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Abstract
We give the first analysis of convergence of a first-order method in smooth non-convex optimization
under a bounded number of inequality constraints. Our algorithm uses O~(Ei2 + %) gradient
evaluations for & linear inequality constraints and converges to a relaxed definition of an e-second-
order stationary point (for which the gradient and the Hessian are evaluated with respect to active
constraints).

1. Introduction

Escaping from saddle points is one of the most intriguing questions in high-dimensional non-convex
optimization and applications to machine learning (see [3-5, 9, 10], etc). In this paper we make
progress towards the central question in breakthrough work of [3] who showed that a simple first-
order method, Noisy Gradient Descent (Noisy GD), can escape from saddle points quickly. As
argued in [3], Noisy GD works for both unconstrained and equality-constrained optimization. The
main open questions left after this work is whether the same can be said for inequality-constrained
problems. In general, the answer to this question is known to be negative due to NP-hardness of the
copositivity problem [6, 9], which conditionally rules out the possibility of verifying whether a given
point is a local minimum with any polynomial-time algorithm. However, this hardness result only
applies when the number of constraints is equal to the dimension of the domain of the optimized
function.

It has been observed empirically in [1] that for multi-dimensional balanced graph partitioning
problem, which can be reduced to optimizing a simple quadratic function under linear inequality
constraints, a certain variant of Noisy Projected Gradient Descent (Noisy PGD), which we refer to
as Noisy Sticky Projected Gradient Descent (Noisy SPGD, Algorithm 1), converges quickly to a
high-quality solution. In this paper we make a step towards quantifying the behavior of Noisy SPGD
and give bounds on its convergence in terms of the number of inequality constraints in the general
smooth non-convex optimization setting.

In the unconstrained case, [4] showed convergence of Noisy GD to an e-second order stationary
point in O(e%) iterations. For Riemannian manifolds, [10] showed convergence in O(e%) iterations.
For inequality constraints due to NP-hardness of copositivity results are only known for second-order
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methods. [5] and [9] show convergence in O( 6%) iterations. However, their algorithms require
access to an oracle for finding an approximate solution for constrained quadratic problems, making it
computationally expensive for large-scale problems.

1.1. Our Contributions

To get provable guaranties we relax the definition of a second order stationary point. In our paper we
consider a notion of an stationary point with respect to active constraints: both gradient and Hessian
are evaluated in the linear space defined by active constraints. We present Noisy SPGD (Algorithm 1),
a variation of Noisy PGD. The key idea of the algorithm is that after encountering a new active
constraint, the algorithm “sticks” to this constraint, meaning that this constraint will always be active.
In this work, we focus on the case of linear inequality constraints. Our main result is:

Theorem 1 (Informal) Let f: R® — R be a A-bounded function with L-Lipschitz gradient and
p-Lipschitz Hessian. If M is defined by k linear inequality constraints then Noisy SPGD w.h.p. finds
an e-second order stationary point x € M w.r.t. active constraints in O L’P’A(s% + %) iterations.

2. Preliminaries

Table 1 introduces the notations used in the paper. We consider the following constrained minimiza-
tion problem:
minimize f(x) s.t.x € M,

where M is defined by k linear inequality constraints:
M={xeR? Bx>c}, BeR" ¢cecR*

In the smooth non-convex optimization setting f is A-bounded: |f(z)| < A, has L-Lipschitz
gradient: ||V f(2)—V f(y)|| < L||z—y]|, and p-Lipschitz Hessian: ||V2f (x)—V2f(y)| < pllz—yl|.
Since finding the global minimum is typically NP-hard, a common optimization objective is to
find a local minimum. In order to guarantee convergence, this is typically further relaxed to finding
an e-second-order stationary point x, such that ||V f(x)|| < € and Amin (V2 f(x)) > —/p€ ([4, 7)).
In case of equality constraints, [3] formulate a similar condition using a Lagrangian. In case of
inequality constraints, one has to use the more general KKT conditions instead of the Lagrangian.
As aresult, even checking that the point is a constrained local minimum is generally NP-hard ([6]).
Therefore, we relax this definition by considering stationary points with respect to active constraints.
Let A(x) be the set of active constraints at x: A(x) = [\ {x|B;x = ¢ }. Since all con-
i: Bix=c;
straints are linear, active constraints form an affine subspace. Consider a matrix Z(x) € R**dim(A(x))
defining a basis of A(x) ([8], Section 12.5). W.l.o.g. we choose Z(x) to have orthonormal
columns. Using Z(x) we can introduce a natural parametrization of the constrained space: projected
gradient in the constrained space can be represented as Z ' (x)V f(x) and projected Hessian as
Z(x)"V?2 f(x)Z(x). The main advantage of such parametrization is that it allows us to leverage
unconstrained optimization techniques.

