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Abstract
Submodular function minimization is a well studied problem; existing algorithms solve it exactly or
up to arbitrary accuracy. However, in many applications, the objective function is not exactly sub-
modular. No theoretical guarantees exist in this case. While submodular minimization algorithms
rely on intricate connections between submodularity and convexity, we show that these relations
can be extended sufficiently to obtain approximation guarantees for non-submodular minimization.
In particular, we prove how a projected subgradient method can perform well even for certain non-
submodular functions. This includes important examples, such as objectives for structured sparse
learning and variance reduction in Bayesian optimization. We also extend this result to noisy func-
tion evaluations. Our algorithm works in the value oracle model. We prove that in this model, the
approximation result we obtain is the best possible with a subexponential number of queries.

1. Introduction

Many machine learning problems can be formulated as minimizing a set function H . In gen-
eral, this problem is NP-hard, but it can be solved efficiently with additional structure. An im-
portant example is when H is submodular, i.e., it satisfies the diminishing returns (DR) property
H(A ∪ {i}) − H(A) ≥ H(B ∪ {i}) − H(B), for all A ⊆ B, i ∈ V \ B. Several algorithms
minimize submodular functions in polynomial time, either exactly or within arbitrary accuracy
[1, 3, 10, 20, 25, 30, 38]. Submodularity is a natural model for a variety of applications. However,
in many applications, such as structured sparse learning and Bayesian optimization, the objective
function is not exactly submodular. Instead, it satisfies a weaker form of the diminishing returns
property. An important class of such functions are α-weakly DR-submodular functions, introduced
in [31]. The parameter α characterizes how close the function is to being submodular (see Section 2
for a precise definition). Furthermore, in many cases, only noisy evaluations of the objective are
available. A natural question then arises: Can submodular minimization algorithms extend to such
non-submodular noisy functions?

Non-submodular maximization, under various notions of approximate submodularity, has recently
received a lot of attention [5, 11, 22–24, 28, 37, 39]. In contrast, only few studies consider non-
submodular minimization [4, 34, 40, 43]. In this paper, we initiate the study of the unconstrained
non-submodular minimization problem

minS⊆V H(S) := F (S)−G(S), (1)

where F and G are normalized (F (∅) = G(∅) = 0) monotone (non-decreasing or non-increasing)
functions, F is α-weakly DR-submodular, and G is β-weakly DR-supermodular, i.e., −G is β−1-
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weakly DR-submodular. The definitions of weak DR-sub-/supermodularity only hold for monotone
functions, and thus do not directly apply toH . This setting covers several important applications, in-
cluding structured sparse learning and Bayesian optimization. In fact, we show that any set function
H can be decomposed into functions F and G that satisfy these assumptions, albeit with properties
leading to weaker approximations when the function is far from being submodular.
A key strategy for minimizing submodular functions exploits their tractable tight convex extension,
which enables convex optimization algorithms. In general, such a tractable tight convex extension
is impossible. Yet, in this paper, we show that for approximately submodular functions, we may
approximate the subgradients of their intractable tight convex extension, and use them in a projected
subgradient method (PGM), to obtain an approximate solution to Problem (1). This insight broadly
expands the scope of submodular minimization techniques.

Contributions We provide the first approximation guarantee for unconstrained non-submodular
minimization: PGM achieves a tight approximation ofH(S) ≤ F (S∗)/α−βG(S∗)+ε. We extend
this result to the case where only a noisy oracle of H is accessible. We prove that this guarantee is
optimal in the value oracle model. We apply our results to structured sparse learning, and structured
batch Bayesian optimization, implying the first approximation guarantees for these problems.

2. Preliminaries

Let V be the ground set of size d. Given a set function F , the marginal gain of adding an element
i to a set A ⊆ V is F (i|A) = F (A ∪ {i}) − F (A). F is non-decreasing (non-increasing) if
F (A) ≤ F (B) (F (A) ≥ F (B)) for all A ⊆ B. F is submodular if F (i|A) ≥ F (i|B) for all
A ⊆ B, i ∈ V \ B, supermodular if F (i|A) ≤ F (i|B), and modular if both hold. Relaxing these
inequalities leads to the notions of weak DR-sub-/supermodularity introduced in [31] and [5].

Definition 1 A set function F is α-weakly DR-submodular, with α > 0, if
F (i|A) ≥ αF (i|B), ∀A ⊆ B, i ∈ V \B

Similarly, F is β-weakly DR-supermodular, with β > 0, if
F (i|B) ≥ βF (i|A),∀A ⊆ B, i ∈ V \B.

We say that F is (α, β)-weakly DR-modular if it satisfies both properties.

If F is non-decreasing, then α, β ∈ (0, 1], and if it is non-increasing, then α, β ≥ 1. F is submodu-
lar (supermodular) iff α = 1 (β = 1) and modular iff both α = β = 1.

Minimizing a submodular set function F is equivalent to minimizing a non-smooth convex function,
obtained by considering a continuous extension of F , from vertices of the hypercube {0, 1}d to the
full hypercube [0, 1]d. This extension, called the Lovász extension [32], is defined for all s ∈ Rd
as fL(s) =

∑d
k=1 sjkF (jk|Sk−1), where sj1 ≥ · · · ≥ sjd and Sk = {j1, · · · , jk}, and is convex if

and only if F is submodular. When F is submodular, minimizing fL or F is equivalent. Moreover,
a subgradient κ of fL at any s ∈ Rd can be computed efficiently by sorting the entries of s in
decreasing order and taking κjk = F (jk|Sk−1) for all k ∈ V [14].
This relation between submodularity and convexity allows for generic convex optimization algo-
rithms to be used for minimizing F . However, it has been unclear how these relations are affected if
the function is only approximately submodular. In this paper, we establish a similar relation between
approximate submodularity and approximate convexity.
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3. Main Results

We consider first the case where F and G are non-decreasing. We later extend our results to non-
increasing functions. We assume a value oracle access to H; i.e., there is an oracle that, given a
set S ⊆ V , returns the value H(S). Interestingly, any set function can be decomposed in the form
assumed in Problem (1), as the following proposition shows.

