xs)

= φ(xs)
T(Φ̃fb[t](Xfb[t])Φ̃fb[t](Xfb[t])

T + λP + λP⊥)−1φ(xs)

(a)
= φ(xs)

T

(
(Φ̃fb[t](Xfb[t])Φ̃fb[t](Xfb[t])

T + λP)−1 + (λP⊥)−1
)
φ(xs)

(b)
= φ(xs)

T(Φ̃fb[t](Xfb[t])Φ̃fb[t](Xfb[t])
T + λP)−1φ(xs) + λ−1φ(xs)

TP⊥φ(xs)

where (a) is due to the fact that P⊥ is complementary to both P and Φ̃fb[t](Xfb[t]) since Im(Φ̃fb[t](Xfb[t])) ⊆
Im(P), and (b) is due to the fact that P⊥ is a projection and therefore equal to its inverse. We focus

11

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

now on the first term

φ(xs)
T(Φ̃fb[t](Xfb[t])Φ̃fb[t](Xfb[t])

T + λP)−1φ(xs)

(a)
= φ(xs)

T(PΦ(Xfb[t])Φ(Xfb[t])
TP + λP)−1φ(xs)

(b)
= φ(xs)

TP(PΦ(Xfb[t])Φ(Xfb[t])
TP + λP)−1Pφ(xs)

(c)
= φ̃(xs)

T(Φ̃fb[t](Xfb[t])Φ̃fb[t](Xfb[t])
T + λP)−1φ̃(xs)

(d)
= φ̃(xs)

T(Φ̃fb[t](Xfb[t])Φ̃fb[t](Xfb[t])
T + λI)−1φ̃(xs)

(e)
= φ̃(xs)

TÃ−1fb[t]φ̃(xs)

where (a) is the definition of Φ̃fb[t](Xfb[t]), (b) is because we can collect P and extract it from the
inverse, (c) is the definition of φ̃(xs), (d) is because φ̃(xs) lies in Im(P) and therefore placing P or
I in the inverse is indifferent, and (e) is the definition of Ãfb[t]. Putting it together

φ(xs)
TÃ−1fb[t]φ(xs) = φ̃(xs)

TÃ−1fb[t]φ̃(xs) + λ−1φ(xs)
TP⊥φ(xs) ≥ φ̃(xs)

TÃ−1fb[t]φ̃(xs),

since φ(xs)
TP⊥φ(xs) is a norm and therefore non-negative.

Appendix B. Proofs from Section 3

B.1. Complexity analysis (proof of Theorem 1)

We restate Theorem 1 for completeness.

Theorem 1 Given δ ∈ (0, 1), 1 ≤ C̃, and 1 ≤ λ, run BBKB with q ≥ 8 log(4T/δ). Then, w.p. 1−δ

1) For all t ∈ [T] we have |St| ≤ 9C̃(1 + κ2/λ)qdeff(Xt).

2) Moreover, the total number of resparsification performed by BBKB is at most O(deff(Xt)).

3) As a consequence, BBKB runs in at most Õ(TAdeff(Xt)
2) near-linear time.

Proof The proof will be divided in three parts, one for each of the statements.
Bounding |St|. The first part of the result concerns space guarantees for St. Let us consider

again a step t′ > fb[t] where we perform a resparsification (i.e. be the beginning of the following
batch) such that fb[t′ − 1] = fb[t] and fb[t′] = t′. Conversely from Theorem 3, where we had to
show that our inclusion probabilities p̃fb[t] were not much smaller than σ2fb[t′], here we have to show
that they are not much larger than σ2fb[t′]. This is because our goal is to sample Sfb[t′] according
to σ2fb[t′], and if our sampling probabilities p̃fb[t] ∝ σ̃fb[t] ∝ σfb[t] are much larger than necessary
we are going to wastefully include a number of points larger than necessary. Since BBKB gets
computationally heavy if the dictionary gets too large, we want to prove that this does not happen
w.h.p.

We begin by invoking Theorem 3 to bound σ̃fb[t] ≤ 3σfb[t]. The second step is to split the
quantity of interest in two parts: one from fb[t] until the end of the batch fb[t′]− 1, and the crucial
step from fb[t′]− 1 to fb[t]

12

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

σ̃2fb[t](x,Sfb[t]) ≤ 3σ2fb[t](x) = 3

(a)

σ2fb[t](x)

σ2fb[t′]−1(x)

(b)

σ2fb[t′]−1(x)

σ2fb[t′](x)
σ2fb[t′](x).

