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Abstract
We study how to adapt to smoothly-varying environments in well-known online learning problems
where acquiring information is expensive. For the problem of label efficient prediction, which is
a budgeted version of prediction with expert advice, we present an online algorithm whose regret
depends optimally on the number of labels allowed and Q∗ (the quadratic variation of the losses of
the best action in hindsight), along with a parameter-free counterpart whose regret depends optimally
on Q (the quadratic variation of the losses of all the actions). These quantities can be significantly
smaller than T (the total time horizon), yielding an improvement over existing, variation-independent
results for the problem. We then extend our analysis to handle label efficient prediction with bandit
feedback, i.e., label efficient bandits. Our work builds upon the framework of optimistic online
mirror descent, and leverages second order corrections along with a carefully designed hybrid
regularizer that encodes the constrained information structure of the problem.

1. Introduction

The study of online learning has developed along two concrete lines insofar as modeling the uncertain
environment is concerned. On one hand, there is a rich body of work on learning in stochastic
environments which often yields performance guarantees that are strong but can closely depend on
the stochastic models at hand. On the other hand, much work has been devoted to studying non-
stochastic (or arbitrary or adversarial) models of environments from a worst-case point of view which
naturally yields rather pessimistic guarantees. Recent efforts have focused on bridging this spectrum
of modeling structure in online learning problems as arising from non-stochastic environments with
loss function sequences exhibiting adequate temporal regularity [3, 4, 12–15]. In this regard, this
paper is an attempt to extend our understanding of adapting to low variation in several standard
online learning problems where information comes at a cost, namely label efficient prediction [6],
and label efficient bandits.

Problem Setup A label efficient prediction game [6] proceeds for T rounds with K ≤ T arms
or ‘experts’. In each round (time instant) t, the learner selects an arm it ∈ [K] := 1, 2, . . . ,K.
Simultaneously, the adversary chooses a loss vector `t ∈ [0, 1]K where `t,i is the loss of arm i
at time t. At each round, the learner can additionally choose to observe the full loss vector `t,
provided the number of times it has done so in the past has not exceeded a given positive integer
n ≤ T that represents an information budget or constraint. We work in the oblivious adversarial
setting where `t does not depend on the previous actions of the learner i1, i2, . . . , it−1; this is akin
to the adversary fixing the (worst-possible) sequence of loss vectors in advance. The learner’s
goal is to minimize its expected regret defined as maxi∗∈[K] E

[∑T
t=1 `t,it −

∑T
t=1 `t,i∗

]
, where
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the expectation is taken with respect to the learner’s randomness. Given a convex function R
over Ω, we denote by DR the Bregman divergence with respect to R defined as DR(x, y) ,
R(x) −R(y) − 〈∇R(y), x− y〉 ∀x, y ∈ Ω. We denote by ε, the fraction of time we are allowed
the full loss vector i.e. ε = n/T . The ε can be seen as a way to model the constraint on information
defined by the problem. The quadratic variation for a loss vector sequence `1, . . . , `T is defined by
Q =

∑T
t=1 ‖`t − µT ‖

2
2 with µs = 1

s

∑s
t=1 `t. Additionally, the quadratic variation of the best arm(s)

is Q∗ =
∑T

t=1(`t,i∗ − µT,i∗)2 where µs,i = 1
s

∑s
t=1 `t,i and i∗ = argmini∈[K]

∑T
t=1 `t,i .

2. Key Ideas and Algorithms

Optimistic OMD The underlying framework behind our algorithms is that of Online Mirror
Descent (OMD) (see, for example [10]). The vanilla update rule of (active) mirror descent can be
written as: xt = argminx∈Ω{〈x, ˜̀

t−1〉+DR(x, xt−1)}. On the other hand, our updates are:

xt = argmin
x∈Ω

{〈x, εmt〉+DR(x, x′t)} (1)

x′t+1 = argmin
x∈Ω

{〈x, ε˜̀t + at〉+DR(x, x′t)} (2)

where ε = n/T , mt corresponds to optimistic1 estimates of the loss vectors (which we will also
refer to as messages), and at denotes a second order correction that we explicitly define later. ˜̀

t is
used to denote an (unbiased) estimate of `t that the learner constructs at time t. Optimistic OMD
with second order corrections was first studied in [15], whereas its Follow-the-Regularized-Leader
(FTRL) counterpart was introduced earlier by [14]. Both of these approaches build upon the general
optimistic OMD framework of [13] and [7]. We define our updates with scaled losses and messages,
where we reiterate that the scaling factor ε reflects the limitation on information. This scaling also
impacts our second order corrections which are ≈ ηε2(˜̀

t −mt)
2, different from the ηε(˜̀

t −mt)
2

one may expect in light of the analysis done in [15], or the η(˜̀
t −mt)