Proposition 2 Given a set function H , and α, β ∈ (0, 1] such that αβ < 1, there exists a non-
decreasing α-weakly DR-submodular function F and a non-decreasing (α, β)-weakly DR-modular
function G such that H(S) = F (S)−G(S) for all S ⊆ V .

Computing such a decomposition is NP-hard in general, but is not required to run PGM. When H
is far from being submodular, it may not be possible to decompose H as to obtain a non-trivial
guarantee. However, many important non-submodular functions do admit a decomposition which
leads to non-trivial bounds. We call such functions approximately submodular.

3.1 Continuous relaxations When H is not submodular, the connections between its Lovász
extension and tight convex relaxation for exact minimization, outlined in Section 2, break down.
However, Problem (1) can still be converted to a non-smooth convex optimization problem, via a
different convex extension. Given a set function H , its convex closure h− is the point-wise largest
convex function from [0, 1]d to R that always lower bounds H . The following equivalence holds
[13, Prop. 3.23]:

min
S⊆V

H(S) = min
s∈[0,1]d

h−(s). (2)

Unfortunately, evaluating and optimizing the convex closure of a general set function is NP-hard
[42]. The key property that makes Problem (2) efficient to solve when H is submodular is that its
convex closure then coincides with its Lovász extension, i.e., h− = hL. This property no longer
holds if H is only approximately submodular. But, in this case, a weaker key property holds: we
show in Lemma 3 that the Lovász extension approximates h−, and that the same vectors that served
as its subgradients in the submodular case can still serve as approximate subgradients to h−.

Lemma 3 Given a vector s ∈ [0, 1]d such that sj1 ≥ · · · ≥ sjd , we define κ such that κjk =
H(jk|Sk−1) where Sk = {j1, · · · , jk}. Then, hL(s) = κ>s ≥ h−(s), κ(A) ≤ 1

αF (A) − βG(A)
for all A ⊆ V , and κ>s′ ≤ 1

αf
−(s′) + β(−g)−(s′) for all s′ ∈ [0, 1]d.

We can view the vector κ in Lemma 3 as an approximate subgradient of h− at s in the following
sense: 1

αf
−(s′) + β(−g)−(s′) ≥ h−(s) + 〈κ, s′ − s〉,∀s′ ∈ [0, 1]d. Lemma 3 also implies that

hL approximates h− in the following sense: h−(s) ≤ hL(s) ≤ 1
αf
−(s) + β(−g)−(s),∀s ∈

[0, 1]d. We can thus say that hL is approximately convex in this case. This key insight allows us to
approximately minimize h− using simple convex optimization algorithms.

3.2 Algorithm Equipped with the approximate subgradients of h−, we can now apply an approx-
imate projected subgradient method (PGM). Starting from an arbitraty s1 ∈ [0, 1]d, PGM iteratively
updates st+1 = Π[0,1]d(s

t−ηκt), where κt is the approximate subgradient at st from Lemma 3, and
Π[0,1]d is the projection onto [0, 1]d. We set the step size to η = R

L
√
T

, where L = F (V ) +G(V ) is

the Lipschitz constant, i.e., ‖κt‖2 ≤ L for all t, andR = 2
√
d is the domain radius ‖s1−s∗‖2 ≤ R.
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Importantly, the algorithm does not need to know the α and β parameters, which can be hard to
compute in practice. In fact, the iterates taken are exactly the same as in the submodular case.

Theorem 4 After T iterations of PGM, ŝ ∈ arg mint∈{1,··· ,T} hL(st) satisfies:

h−(ŝ) ≤ hL(ŝ) ≤ 1
αf
−(s∗) + β(−g)−(s∗) + RL√

T
,

where s∗ ∈ arg mins∈[0,1]d h
−(s). Let Ŝk = {j1, · · · , jk} such that ŝj1 ≥ · · · ≥ ŝjd , and Ŝ0 = ∅.

Then Ŝ ∈ arg mink∈{0,··· ,d}H(Ŝk) satisfies

H(Ŝ) ≤ 1
αF (S∗)− βG(S∗) + RL√

T
,

where S∗ ∈ arg minS⊆V H(S). This bound is tight even if F and G are weakly DR-modular.

To obtain a set that satisfies H(Ŝ) ≤ F (S∗)/α − βG(S∗) + ε, we thus need O(dL2/ε2) iterations
of PGM, where the time per iteration is O(d log d+ d EO), with EO the evaluation oracle time.
If F is regarded as a cost andG as a revenue, this guarantee states that the returned solution achieves
at least a fraction β of the revenue of the optimal solution, by paying at most a 1/α-multiple of the
cost. The quality of this guarantee depends on F,G and their parameters α, β; it becomes vacuous
when F (S∗)/α ≥ βG(S∗). If F is submodular and G is supermodular, Problem (1) reduces to
submodular minimization and Theorem 4 recovers the guarantee H(Ŝ) ≤ H(S∗) +RL/

√
T . This

result also extends to the case where F andG are non-increasing functions with F (V ) = G(V ) = 0.
Applying PGD to H(V \ S) then yields H(S) ≤ αF (S∗)−G(S∗)/β +RL/

√
T .

3.3 Extension to noisy evaluations To the best of our knowledge, minimizing noisy oracles of
submodular functions was only studied in [6]. We address a more general setup where the underly-
ing function H is not necessarily submodular. We assume again that F and G are normalized and
non-decreasing. The result easily extend to non-increasing functions by minimizing H(V \ S).

Proposition 5 Assume we have an approximate oracle H̃ with input parameters ε, δ ∈ (0, 1), such
that for every S ⊆ V , |H̃(S) − H(S)| ≤ ε with probability 1 − δ. We run PGM with H̃ for T
iterations. Let ŝ = arg mint∈{1,··· ,T} h̃L(st), and Ŝk = {j1, · · · , jk} such that ŝj1 ≥ · · · ≥ ŝjd .
Then Ŝ ∈ arg mink∈{0,··· ,d} H̃(Ŝk) satisfies

H(Ŝ) ≤ 1
αF (S∗)− βG(S∗) + ε′,

with probability 1− δ′, by choosing ε = ε′

8d , δ = δ′ε′2

32d2 and T = (4
√
dL/ε′)2 iterations.