Since fb[t] and fb[t′] − 1 are both in the same batch, we can use BBKB’s batch termination
condition and Theorem 5 to bound (a) as σ2fb[t](x)/σ

2
fb[t′]−1(x) ≤ 3C̃. However, (b) crosses the

batch boundaries and does not satisfy the terminating condition. Instead, we will re-use the worst-case
guarantees of Theorem 7 to bound the single step increase as

σ2fb[t′]−1(x)/σ
2
fb[t′](x) ≤ (1 + σ2fb[t′](x))σ

2
fb[t′](x) ≤ (1 + κ2/λ)σ2fb[t′](x),

where we used the fact that the posterior variance can never exceed κ2/λ, as can be easily derived
from the definition. Putting it all together we have

σ̃2fb[t](x,Sfb[t]) ≤ 3σ2fb[t](x) ≤ 3 · 3C̃ · (1 + κ2/λ) · σ2fb[t′](x) = 9C̃(1 + κ2/λ)σ2fb[t′](x), (3)

and our overestimate error constant is 9C̃(1 + κ2/λ), which when plugged into [4, Thm. 1] gives us

|St| ≤ 9C̃(1 + κ2/λ) · 9(1 + κ2/λ)qdeff(Xt) = 81C̃(1 + κ2/λ)2qdeff(Xt).

Bounding the total number of resparsifications. The most expensive operation that BBKB
can perform is the GP resparsification, and to guarantee low amortized runtime we now prove that
we do not do it too frequently. For this, we will leverage the terminating condition of each batch,
since a resparsification is triggered only at the end of each batch.

In particular, we know that if BBKB resparsifies at step t, such that fb[t] = t. Then 1 +∑t−1
s=fb[t−1]+1 σ̃

2
fb[t−1](xs,Sfb[t−1]) ≤ C̃ to not have triggered it at the step before, while we

have the opposite inequality C̃ < 1 +
∑fb[t]

s=fb[t−1]+1 σ̃
2
fb[t−1](xs,Sfb[t−1]) if we include the last

term σ̃2fb[t−1](xfb[t],Sfb[t−1]). Moreover, we have one of such inequalities for each batch in the
optimization process. Indicating the number of batches with B, and summing over all the inequalities

BC̃ ≤ B +
∑T

t=1 σ̃
2
fb[t](xt,Sfb[t])I{t 6= fb[t]}+ σ̃2fb[t−1](xt,Sfb[t−1])I{t = fb[t]},

where we have used the indicator function I{·} to differentiate between normal steps and resparsifi-
cation steps since at the resparsification step we are still using the posterior only w.r.t. the previous
choiches fb[t − 1], and more importantly the old dictionary Sfb[t−1], since the resparsification
happens only after the check. However, the only thing that matters to be able to apply Theorem 3 is
that the subscript of the posterior σ̃fb[t] and of the dictionary Sfb[t] coincide, so we can further upper
bound

BC̃ ≤ B + 3
∑T

t=1 σ
2
fb[t](xt)I{t 6= fb[t]}+ σ2fb[t−1](xt)I{t = fb[t]}.

Finally, we again exploit the bound σ2fb[t−1](xt) ≤ 3C̃(1 + κ2/λ)σ2t (xt), we derived in Equation 3
for the evolution of RLS across a whole batch to bound the elements in the summation where
t = fb[t], and apply Theorem 5 to the elements where t 6= fb[t]. We obtain

BC̃ ≤ B + 3
∑T

t=1 σ
2
fb[t](xt)I{t 6= fb[t]}+ σ2fb[t−1](xt)I{t = fb[t]}

≤ B + 3
∑T

t=1 3C̃σ
2
t (xt)I{t 6= fb[t]}+ 3C̃(1 + κ2/λ)σ2t (xt)I{t = fb[t]}

≤ B + 9C̃(1 + κ2/λ)
∑T

t=1 σ
2
t (xt).

13

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

Reshuffling terms and normalizing we obtain

B ≤ C̃

C̃ − 1
9(1 + κ2/λ)

T∑
t=1

σ2t (xt),

and using the fact that
∑T

t=1 σ
2
t (xt) ≤ O(deff(XT) polylog(T)) = Õ(deff(XT)) from [2, Lem. 3],

we obtain our result.
Complexity analysis. Now that we have a bound on the size of the dictionary, and on the

frequency of the resparsifications, we only need to quantify how much each operation costs and
amortize it over T iterations.