2 one would anticipate when
following [14]. One may argue that our update rules are equivalent to dividing throughout by ε, or
put differently, by merging an ε into the step size, and this indeed true. However, the point we would
like to emphasize is that no matter how one defines the updates, the second order correction at can be
seen to incorporate the problem dependent parameter ε. This tuning of the second order correction
based on ε is different from what one observes for the full information problem [14] or for bandits
[15]. The second order corrections represent a further penalty on arms which are deviating from their
respective messages, and these corrections are what enable us to furnish best arm dependent bounds.
As usual, the arm we play is still sampled from the distribution xt given by equation (1).

Challenges & Our Choice of Regularization The inverse propensity weighted loss estimators
for label efficient prediction have fixed probabilities of ε in the denominator, unlike in bandits where
the xt,i in the denominator can be arbitrarily small. Consequently, one may be led to believe that the
standard negative entropic regularizer, as is typically used for full information [14], will suffice for
the more general but related label efficient prediction. However, maintaining the |η ˜̀

t| ≤ 1 inequality
which is standard in analyses similar to Exp3 imposes a strict bound of η ≤ ε. Since the low quadratic
variation, on the other hand, would encourage one to set an aggressive learning rate η, this makes
the applicability of the algorithm rather limited, and even then, with marginal gain. Put crisply, it

1. ‘Optimistic’ is used to denote the fact that we would be best off if these estimates were exactly the upcoming loss.
Indeed, if mt were `t, it would be equivalent to 1-step lookahead, known to yield low regret.
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is desirable that low quadratic variation should lead an algorithm to choose an aggressive learning
rate, and negative entropy fails to maintain a ‘stability’ property (in the sense of Lemma 7), key in
obtaining OMD regret bounds, in such situations. The log-barrier regularizer, used by [15] for bandit
feedback certainly guarantees this, however using log-barrier blindly translates to a

√
K dependence

on the number of arms K.
These challenges places label efficient prediction with slowly varying losses in a unique position,

as one requires enough curvature to ensure stability, yet not let this added curvature significantly
hinder exploration. Our solution is to use a hybrid regularizer, that is, a weighted sum of the negative
entropic regularizer and the log-barrier regularizer: R = 1/η

∑K
i=1 xi log xi − 1/ηK

∑K
i=1 log xi .

This regularizer has been of recent interest due to the work of [4], and [3], but the weights chosen for
both components is highly application-specific and tends to reflect the nature of the problem. As
reported above, we only require the log-barrier to guarantee stability, and therefore associate a small
(roughly 1/Kη) weight to it and a dominant mass of 1/η to negative entropy. This fact is revealed in
the analysis where we use the log-barrier component solely to satisfy Lemmas 6 and 7, following
which it is essentially dispensed. The additional 1/K factor part of the log-barrier weight is carefully
chosen to exactly cancel the K in the leading K log T term generated by the log-barrier component,
and consequently, not have a

√
K dependence on the number of arms in the final regret bound.

Reservoir Sampling When considering quadratic variation as a measure of adaptivity, a natural
message to pass is the mean of the previous loss history, that is mt = µt−1 = 1/t−1

∑t−1
s=1 `s. How-

ever, the constraint on information prohibits us from having the full history, and we therefore have to
settle for some estimate of the mean. Reservoir sampling, first used in [12], solves this very problem.
Specifically, by allocating roughly k(1 + log T ) rounds for reservoir sampling (where we choose k
to be log T ), reservoir sampling gives us estimates µ̃t such that E[µ̃t] = µt, and Var[µ̃t] = Q/kt.

Algorithm 1 ADAPTIVE LABEL EFFICIENT PREDICTION

Input: R = 1/η
∑K

i=1 xi log xi − 1/ηK
∑K

i=1 log xi , η , ε
Initialize: x′1 = argminx∈ΩR(x)
for t = 1, 2, . . . , T do

dt ∼ Bern(ε)
xt = argminx∈Ω {〈x, εmt〉+DR(x, x′t)}
Play it ∼ xt, and if dt = 1, observe `t
Construct ˜̀

t = (`t−mt)
ε 1{dt=1} +mt

Let at = 6ηε2(˜̀
t −mt)

2

Update: x′t+1 = argminx∈Ω

{〈
x, ε˜̀t + at

〉
+DR(x, x′t)