Blais et al [6] consider the same setup for the special case of submodular H , and use the cutting
plane method of [30]. Their runtime has better dependence O(log(1/ε′)) on the error ε′, but worse
dependenceO(d3) on the dimension d = |V |, and their result needs oracle accuracy ε = O(ε′2/d5).

3.4 Inapproximability Result Problem (1) is equivalent to general set function minimization
by Proposition 2. Then solving Problem (1) with any multiplicative factor approximation is NP-
Hard [26, 41]. Moreover, in the value oracle model, it is not possible to obtain any multiplicative
constant factor approximation, using a subexponential number of queries [26]. It is thus necessary
to consider bicriteria-like approximation guarantees as we do in Theorem 4. We prove now that this
approximation guarantee is optimal in the value oracle model.
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Theorem 6 For any α, β ∈ (0, 1] such that αβ < 1, d > 2 and δ > 0, there are instances of
Problem (1) such that no (deterministic or randomized) algorithm, using less than exponentially
many queries, can always find a solution S ⊆ V of expected value at most 1

αF (S∗)− βG(S∗)− δ.

3.5 Applications We discuss two application examples that benefit from the theory in this work.

Structured sparse learning: Structured sparse learning aims to estimate a sparse parameter vec-
tor whose support is known to have a particular structure, such as group-sparsity, clustering, tree-
structure, or diversity [29, 33]. Such problems can be formulated as minx∈Rd `(x)+λF (supp(x)),
where supp(x) = {i ∈ V |xi 6= 0}, ` is a convex loss function and F is a set function fa-
voring the desirable supports. One may write this problem as minS⊆V λF (S) − G`(S), where
G`(S) = `(0) − minsupp(x)⊆S `(x) is a normalized non-decreasing set function. Recently, it was
shown that if ` has restricted smoothness and strong convexity, G` is weakly modular [8, 18, 36]; a
notion of approximate modularity which is weaker than weak DR-modularity. This allowed for ap-
proximation guarantees of greedy algorithms to be applied to the constrained variant of this problem,
but only for the special case of sparsity constraint [11, 18], and for some near-modular constraints
[37]. In applications, however, the structure of interest is often better modeled by a non-modular
regularizer F , which may be submodular [2] or non-submodular [15, 16]. Weak modularity of G`

is not enough for our results to apply, but, if the loss function ` is smooth, strongly convex, and is
generated from random data, then we show that G` is also (αG, βG)-weakly DR-modular, for some
αG, βG > 0 that depend on the conditioning of `.
Our results thus apply whenever F is weakly DR-submodular. Examples include submodular reg-
ularizers [2], but also non-submodular ones such as the range function [16], which favors interval
supports, with applications in time-series and cancer diagnosis [35], and the cost function consid-
ered in [37], which favors the selection of sparse and cheap features, with applications in healthcare.

Structured batch Bayesian optimization: The goal in batch Bayesian optimization is to opti-
mize an unknown expensive-to-evaluate noisy function with as few batches of function evaluations
as possible [12, 21]. For example, evaluations can correspond to performing expensive experi-
ments. The evaluation points are chosen to maximize an acquisition function subject to a cardinality
constraint. Several acquisition functions have been proposed for this purpose, amongst others the
variance reduction function [7, 27]. This function is used to maximally reduce the variance of the
posterior distribution over potential maximizers of the unknown function. Often, the unknown func-
tion is modeled by a Gaussian process. In this case, we show that the variance reduction function is
normalized non-decreasing (β, β)-weakly DR-modular with β =

λ2
min(K)

λmax(K)(λmin(K)+σ2)
, whereK is

the positive definite kernel matrix, and λmax(K), λmin(K) are its largest and smallest eigenvalues.
It can thus be maximized with a greedy algorithm to a β-approximation [40].
This problem may also be phrased as an instance of Problem (1), withG being the variance reduction
function, and F (S) = λ|S| an item-wise cost. This formulation easily allows to include nonlinear
costs with (weak) decrease in marginal costs (economies of scale). For example, in the sensor
placement application, the cost of placing a sensor in a hazardous environment may diminish if
other sensors are also placed in similar environments. Unlike previous works, the approximation
guarantee in Theorem 4 still applies to such cost functions, while maintaining the β-approximation
with respect to G.
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Appendix A. Appendix

A.1 Proofs of main results

Proposition 7 Given a set function H , and α, β ∈ (0, 1] such that αβ < 1, there exists a non-
decreasing α-weakly DR-submodular function F and a non-decreasing (α, β)-weakly DR-modular
function G such that H(S) = F (S)−G(S) for all S ⊆ V .

Proof This decomposition builds on the decomposition ofH into the difference of two non-decreasing
submodular functions [26]. We start by choosing any function G′ which is non-decreasing (α, β)-
weakly DR-modular, and is strictlyα-weakly DR-submodular, i.e., εG′ = mini∈V,A⊂B⊆V \iG

′(i|A)−
αG′(i|B) > 0. It is always possible to find such a function: We provide an example in Proposition
8 for α = 1. For α < 1, we can simply use G′(S) = |S|. It is not possible though to choose G′

such that α = β = 1 (this would imply G′(i|B) ≥ G′(i|A) > G′(i|B)). We construct F and G
based on G′.
Let εH = mini∈V,A⊆B⊆V \iH(i|A)− αH(i|B) < 0 the violation of α-weak DR-submodularity of

H; we may use a lower bound ε′H ≤ εH . We define F ′(S) = H(S) +
|ε′H |
εG′

G′(S), then F ′(i|S) ≥
αF ′(i|T ),∀i ∈ V, S ⊂ T ⊆ V \ i, but not necessarily for S = T since F ′ is not necessarily
non-decreasing. To correct for that, let V − = {i : F ′(i|V \ i) < 0} and define F (S) = F ′(S) −∑

i∈S∩V− F
′(i|V \ i). For all i ∈ V, S ⊆ V \ i, if i 6∈ V − then F (i|S) = F ′(i|S) ≥ αF ′(i|V \ i) ≥

0, otherwise F (i|S) = F ′(i|S) − F ′(i|V \ i) ≥ (α − 1)F ′(i|V \ i) ≥ 0 for S 6= V \ i and
F (i|V \ i) = 0. F is thus non-decreasing α-weakly DR-submodular. We also define G(S) =
|ε′H |
εG′

G′(S) −
∑

i∈S∩V− F
′(i|V \ i), then H(S) = F (S) − G(S) and G is non-decreasing (α, β)-

weakly DR-modular.