The resparsification steps are more computationally intensive. Resampling the new Sfb[t+1]

takes O(min{A, t}), as we reuse the variances computed at the beginning of the batch. Given the
new embedding function zfb[t+1](·), we must first recomputing the embeddings for all arms in
O(Am2

t +m3
t), and then update all variances in O(Am2

t +m3
t). Finally, updating the means takes

O(tmt +m3
t) time. Overall, a resparsification step requires O(Am2

t +m3
t + tmt), since in all cases

of interest mt ≤ deff � A.
In each non-resparsification step, updating the variances requires O(m2

t) to update the inverse of
Vt and O(m2

t) for each σ̃t(xi) updated. While the updated actions can be as large as O(A), lazy
evaluations usually require to update just a few entries of ũt.

Using again B to indicate the number of batches during the optimization, i.e. the number of
resparsifications, the overall complexity of the algorithm is thus O(

∑T
t=1Am

2
t +maxTt=1B(Am2

t +
m3
t + tmt)). Using the dictionary size guarantees of Theorem 1 we can further upper bound this to
Õ(B(Ad2eff + d3eff + Tdeff) + TAd2eff), and using the bound on resparsifications that we just derived
we obtain the final complexity Õ(TAd2eff + d4eff) where we used the fact that deff ≤ Õ(T).

B.2. Regret analysis (proof of Theorem 2)

We will leverage the following result from [4]. This is a direct rewriting of their statement with
two small modifications. First we express the statement in terms of confidence intervals on the
function f(x) rather than in their feature-space view of the GPs. Second, we do not upper bound
log det(Kt/λ + I) ≤ O(log(t)

∑t
s=1 σ̃

2
t (xs)). Calandriello et al. [4] use this upper bound for

computational reasons, but as we will see we can obtain a tighter (i.e. without the log(t) factor)
alternative bound that is still efficient to compute.

Proposition 11 ([4, App. D, Thm. 9]) Under the same assumptions of Theorem 2, with probability
at least 1− δ and for all xi ∈ A and fb[t] ≥ 1

µ̃fb[t](xi,Sfb[t])− βfb[t]σ̃fb[t](xi,Sfb[t]) ≤ f(xi) ≤ µ̃fb[t](xi,Sfb[t]) + βfb[t]σ̃fb[t](xi,Sfb[t])

with

βfb[t] , 2ξ
√
log det(Kfb[t]/λ+ I) + log (1/δ) +

(
1 +
√
2
)√

λF

We can bound log det(Kfb[t]/λ+ I) as follows. Consider Ks as a block matrix split between the
s-th column and row, i.e. the latest arm pulled, and all other s− 1 rows and columns. Then using

14

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

Schur’s determinant identity, we have that

det(Ks/λ+ I) = det(Ks−1/λ+ I) det
(
1 + k(xs,xs)− ks−1(xs)

T(Ks−1/λ+ I)−1ks−1(xs)
)

= det(Ks−1/λ+ I)
(
1 + σ2s−1(xs)

)
.

Combining this with the fact that σ2s−1(xs) ≤ σ2fb[s−1](xs), and unrolling the product into a sum
using the logarithm we obtain

log det(Kfb[t]/λ+ I) =

fb[t]∑
s=1

log(1 + σ2s−1(xs)) ≤
fb[t]∑
s=1

log(1 + σ2fb[s−1](xs)).

We can further upper bound σ2fb[s−1](xs) ≤ 3σ̃2fb[s−1](xs,Sfb[s−1]) using Theorem 3, and obtain

βfb[t] ≤ β̃fb[t] , 2ξ

√∑fb[t]
s=1 log

(
1 + 3σ̃2fb[s−1](xs,Sfb[s−1])

)
+ log (1/δ) + (1 +

√
2)
√
λF

This gives us that at all steps t where t = fb[t] (i.e. right after a resparsification)

µ̃fb[t](xi,Sfb[t])− β̃fb[t]σ̃fb[t](xi,Sfb[t]) ≤ f(xi) ≤ µ̃fb[t](xi,Sfb[t]) + β̃fb[t]σ̃fb[t](xi,Sfb[t])

We can bound the instantaneous regret rt = f(x∗)− f(xt) as follows. First we bound

f(x∗) ≤ µ̃fb[t](x∗,Sfb[t]) + β̃fb[t]σ̃fb[t](x∗,Sfb[t])
(a)

≤ µ̃fb[t](x∗,Sfb[t]) + β̃fb[t]C̃σ̃t−1(x∗,Sfb[t])
(b)

≤ µ̃fb[t](xt,Sfb[t]) + β̃fb[t]C̃σ̃t−1(xt,Sfb[t])

where (a) is due to Theorem 4, and (b) is due to the greediness of xt w.r.t. ũt. Similarly, we can
bound

f(xt) ≥ µ̃fb[t](xt,Sfb[t])− β̃fb[t]σ̃fb[t](xt,Sfb[t])

≥ µ̃fb[t](xt,Sfb[t])− β̃fb[t]C̃σ̃t−1(xt,Sfb[t]).