}
end

Algorithm 1 builds upon the ideas presented above and as stated, is specifically for the label
efficient prediction problem discussed thus far. The algorithm for label efficient bandits discussed in
subsection 3.1 is based on Algorithm 1, although with a few minor differences which we specify
later. Note that throughout the paper, the random variable dt = 1 signifies that we ask for feedback at
time t, and is 0 otherwise. Also, in the interest of brevity, we have excluded the explicit mentioning
of the reservoir sampling steps. Additionally, note that we consider not exceeding the budget of n in
expectation, however, there is a standard reduction to get a high probability guarantee which can be
found in [5].
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3. Results and Analysis

We now give a general regret result for the OMD updates (1) and (2). The proofs for all results in
this section appear in the supplementary material.

Lemma 1 For the update rules (1) and (2), if:

〈xt − x′t+1, ε(
˜̀
t −mt) + at〉 − 〈xt, at〉 ≤ 0 (3)

then, for all u ∈ Ω, we have:

〈xt − u, ˜̀
t〉 ≤ 1/ε

(
DR(u, x′t)−DR(u, x′t+1) + 〈u, at〉 − Pt

)
, (4)

where Pt , DR(x′t+1, xt) +DR(xt, x
′
t) ≥ 0

When at = 0 is employed in the updates (1) and (2), i.e., no second order corrections, the first
term in (3) can directly be handled using Hölder’s inequality (in some norm where R is strongly
convex). Doing so allows us to cancel the unwanted ‖xt − x′t+1‖2 term using the DR(x′t+1, xt)
term in Pt (which follows by strong convexity) while retaining the crucial ‖(˜̀

t −mt)‖2 variance
term. However, with general second order corrections (at ≥ 0), the key variance term is 〈u, at〉 as it
corresponds to the best arm’s second moment under a suitably chosen u and the responsibility of
cancelling the entire first term of (3) now falls upon 〈xt, at〉. Under limited information, negative
entropy is unable to maintain this and we therefore have to incorporate the log barrier function (see
also [15]).

Theorem 2 For at = 6ηε2(˜̀
t −mt)

2, ˜̀
t = (`t−mt)

ε 1{dt=1} +mt, ε = n/T and η ≤ 1/162K where
the sequence of messages mt are generated using the reservoir sampling scheme, the expected regret
of Algorithm 1 satisfies E [RT ] ≤ logK+log T

εη + 18ηQ∗ . Furthermore, if εQ∗ ≥ 1458K2 logKT ,
then E [RT ] = O

(√
(Q∗T logK)/n

)
with an optimal choice of η.

Consider a concrete example of a game played for time T , where we anticipate Q∗ ≈
√
T and

n ≈
√
T . In this scenario, if we were to run the standard label efficient prediction algorithm [6]

which attains O(
√

(T 2 logK)/n) regret, we would get a regret bound of O
(
T 3/4

)
; following an FTRL

with negative entropy2-based strategy would be inapplicable in this setting due to the constraint
we highlight in section 2, however, Algorithm 1 would incur

√
T regret – a marked improvement.

Also note that because of the full vector feedback, we don’t incur any additive penalty for reservoir
sampling as we don’t have to allocate any rounds exclusively for it.

Unconditional & Parameter-Free Algorithms Theorem 2 is slightly restricted in scope, due to
the lower bound required on εQ∗, in its ability to attain the optimal regret scaling with quadratic
variation. It also assumes prior knowledge of T , Q and Q∗ when optimising for the fixed step size η.
We address both of these questions and note that optimistic OMD without second order corrections–
an algorithm defined by updates (1) and (2) with at = 0 obtains O(

√
(QT logK)/n) regret under all

scenarios. The trade-off however being that we are now penalized by Q instead of Q∗. With at = 0,
we are also able to yield a parameter-free version of the algorithm. We discuss both of these in
subsection A.1 of the supplementary material.

2. As done in [14] for prediction with experts
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3.1. Label Efficient Bandits

Instead of receiving the full loss vector, the learner now only receives the loss of the played arm it, i.e.
the itth coordinate of `t. We continue here with updates (1) and (2) but withR = 1/η

∑K
i=1 log 1/xi,

and appropriately defined loss estimators and second order corrections. Also note that due to bandit
feedback, we now have to reserve certain rounds solely for reservoir sampling. This is reflected in the
additive K(log T )2 term in the bound below. The proof for Theorem 3 can be found in Appendix B.