Proposition 8 Given β ∈ (0, 1), let G′(S) = g(|S|) where g(x) = 1
2ax

2 + (1 − 1
2a)x with

a = β−1
d−1 . Then G′ is non-decreasing (1, β)-weakly DR-modular, and is strictly submodular, with

εG′ = mini∈V,A⊂B⊆V \iG
′(i|A)−G′(i|B) = −a > 0.

Proof g is a concave function, since a < 0, hence G′(S) is submodular. It also follows that

max
i∈V,S⊆T⊆V \i

G′(i|S)

G′(i|T )
= max

i∈V,S⊆T⊆V \i

G′(i)

G′(i|V \ i)

=
1
2a+ (1− 1

2a)
1
2a(d2 − (d− 1)2) + (1− 1

2a)(d− (d− 1))

=
1

1
2a(2d− 2) + 1

=
1

β
.

10
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We also have

εG′ = min
i∈V,S⊂T⊆V \i

G′(i|S)−G′(i|T )

= min
T⊂V

2g(|T |)− g(|T | − 1)− g(|T |+ 1)

= min
T⊂V

1
2a(2|T |2 − (|T | − 1)2 − (|T |+ 1)2) + (1− 1

2a)(2|T | − (|T | − 1)− (|T |+ 1))

= −a.

Lemma 9 Given a vector s ∈ [0, 1]d such that sj1 ≥ · · · ≥ sjd , we define κ such that κjk =
H(jk|Sk−1) where Sk = {j1, · · · , jk}. Then, hL(s) = κ>s ≥ h−(s), κ(A) ≤ 1

αF (A) − βG(A)
for all A ⊆ V , and κ>s′ ≤ 1

αf
−(s′) + β(−g)−(s′) for all s′ ∈ [0, 1]d.

Proof We use the following formulation of the convex closure [17, Def. 20]:

h−(s) = max
κ∈Rd,ρ∈R

{κ>s+ ρ : κ(A) + ρ ≤ H(A), ∀A ⊆ V },

where κ(A) =
∑

i∈A xi. Given any feasible point (κ′, ρ′) in the definition of h−, i.e., κ(A) + ρ′ ≤
H(A), ∀A ⊆ V , we have:

κ>s− (κ′>s+ ρ′) =
d∑

k=1

sjk(H(jk|Sk−1)− κ′jk)− ρ′

=
d−1∑
k=1

(sjk − sjk+1
)
(
H(Sk)− κ′(Sk)

)
+ sjd

(
H(V )− κ′(V )

)
− ρ′

≥

(
d−1∑
k=1

(sjk − sjk+1
) + sjd

)
ρ′ − ρ′

= (sj1 − 1)ρ′ ≥ 0

Hence κ>s ≥ h−(s). The last inequality holds by noting that ρ′ ≤ 0 since κ(∅) + ρ′ ≤ H(∅) = 0.
The upper bound on κ(A) for any A ⊆ V follows from the definition of weak DR-submodularity.

κ(A) =
∑
jk∈A

H(jk|Sk−1)

≤
∑
jk∈A

1

α
F (jk|A ∩ Sk−1)− βG(jk|A ∩ Sk−1)

=

d∑
k=1

1

α
(F (A ∩ Sk)− F (A ∩ Sk−1))− β(G(A ∩ Sk)−G(A ∩ Sk−1))

=
F (A)

α
− βG(A)

11
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Note that κ can be written as κ = κF − κG where κFjk = F (jk|Sk−1) and κGjk = G(jk|Sk−1). We

have κF (A) ≤ F (A)
α and κG(A) ≤ βG(A),∀A ⊆ V . Hence (ακF ,0) and ( 1

βκ
G,0) are feasible

points in the definitions of f− and (−g)−. The bound on κ>s′ for any s′ ∈ [0, 1]d then follows
directly from the definitions of f− and (−g)−.

Theorem 4 After T iterations of PGM, ŝ ∈ arg mint∈{1,··· ,T} hL(st) satisfies:

h−(ŝ) ≤ hL(ŝ) ≤ 1
αf
−(s∗) + β(−g)−(s∗) + RL√

T
,

where s∗ ∈ arg mins∈[0,1]d h
−(s). Let Ŝk = {j1, · · · , jk} such that ŝj1 ≥ · · · ≥ ŝjd , and Ŝ0 = ∅.

Then Ŝ ∈ arg mink∈{0,··· ,d}H(Ŝk) satisfies

H(Ŝ) ≤ 1
αF (S∗)− βG(S∗) + RL√

T
,

where S∗ ∈ arg minS⊆V H(S). This bound is tight even if F and G are weakly DR-modular.

Proof We prove first the bound on h−(ŝ) and hL(ŝ). Let zt+1 = st − ηκt, then note that ‖st+1 −
s∗‖2 ≤ ‖zt+1 − s∗‖2 due to the properties of projection (see for e.g., [9, Lemma 3.1]), it follows
then

〈κt, st − s∗〉 =
1

η
〈st − zt+1, st − s∗〉

=
1

2η
(‖st − zt+1‖22 + ‖st − s∗‖22 − ‖zt+1 − s∗‖22)

=
1

2η
(‖st − s∗‖22 − ‖zt+1 − s∗‖22) +

η

2
‖κt‖22

≤ 1

2η
(‖st − s∗‖22 − ‖st+1 − s∗‖22) +

η

2
‖κt‖22

Summing over t we get

T∑
t=1

〈κt, st − s∗〉 ≤ T R
2

2η
+
ηTL2

2

Since F is α-weakly DR submodular and −G is 1
β -weakly DR submodular, we have by lemma 3

for all t, (κt)>s∗ ≤ f−(s∗)
α + β(−g)−(s∗) and (κt)>st = hL(st) ≥ h−(st). Plugging in the value

of η, we thus obtain

min
t
h−(st) ≤ min

t
hL(st) ≤ f−(s∗)

α
+ β(−g)−(s∗) +

RL√
T
. (3)

By definition of the Lovász extension, we have:

hL(ŝ) =

d∑
k=1

(ŝjk − ŝjk+1
)H(Ŝk) + ŝjdH(V ) ≥ min

k∈{0,··· ,d}
H(Ŝk).