Definition 2 We call x an e-Second-Order Stationary Point with respect to Active Constraints
(e-SOSPAC) if || ZT (x)V f(x)|| < € and Amin (Z T (x) V2 f(x)Z(x)) > —/PE.
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Notation Value Explanation
Properties of the objective function
d Dimension
f Objective function
L Gradient Lipschitz constant
p Hessian Lipschitz constant
Notation for constraints
M={x|Bx>c} Feasible set
k Number of constraints
A(x) N {x|Bx=¢} Active constraints at a point x
i: Bijx=c;
x(t) Point at ¢-th iteration
Ay f(x®) — f(xtD) Objective change at ¢-th iteration
Ps(x) argmin ||y — x|| Projection of a point x on a set S
yeS
Gradient at x projected on the linear subspace
Papo V1) cogesjponding to A(x) ’
Algorithm parameters
A f (x(o)) — ) Difference between tbe 1.r11t1al and the optimal
objective
. Gradient threshold: if ||V f(x)|| > e, xisa
saddle point
1) Error probability
O ) O(+), hiding polylogarithmic dependence on
%, % and d and dependence on L, p and A
c 1073 Small enough constant
X 3 max(log( CclaLE%), 4) = O(1) A parameter
n = D(1) Step size
r ;C/fz =O0(e) Maximum Ls-norm of a noise
e A Gradient threshold: if ||V f(x)]| < gy, add
g6 X 0fe) noise and try to escape from a saddle point
Lower bound on how much the objective
fo ;ﬁg/Qp = 0(£%/?) decreases in case of successful escape from a
saddle point
o X _ ¢ (L) Number of iterations used to escape from a
c*\/pe Ve saddle point

Table 1: Notations used in the paper
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In other words, we require that x is a second-order stationary point when the objective function is
restricted to .4 (x). Note that for specific active constraints there exist multiple possible choices of
Z(x). However, as long as Z(x) represents an orthonormal basis, all such definitions are equivalent:
all orthonormal bases can be obtained from each other by rotations, and both vector norm and
eigenvalues are rotation-invariant.

3. Algorithm

Our Algorithm 1 is a projected gradient descent approach based on [4]. Each iteration is a gradient
descent step followed by projection: Py 4xn)(X) = argmin [ly —x].
yEMNA(x(®)

First, consider the case when the set of active constraints doesn’t change. We define the projected
gradient at x as P4x)V f(x), where P4y is the linear projection operator on the linear subspace
corresponding to the active constraints (after removing the shift). If the projected gradient is large, in
Lemma 1 we show that the objective will sufficiently decrease after an ordinary projected gradient
descent step. Otherwise, as shown in Algorithm 2, we add a noise by uniformly sampling a point
from A(x) N B(x, r), where B(x, r) is the Euclidean ball of radius r centered at x. If function value
does not sufficiently decrease after some number of iterations, by Lemma 3 we conclude that the
algorithm found an e-SOSPAC.

The key idea behind our algorithm is the way we handle constraints. Active constraints form an
affine subspace, and if they don’t change, restricting the objective function to the subspace makes
unconstrained optimization techniques applicable. If the set of active constraints changes, we “stick”
to the new constraints: all new active constraints are required to remain active throughout the rest of
the algorithm.