Putting it together

RT =

T∑
t=1

rt =

T∑
t=1

f(x∗)− f(xt)

≤
T∑
t=1

µ̃fb[t](xt,Sfb[t]) + β̃fb[t]C̃σ̃t−1(xt,Sfb[t])− µ̃fb[t](xt,Sfb[t]) + β̃fb[t]C̃σ̃t−1(xt,Sfb[t])

= 2
T∑
t=1

β̃fb[t]C̃σ̃t−1(xt,Sfb[t])

≤ 2C̃β̃fb[T]

T∑
t=1

σ̃t−1(xt,Sfb[t]). (4)

15

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

We first focus on bounding β̃fb[T] ≤ β̃T , starting from bounding a part of it as

T∑
s=1

log
(
1 + 3σ̃2fb[s−1](xs)

) (a)

≤ 3
T∑
s=1

σ̃2fb[s−1](xs)
(b)

≤ 9
T∑
s=1

σ2fb[s−1](xs)
(c)

≤ 21C̃
T∑
s=1

σ2s−1(xs).

where we used (a) the fact that log(1+ x) ≤ x, (b) Theorem 3, and (c) Theorem 5. Plugging it back
into the definition of β̃T we have

β̃T = 2ξ

√∑fb[T]
s=1 log

(
1 + 3σ̃2fb[s−1](xs,Sfb[s−1])

)
+ log (1/δ) + (1 +

√
2)
√
λF

≤ 2ξ
√

21C̃
∑T

s=1 σ
2
s−1(xs) + log (1/δ) + (1 +

√
2)
√
λF

Going back to Equation 4, the summation
∑T

t=1 σ̃t−1(xt,Sfb[t]) can be also bounded as

T∑
t=1

σ̃t−1(xt,Sfb[t])
(a)

≤
√
T

(
T∑
t=1

σ̃2t−1(xt,Sfb[t])

)1/2
(b)

≤
√
T

(
T∑
t=1

σ̃2fb[t−1](xt,Sfb[t])

)1/2

(c)

≤
√
3
√
T

(
T∑
t=1

σ2fb[t−1](xt)

)1/2
(d)

≤ 3C̃
√
T

(
T∑
t=1

σ2t−1(xt)

)1/2

,

using (a) Cauchy-Schwarz, (b) the fact that σ̃2t−1(xt) ≤ σ̃2fb[t−1](xt) by Theorem 4, (c) Theorem 3,
and (d) Theorem 5. Putting it all together

RT ≤ 2C̃ · β̃fb[T] ·
∑T

t=1 σ̃t−1(xt,Sfb[t])

≤ 2C̃ · β̃T · 3C̃
√
T
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 2C̃ ·

(
2ξ
√
21C̃

∑T
t=1 σ

2
t−1(xt) + log (1/δ) + (1 +

√
2)
√
λF

)
· 3C̃
√
T
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 2C̃ ·

(
2ξ
√
21C̃

∑T
t=1 σ

2
t−1(xt) + 2ξ

√
log (1/δ) + (1 +

√
2)
√
λF

)
· 3C̃
√
T
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 55C̃2

√
T ·
(
ξ
√
C̃
∑T

t=1 σ
2
t−1(xt) + ξ

√
log (1/δ) +

√
λF

)
·
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 55C̃2

√
T ·
(
ξ
√
C̃
∑T

t=1 σ
2
t−1(xt) + ξ log (1/δ) +

√
λF

)
·
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 55C̃2 · C̃ ·

√
T

(
ξ
∑T

t=1 σ
2
t−1(xt) + (ξ log(1/δ) + F)

√
λ
∑T

t=1 σ
2
t−1(xt)

)
.

16

SCALING PARALLEL GAUSSIAN PROCESS OPTIMIZATION WITH ADAPTIVE BATCHING AND RESPARSIFICATION

0 2000 4000 6000 8000 10000
t

0

500

1000

1500

2000

2500

3000

3500

4000

Ba
tc

hs
iz

e

Batch sizes
BBKB

0 2000 4000 6000 8000 10000
t

0

1000

2000

3000

4000
Ba

tc
hs

iz
e
Batch sizes

BBKB

Fig. 2: Batch size of Abalone (left) and Cadata (right)

17

	Introduction
	Batch Budgeted Kernelized Bandits
	Computational and Regret Analysis
	Experiments
	Preliminary results
	Sketch of the Proof
	Proof of Preliminary Results

	Proofs from sec:bbkb
	Complexity analysis (proof of thm:bbkb-complexity)
	Regret analysis (proof of thm:main-regret)