12
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The bound onH(Ŝ) then follows from Eq. (3), and the extension property f−(s∗) = F (S∗), (−g)−(s∗) =
−G(S∗).
To show that this approximation is tight, we construct the following example. Let H(S) = F (S)−
G(S) such that F (S) = |S| + d

β − 1 if 1 ∈ S, F (S) = α|S| otherwise and G(S) = |S| + d
β − 1

if 1 ∈ S, G(S) = 1
β |S| otherwise, for some α, β ∈ (0, 1). Then, F is monotone (α, 1)-weakly

DR-modular and G is monotone (1,β)-weakly DR-modular. The solution obtained by PGM have
valueH(Ŝ) = 0, while the optimal solution S∗ = V \{1} have valueH(S∗) = (α− 1

β )(n−1) < 0.

Hence, H(Ŝ) = F (S∗)
α − βG(S∗) = α(n−1)

α − β (n−1)
β .

It’s easy to see that both F and G are monotone functions. For all A ⊆ B, i ∈ V \B, we have

F (i|A)

F (i|B)
=


1 if 1 ∈ A or 1 6∈ B
α if 1 6∈ A, 1 ∈ B
d
β

+(1−α)|A|
d
β

+(1−α)|B| if i = 1

Note that dβ + (1− α)|A| ≥ d
β ≥ α( dβ + (1− α)|B|), hence α ≤ F (i|A)

F (i|B) ≤ 1, which proves that F
is supermodular and α-weakly DR-submodular.
Similarly we have

F (i|A)

F (i|B)
=


1 if 1 ∈ A or 1 6∈ B
1
β if 1 6∈ A, 1 ∈ B
d
β

+(1− 1
β

)|A|
d
β

+(1− 1
β

)|B| if i = 1

Note that dβ + (1− 1
β )|A| ≤ d

β ≤
1
β ( dβ + (1− 1

β )|B|), hence 1 ≤ F (i|A)
F (i|B) ≤

1
β , which proves that G

is monotone submodular and β-weakly DR-supermodular.
It remains to show that the solution obtained by PGM and thresholding have value H(Ŝ) = 0. We
can assume w.l.o.g that the starting point s1 is such that the largest element is j1 = 1 (otherwise
we can modify the example to have whatever is the largest element as the “bad element”). Note
that H(1) = H(jk|Sk) = 0 for all k ∈ [d], hence κ1 = 0 and st = s1 and κt = 0 for all
t ∈ {1, · · · , T}. Thresholding s1 would thus yield H(Ŝ) = 0, with Ŝ = ∅ or any other set such
that 1 ∈ Ŝ.

Proposition 10 Assume we have an approximate oracle H̃ with input parameters ε, δ ∈ (0, 1),
such that for every S ⊆ V , |H̃(S) −H(S)| ≤ ε with probability 1 − δ. We run PGM with H̃ for
T iterations. Let ŝ = arg mint∈{1,··· ,T} h̃L(st), and Ŝk = {j1, · · · , jk} such that ŝj1 ≥ · · · ≥ ŝjd .
Then Ŝ ∈ arg mink∈{0,··· ,d} H̃(Ŝk) satisfies

H(Ŝ) ≤ 1
αF (S∗)− βG(S∗) + ε′,

with probability 1− δ′, by choosing ε = ε′

8d , δ = δ′ε′2

32d2 and T = (4
√
dL/ε′)2 iterations.

Proof Let κ be defined as κjk = H(jk|Sk−1) and κ̃ as κ̃jk = H̃(jk|Sk−1). For all k ∈ V , we have
|κ̃jk − κjk | ≤ 2ε with probability 1 − 2dδ (by a union bound). Hence, for every S ⊆ V , we have

13
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|κ̃(S)− κ(S)| ≤ 2ε|S|. Plugging this into the proof of Theorem 4 directly yields

H(Ŝ) ≤ F (S∗)
α − βG(S∗) + 2ε(|S∗|+ 1) +

RL√
T

The proposition follows by setting ε, δ and T to the chosen values.

Theorem 6 For any α, β ∈ (0, 1] such that αβ < 1, d > 2 and δ > 0, there are instances of
Problem (1) such that no (deterministic or randomized) algorithm, using less than exponentially
many queries, can always find a solution S ⊆ V of expected value at most 1

αF (S∗)− βG(S∗)− δ.

Proof We use a similar proof technique to [19]. Let C,D be two sets that partition the ground set
V = C ∪D such that |C| = |D| = d/2. We construct a normalized set function H whose values
depend only on k(S) = |S ∩ C| and `(S) = |S ∩D|. In particular, we define

H(S) =

{
0 if |k(S)− `(S)| ≤ εd
2αδ
2−d otherwise

,

for some ε ∈ [1/d, 1/2). By Proposition 2, given a non-decreasing (α, β)-weakly DR-modular
function G′, we can write H(S) = F (S)−G(S), where F (S) = H(S) + |εH |