Algorithm 1: Noisy Sticky Projected Gradient Descent

parameters: body M, starting point x(?); constant ¢; A: upper bound on f(x(?)) — f(x*);
error probability ¢
c=1073, x =3max(log(%%),4), n=2% fo= ;%3\75, 96 = %2
fort=0,1,2,...do
if || P 40y V. (xD)]|| < go then
x(+1) = EscapeSaddlePoint(x(®))
if x(t1) = | then return x(® ;
else
‘ x(t+1) — PMmA(xu))(X(t) —nVf(x®)); // SPGD step
end

end

4. Main Result

Since Noisy SPGD enforces in future iterations all active constraints it has previously encountered,
each new active constraint can be encountered at most once. By bounding how much these events
increase the objective, we bound the overall increase in the number of iterations. Iterations in
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Algorithm 2: EscapeSaddlePoint(x)
c= 10—3’ X = Smax(log(dLA),él), n= %, r= Ves f@ _ ce3/? _ xL .

coe?
%) = Unif(B(x,7) N A(x));
fort =0...tpdo
x(t+1) = PrnAx) (%O — Vv f(x®)); // PGD step
if A(x) # A(x®)) then return x(*+1); // New active constraint
end
if f(x) — f(x()) > fy then return x(*) else return L :

Algorithm 1 and Algorithm 2 correspond to two different phases in the algorithm: a first-order phase,
when the projected gradient norm is greater than gy, and an escaping phase, when the algorithm
enforces escaping from a saddle point. Each phase behaves differently depending on whether new
constraints become active. We analyze these cases separately in Lemmas 1-4 and then combine them
in Theorem 5. The proofs are provided in Appendix A.

We introduce the following notation: A; = f(x®) — f(x(+1)). In the following statements

O(-) and Q(-) hide polylogarithmic dependence on %, % and d and dependence on L, p and A.

Lemma 1 For each iteration t of Algorithm 1, if ||PA(X(t))Vf(X(t))H > gg and A(x\)) =
AxED), then Ay = Q(e?).

v

Lemma 2 For any iteration t of Algorithm 1, if HPA(x(t))Vf(X(t))H go and A(x®)) #£

AxED), then Ay > 0.

Lemma 3 For any iteration t of Algorithm 1, if ||PA(x(t))Vf(X(t))H < gg and X is not an
e-SOSPAC, then w.h.p. xHD £ 1 IfxtD £ | and A(x®)) = A(xtD), then Ay = Q(3/?).

If no new active constraint appears, w.h.p. the objective decreases by 9(52) on average per
iteration.

Lemmad4 For any iteration of Algorithm 1, if ||PA(x(t))Vf(X(t))|| < g XY £ 1 and
Ax®) £ A(xTD), then |Ay| = O(e?).

If the set of active constraints changes, the objective can increase; however, it can increase by at
most O(ke?) over algorithm execution, which allows us to bound the number of additional iterations.

Theorem 5  Algorithm I converges to an e-SOSPAC w.h.p. and uses O (6% + %) gradient

evaluations.
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Lemma 6 ([2], Section 2.3.2) Let f have L-Lipschitz gradient and 0 < n < % Let xV € B,

where B is a convex body, and x"+t1) = Py(xt) — nV f(x1)), where Pg(x) is a projection of x
on B. Then:

PO = F) = (1 ) IO = xR
n
Lemma 1 For each iteration t of Algorithm 1, if ||PA(x<t))Vf(x(t))H > gg and A(x(t)) =
AxED), then Ay = Q(e?).

Proof Applying Lemma 6 to the body M N A(x(®)) and step size = i < % we have A; >
L)1x® — x(t+1)|2, and therefore:

Il
el
)

()
S—

L. « t4+1) 2 L N2 L ¢ 2
Ay = s = x| = TPy VP 2 5 305 =

Lemma 2 For any iteration t of Algorithm 1, if HPA(x(t))Vf(X(t))” > gg and A(x®)) #
AxED)Y, then Ay > 0.

Proof Applying Lemma 6 to the body M N A(x(*)), we have A; > %Hx(t) —xtD]12 > 0. |

Lemma 3  For any iteration t of Algorithm 1, if |]PA(x<z))Vf(x(t))H < go and x) is not an
e-SOSPAC, then w.h.p. x31) £ 1 [fxtD £ | and A(x®)) = A(xtD), then Ay = Q(3/?).