εG′
G′(S) is normalized

non-decreasing α-weakly DR-submodular, and G(S) = |εH |
εG′

G′(S) is normalized non-decreasing
(α, β)-weakly DR-modular. Note that V − = ∅ in this case, since H(i|V \ i) = 0. We choose
G′(S) = |S| if α < 1, then εG′ = mini∈V,S⊂T⊆T\iG(i|S)− αG(i|T ) = 1− α > 0. If α = 1, we
use the (1, β)-weakly DR-modular function defined in Proposition 8, then εG′ = 1−β

d−1 > 0.
Let the partition (C,D) be random and unknown to the algorithm. We argue that, with high prob-
ability, any given query S will be “balanced”, i.e., |k(S) − `(S)| ≤ εd. Hence no deterministic
algorithm can distinguish between H and the constant zero function. Given a fixed S ⊆ V , let
Xi = 1 if i ∈ C and 0 otherwise, for all i ∈ S, then µ = E[

∑
i∈S Xi] =

∑
i∈S

|C|
d = |S|

2 . Then by
a Chernoff’s bound we have Pr(|k(S)− `(S)| > εd) ≤ 2 exp(− ε2d

4 ). Hence, given a sequence of

e
ε2d
8 many queries, the probability that each query S is balanced, and thus have value H(S) = 0, is

still at least 1− 2e−
ε2d
8 . On the other hand, we have H(S∗) = 2αδ

2−d < 0, achieved at S∗ = C or D.
Moreover, note that εH = mini∈V,S⊆T⊆T\iH(i|S)− αH(i|T ) = (1 + α)H(S∗). Hence

1
αF (S∗)− βG(S∗)− δ = 1

αH(S∗)

(
1− (1− αβ)(1 + α)

G′(S∗)

εG′

)
−δ < 0,

since G′(S∗)
εG′

= d
2(1−α) if α < 1, and G′(S∗)

εG′
≥ 3d(d−1)

8(1−β) , if α = 1.

Therefore, with high probability, the algorithm cannot find a set with value H(S) ≤ 1
αF (S∗) −

βG(S∗)− δ. This also holds for a randomized algorithm, by averaging over its random choices.
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OPTIMAL APPROXIMATION FOR UNCONSTRAINED NON-SUBMODULAR MINIMIZATION

A.2 Proofs for structured sparse learning application We prove that the auxiliary function G`

in structured sparse learning problems is weakly DR-modular for all sets of cardinality k, when `
has ν-restricted smoothness (RSM) and µ-restricted strong convexity (RSC).
Let’s recall the definition of RSC/RSM.

Definition 11 (RSM/RSC) Given a differentiable function ` : Rd → R and Ω ⊂ Rd×Rd, ` is µΩ-
RSC and νΩ-RSM if µΩ

2 ‖x− y‖
2
2 ≤ `(y)− `(x)− 〈∇`(x),y−x〉 ≤ νΩ

2 ‖x− y‖
2
2, ∀(x,y) ∈ Ω.

If ` is RSC/RSM on Ω = {(x,y) : ‖x‖0 ≤ k1, ‖y‖0 ≤ k1, ‖x − y‖0 ≤ k2}, we denote by
µk1,k2 , νk1,k2 the corresponding RSC and RSM parameters. For simplicity, we also define µk :=
µk,k, νk := µk,k.
Before we can prove Proposition 14, we need two key lemmas. Lemma 12 restates a result from
[18], which relates the marginal gain of G` to the marginal decrease in `. In Lemma 13, we argue
that for a class of loss functions, namely RSC/RSM functions of the form `(x) = L(x) − z>x,
where z is a random vector, the corresponding minimizer has full support with probability one.
Proposition 14 then follows from these two lemmas by noting that ` thus have non-zero marginal
decrease, with respect to any i ∈ V , with probability one.

Lemma 12 Given G`(S) = `(0) − minsupp(x)⊆S `(x), then for any disjoint sets A,B ⊆ V and
a corresponding minimizer xA := arg minsupp(x)⊆A `(x), if ` is µ|A∪B|-RSC and ν|A|,|B|-RSM, we
have:

‖[∇`(xA)]B‖22
2ν|A∪B|,|B|

≤ G`(B|A) ≤ ‖[∇`(x
A)]B‖22

2µ|A∪B|

Lemma 13 If x? is the minimizer of minx∈Rd L(x) − z>x, where L is a strongly-convex and
smooth loss function, and z ∈ Rd has a continuous density w.r.t to the Lebesgue measure, then x?

has full support with probability one.

Proof This follows directly from [16, Theorem 1] by taking Φ(x) = 0. We include the proof here
for completeness.

Since L is strongly-convex, given z the corresponding minimizer x? is unique, then the function
E(z) := arg minx∈Rd L(x) − zTx is well defined. Given fixed i ∈ V , we show that the set
Si := {z : [E(z)]i = 0} has measure zero. Then, taking the union of the finitely many sets
Si,∀i ∈ V , all of zero measure, we have P (∃z ∈ Rd, ∃i ∈ V, s.t., [E(z)]i = 0) = 0.

To show that the set Si has measure zero, let z1, z2 ∈ Si and denote by µ > 0 the strong convexity
constant of L. We have by optimality conditions:((

z1 −∇L(E(z1))
)
−
(
z2 −∇L(E(z2))

))>(
E(z1)− E(z2)

)
= 0

Hence,

(z1 − z2)>(E(z1)− E(z2)) ≥
(
∇L(E(z1))−∇L(E(z2))

)>(
E(z1)− E(z2)

)
(z1 − z2)>(E(z1)− E(z2)) ≥ µ‖E(z1)− E(z2)‖22

1

µ
‖z1 − z2‖2 ≥ ‖E(z1)− E(z2)‖2

15
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Thus E is a deterministic Lipschitz-continuous function of z. By optimality conditions z =
∇L(E(z)), then zi = ∇L(E(zV \i))i. Thus zi is a Lipschitz-continuous function of zV \i, which
can only happen with zero measure.

Proposition 14 Let `(x) = L(x) − z>x, where L is µ|U |-RSC and ν|U |-RSM for some U ⊆ V

and z ∈ Rd has a continuous density w.r.t the Lebesgue measure. Then there exist αG, βG > 0 such
that G` is (αG, βG)-weakly DR modular on U (i.e., Def. 1 restricted to sets A ⊆ B ⊆ U ).

Proof Given S ⊆ U, i ∈ U \S, let xS := arg minsupp(x)⊆S `(x), then by Lemma 12 and ν|S|+1,1 ≤
ν|S|+1 we have:

[∇`(xS)]2i
2ν|S|+1

≤ G`(i|S) ≤ [∇`(xS)]2i
2µ|S|+1

We argue that [∇`(xS)]2i 6= 0 with probability one. For that, we define `S(u) := `(x), where
[x]S = u, [x]V \S = 0, ∀u ∈ R|S|, then `S is µ|S|-strongly convex and ν|S|-smooth on R|S|. Hence,
by lemma 13, the minimizer u? of `S has full support with probability one, and thus supp(xS) = S
also with probability one. By the same argument, we have supp(xS∪{i}) = S ∪ {i}. We can
thus deduce that [∇`(xS)]2i 6= 0, since otherwise G`(i|S) = 0, which implies that xS∪{i} = xS

(minimizer is unique) and supp(xS∪{i}) = S, which happens with probability zero.
For all S ⊆ T ⊆ U, i ∈ U \ T , the following bounds hold:

µ|T |+1[∇`(xS)]2i
ν|S|+1[∇`(xT )]2i

≤ G`(i|S)

G`(i|T )
≤
ν|T |+1[∇`(xS)]2i
µ|S|+1[∇`(xT )]2i

G` is then (αG, βG)-weakly DR-modular with αG := minS⊆T⊆U,i∈U\T
µ|T |+1[∇`(xS)]2i
ν|S|+1[∇`(xT )]2i

> 0 and

βG := minS⊆T⊆U,i∈U\T
µ|S|+1[∇`(xT )]2i
ν|T |+1[∇`(xS)]2i

> 0.

A.3 Proofs for structured batch Bayesian optimization application Let f be modeled by a
Gaussian process with zero mean and kernel function k(x,x′), and we observe noisy evaluations
y = f(x) + ε of the function, where ε ∼ N (0, σ2). Given a set X = {x1, · · · ,xd} of potential
maximizers of f , each xi ∈ Rn, and a set S ⊆ V , let yS = [yi]i∈S be the corresponding observa-
tions at points xi, i ∈ S. The posterior distribution of f given yS is again a Gaussian process, with
posterior covariance kS(x,x′), and variance σ2

S(x):

kS(x,x′) = k(x,x′)− kS(x)>(KS + σ2I)−1kS(x′),

σ2
S(x) = kS(x,x),

where kS = [k(xi,x)]i∈S , and KS = [k(xi,xj)]i,j∈S is the corresponding submatrix of the posi-
tive definite kernel matrixK. The variance reduction function is defined as:

G(S) =
∑
i∈V

σ2(xi)− σ2
S(xi),

16
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where σ2(xi) = k(xi,xi). We show that G is weakly DR-modular. To do that, we first show that
the objective in noisy column subset selection problems is weakly DR-modular, generalizing the
result of [40]. We then show that the variance reduction function can be written as a noisy column
subset selection objective.

We start by giving explicit expressions for the marginals of the objective in noisy column subset
selection problems.

Proposition 15 Let `(x) := 1
2‖y − Ax‖

2
2 + σ2

2 ‖x‖
2 for some σ ≥ 0 and G(S) = `(0) −

minsupp(x)⊆S `(x), then

G(i|S) = [xS∪i(y)]2i φ(S, i) =
(y>RS(ai)

2
√
φ(S, i)

)2
,

where ai is the ith column of A, xS(ai) := arg minsupp(x)⊆S
1
2‖ai − Ax‖

2
2 + σ2

2 ‖x‖
2 is the

vector of optimal regression coefficients, RS(ai) = ai−AxS(ai) the corresponding residual, and
φ(S, i) = 1

2‖R
S(ai)‖2 + σ2

2 ‖x
S(ai)‖2 + σ2

2 .

Proof Given i ∈ V, S ⊆ V \ i, let xS(y) := arg minsupp(x)⊆S `(x), and RS(y) = y −AxS(y)

the corresponding residual. Let γ = [xS∪i(y)]i, then we can write

y = AxS∪i(y) +RS∪i(y)

= AS [xS∪i(y)]S + aiγ +RS∪i(y)

= AS([xS∪i(y)]S + γxS(ai)) + γRS(ai) +RS∪i(y)

By optimality conditions we have−A>S∪iRS∪i(y)+σ2xS∪i(y) = 0 and−A>SRS(ai)+σ
2xS(ai) =

0. Let x̂S(y) = [xS∪i(y)]S + γxS(ai), then x̂S(y) satisfies the constraint supp(x̂S(y)) = S and
the optimality condition A>S (ASx̂

S(y) − y) + σ2x̂S(y) = 0. We can see this by plugging in the
expression for y and using the optimality conditions on xS∪i(y) and xS(ai).

A>S (ASx̂
S(y)− y) + σ2x̂S(y) = −A>S (γRS(ai) +RS∪i(y)) + σ2([xS∪i(y)]S + γxS(ai)) = 0

Hence x̂S(y) = xS(y). By the optimality condition on xS∪i(y), we also have

RS(ai)
>RS∪i(y) = a>i R

S∪i(y)− xS(ai)
>A>SR

S∪i(y)

= σ2γ − σ2xS(ai)
>[xS∪i(y)]S

The marginals are thus given by

G(i|S) = `(xS(y))− `(xS∪i(y))

=
1

2
‖γRS(ai) +RS∪i(y)‖22 +

σ2

2
‖[xS∪i(y)]S + γxS(ai)‖2 −

1

2
‖RS∪i(y)‖22 −

σ2

2
‖xS∪i(y)‖2

=
γ2

2
‖RS(ai)‖2 + σ2γ2 − σ2γxS(ai)

>[xS∪i(y)]S +
σ2

2
γ2‖xS(ai)‖2 + σ2γxS(ai)

>[xS∪i(y)]S −
σ2

2
γ2

= γ2(
1

2
‖RS(ai)‖2 +

σ2

2
‖xS(ai)‖2 +

σ2

2
)

17
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Hence G(i|S) = [xS∪i(y)]2iφ(S, i).
By the optimality condition on xS(ai) we also have:

1

2
y>RS(ai) =

1

2
(RS∪i(y) +AS∪ix

S∪i(y))>RS(ai)

=
1

2

(
σ2γ − σ2xS(ai)

>[xS∪i(y)]S + [xS∪i(y)]>SA
>
SR

S(ai) + [xS∪i(y)]>i a
>
i R

S(ai)
)

=
1

2

(
σ2γ − σ2xS(ai)

>[xS∪i(y)]S + σ2[xS∪i(y)]>Sx
S(ai) + [xS∪i(y)]i(R

S(ai) +ASx
S(ai))

>RS(ai)
)

=
1

2

(
σ2γ + γ‖RS(ai)‖22 + γσ2‖xS(ai)‖22

)

Hence
(
y>RS(ai)

2
√
φ(S,i)

)2
= γ2φ(S, i) = G(i|S).