Proof Since [|P 4V f (x®)|| < gg, Algorithm 2 is executed. If the set of active constraints

changes, then x(t+1) £ | .

Consider the case when the set of active constraints .4(x) does not change. We will reduce
the analysis to the unconstrained analysis in the projected space. Let Z € RI*dim(AX)) pe an
any orthonormal basis in the constrained space. We introduce the following parametrization of the
constrained space A(x): x = u(y) = ¢ + Zy, where ¢ L A(x) and y € RImAR)),

We can define function g(y) = f(u(y)). Then by the chain rule

Va(y) = Z'Vf(uly)) Vig(y) = Z "V’ f(uly))Z.

By [8], Section 16.3, for orthonormal basis Z we have P4V f(x) = ZZ "V f(x). We show that
projected gradient descent step for f is equivalent to gradient descent step for g:

w(y—nVg(u(y))) = ¢+ Z(y—nZ 'V f(u(y))) = uly)-nZZ 'V f(uly)) = uly)—nPa(x)(Vf(x))

Since Z is a matrix representing an orthonormal basis, the absolute value of the largest singular
value of Z " is at most 1, and therefore ||Vg(y)|| < ||Vf(1(y))||, which is less than ¢ for the initial
point x. Since X is not a e-SOSPAC, A\in (Z V2 f(x)Z) < —/pe by definition. We reduced the
problem to the unconstrained case and can directly apply result from [4], namely that after O(%)

iterations the objective decreases by Q(3/2) w.h.p. |
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Lemmad For any iteration of Algorithm 1, if ”PA(x(t))Vf(X(t))H < go, xU) £ 1 and
Ax®) £ A(xED)Y, then |Ay| = O(e?).
Proof We have to analyze f(x)— f(%X() in Algorithm 2. By Lemma 6 applied to the body MN.A(x),
for any iteration ¢ we have f(x(®)) — f(x(**+1)) > 0. The remaining task is to estimate f(x)— f(x()).
By Taylor’s theorem, there exists & = ax + (1 — a)%(?) for o € [0, 1] such that:
FED) = fx)] = [VFTEOE —x)|

< (VI + V&) = VIix)I)r

< (e+Lr)r

= 0(e?),
where we use that 7 = O(e) and ||V f(x)|| < &, [ |

Theorem 5  Algorithm I converges to an e-SOSPAC w.h.p. and uses O (% \/kg) gradient

evaluations.

Proof To bound the number of graduate evaluations, it suffices to bound the number of iterations in
Algorithm 1 and Algorithm 2. For ¢-th iteration of Algorithm 1 we have to consider the following
cases:

Case 1. If \|PA(x(t))(Vf(x(t)))H > gp and A(x®)) = A(x(+1), then by Lemma 1 we have
Ay > 9(52).

Case 2. If ||PA(x(t))(Vf(x(t)))H > gg and A(x®)) # A(x(+D), then by Lemma 2 we have

A; > 0. However, we don’t give positive lower bound on the difference, which may results in an
iterations without objective improvement.

Case3. If HPA(X(t))(Vf(X(t)))H < go and x*Y) = || then by Lemma 3 x(*) is an e-SOSPAC
w.h.p.

Case 4. If ||PA <y (Vf(x ON|| < gg, xEFD £ 1 Ax®) = Ax#D), then we have
Ay > fo = QY 2) Slnce Algorithm 2 requires O(t ) = (
by €2(2) on average per iteration.

Case 5. If HPA(X@ (VEEON| < gg, xHD # 1 and A(x®) # A(x(+D), then by Lemma 4
after O(tg) = O( \[) iterations of Algorithm 2 the objective increases by at most O(£2).

) iterations, the objective decreases

%\

Note that Case 2 and Case 5 can only occur once per constraint, since each constraint can become
active only once. Therefore, overall they can increase the objective by O(ke?) and the number of
iterations by O(%) Case 3 corresponds to termination of the algorithm. For Case 1 and Case 4 the

objective decreases by Q(£2) per iteration on average. Recall that A = f(x(©)) — f(x*). Then the
total number of gradient evaluation is

~ (A + ke? k ~ (1 k
o(* ="+ )=0(5+ )
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