Proposition 16 Given a positive-definite matrix A, let ai be the ith column of A, and `i(x) :=
1
2‖ai −Ax‖

2
2 + σ2

2 ‖x‖
2 for all i ∈ V , for some σ ≥ 0. Then the function G(S) =

∑
i∈V `(0) −

minsupp(x)⊆S `i(x) is a non-decreasing (β, β)-weakly DR-modular function, with β = ( λmin(A)
σ2+λmin(A)

)2 1
κ2(A)

,
where κ(A) = λmax(A)/λmin(A) is the condition number ofA.

Proof For all j ∈ V , let Gj(S) := `(0) − minsupp(x)⊆S `j(x), then we can write G(S) =∑
j∈V Gj(S). Given i ∈ V, S ⊆ V \ i, let xS(ai) := arg minsupp(x)⊆S `i(x) be the optimal

regression coefficients, RS(ai) = ai − AxS(ai) the corresponding residual. By Proposition 15,
we have for all j ∈ V :

Gj(i|S) = [xS∪i(aj)]
2
i φ(S, i) =

(a>j RS(ai)

2
√
φ(S, i)

)2
,

where φ(S, i) = 1
2‖R

S(ai)‖2 + σ2

2 ‖x
S(ai)‖2 + σ2

2 . Note that φ(S, i) > 0 since A is positive
definite (columns are linearly independent).
In the noiseless case σ = 0, we have xS∪i(ai) = 1i. In the noisy case σ > 0, we have by optimality
conditions

(A>S∪iAS∪i + σ2I)xS∪i(ai) = A>S∪iai

(A>S∪iAS∪i + σ2I)xS∪i(ai) = (A>S∪iAS∪i + σ2I)1i − σ21i

xS∪i(ai) = 1i − σ2(A>S∪iAS∪i + σ2I)−11i

Since (σ2 + λmin(A))−1I < (A>S∪iAS∪i + σ2I)−1 < (σ2 + λmax(A))−1I , we have

1− σ2

σ2 + λmin(A)
≤ [xS∪i(ai)]i ≤ 1− σ2

σ2 + λmax(A)
.

We will construct two unit vectors y, z such that 1
2( λmin(A)
σ2+λmin(A)

)2‖Ay‖22 ≤ G(i|S) ≤ 1
2‖Az‖

2
2.

18
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Let wj =
a>j R

S(ai)

2
√
φ(S,i)

,∀j ∈ V and z = w/‖w‖2. Hence ‖z‖2 = 1 and

1
2R

S(ai)
>Az = 1

2

∑
j∈V

RS(ai)
>aj

wj
‖w‖2

=
√
φ(S, i)

∑
j∈V

w2
j

‖w‖2

=
√
φ(S, i)‖w‖2.

Note that ‖w‖22 = G(i|S) and φ(S, i) ≥ 1
2‖R

S(ai)‖2. Then by Cauchy-Schwartz inequality, we
have:

G(i|S) ≤ ‖R
S(ai)‖2‖Az‖2

4φ(S, i)

≤ 1
2‖Az‖

2.

Let vS = xS(ai), vi = −1 and zero elsewhere, and y = v/‖v‖2. Hence ‖y‖2 = 1, ‖v‖2 ≥ 1 and

‖Ay‖2 =
‖RS(ai)‖2
‖v‖2

≤ ‖RS(ai)‖2.

Note that G(i|S) ≥ Gi(i|S) = (1 − σ2

σ2+λmin(A)
)2 φ(S, i) ≥ 1

2( λmin(A)
σ2+λmin(A)

)2‖RS(ai)‖22 ≥
1
2( λmin(A)
σ2+λmin(A)

)2‖Ay‖22.
The proposition follows then from

1
2(

λmin(A)

σ2 + λmin(A)
)2λ2

min(A) = 1
2(

λmin(A)

σ2 + λmin(A)
)2 max
‖y‖2=1

‖Ay‖22 ≤ G(i|S) ≤ max
‖z‖2=1

1
2‖Az‖

2
2 = 1

2λ
2
max(A).

For the special case of σ = 0, we recover the result of [40].

Corollary 17 Given a positive-definite kernel matrix K, we define for any i ∈ V , `i(z) = ‖y −
K1/2z‖22 + σ2‖z‖22 with y = K1/21i, then we can write the variance reduction function G(S) =∑

i∈V σ
2(xi) − σ2

S(xi) =
∑

i∈V `(0) − minsupp(z)⊆S `(z). Then G is a non-decreasing (β, β)-

weakly DR-modular function, with β =
λ2

min(K)

λmax(K)(σ2+λmin(K))
, where λmax(K) and λmin(K) are

the largest and smallest eigenvalues ofK.

Proof For a fixed i ∈ V, S ⊆ V \ i, let zS := arg minsupp(x)⊆S `i(z). Then by optimality con-

ditions zS = (KS + σ2IS)−1kS(xi). Hence `(zS) = ‖y‖22 − 2yTK
1/2
S zS + (zS)>(KS +

σ2IS)zS = ‖y‖22 − kS(xi)(KS + σ2IS)−1kS(xi). It follows then that σ2(xi) − σ2
S(xi) =

`(0)−minsupp(z)⊆S `(z). The corollary then follows from Proposition 16.
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