Theorem 3 For at,i = 6ηε2xt,i(˜̀
t−mt)

2, ˜̀
t = `t−mt

εxt,i
1{dt=1,it=i}+mt,i, ε = n/T and η ≤ 1/162K

where the sequence of messages mt are given by reservoir sampling, the regret of Algorithm 1
modified for label efficient bandits satisfies E [RT ] ≤ K log T/εη + 18ηQ∗ +K(log T )2 .

4. Lower Bounds

By capturing both the constraint on information as well as the quadratic variation of the loss sequence,
our lower bounds for label efficient prediction and label efficient bandits generalize and improve
upon existing lower bounds. We extend the lower bounds for label efficient prediction to further
incorporate the quadratic variation of the loss sequence and enhance the quadratic variation dependent
lower bounds for multi-armed bandits to also include the constraint on information by bringing in the
number of labels the learner can observe (n). The proofs for this section can be found in Appendix C.

Recall the quadratic variation for a given loss sequence: Q =
∑T

t=1 ‖`t − µT ‖
2
2 ≤ TK/4. Now,

for α ∈ [0, 1/4] define an α-variation ball as: Vα , {{`t}Tt=1 : Q/TK ≤ α}. Theorems 4 and
5, after incorporating Q ≤ αTK give us lower bounds of Ω(

√
(QT log(K−1))/Kn) and Ω(

√
QT/n)

respectively. Our corresponding upper bounds areO(
√

(QT logK)/n) andO(
√
QTK/n) .3 Comparing

the two tells us that our strategies are optimal in their dependence on Q and on the constraint in
information indicated by n. There is however a gap of

√
K . This gap was mentioned in [9] for the

specific case of the multi-armed bandit problem, and was closed recently in [3]. Barring the easy
to see

√
(Q logK)/K lower bound for prediction with expert advice (which is also what Theorem 4

translates to for n = T ), we are unaware of other fundamental Q based lower bounds for prediction
with expert advice. The upper bounds for prediction with expert advice however are ofO(

√
Q logK)

([11], [14] etc.), and this again suggests the
√
K gap. Closing this for prediction with expert advice,

label efficient prediction and for label efficient bandits remains open, as does the question of finding
Q∗ dependent lower bounds.

Theorem 4 LetK ≥ 2, T ≥ n ≥ max{32 log(K−1), 256 log T} andα ∈
[

max
{32 log T

n , 8 log(K−1)
n

}
, 1

4

]
.

Then, for any randomized strategy for the label efficient prediction problem, max{`t}∈vα E[RT ] ≥
0.36T

√
(α log(K−1))/n where expectation is taken with respect to the internal randomization available

to the algorithm.

Theorem 5 Let K ≥ 2, T ≥ n ≥ max{32K, 384 log T} and α ∈
[
max {2c log T/n, 8K/n} , 1

4

]
with c = (4/9)2(3

√
5 + 1)2 ≤ 12. Then, for any randomized strategy for the label efficient bandit

problem, max{`t}∈vα E[RT ] ≥ 0.04T
√
αK/n where expectation is taken with respect to the internal

randomization available to the algorithm.

3. We upper bound all of our Q∗ dependent upper bounds by Q so as to consistently compare with the lower bounds.
Note that Q∗ and Q are in general incomparable and all that be said is that Q∗ ≤ Q.
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Appendix A. Label Efficient Prediction Main Proofs

We will now prove Lemma 1 and Theorem 2. Following this, we will discuss the unconditional
algorithm for label efficient prediction mentioned in the main text.

Proof of Lemma 1 Let Ω be a convex compact set in RK , R be a convex function on Ω, x′ be an
arbitrary point in Ω, c be any point in RK , and x∗ = argminx∈Ω{〈x, c〉 + DR(x, x′)}. Then, for
any u ∈ Ω, we have (see for example [1]) :

〈x∗ − u, c〉 ≤ DR(u, x′)−DR(u, x∗)−DR(x∗, x′)

Applying this on our update rules (1) and (2) gives us:

〈xt − x′t+1, εmt〉 ≤ DR(x′t+1, x
′
t)−DR(x′t+1, xt)−DR(xt, x

′
t). (5)

and

〈x′t+1 − u, ε˜̀t + at〉 ≤ DR(u, x′t)−DR(u, x′t+1)−DR(x′t+1, x
′
t); (6)

where we chose u = x′t+1 when applying it to update rule (1). Now observe that:

〈xt − u, ε˜̀t〉
= 〈xt − u, ε˜̀t + at〉 − 〈xt, at〉+ 〈u, at〉
= 〈xt − x′t+1, ε

˜̀
t + at〉 − 〈xt, at〉+ 〈x′t+1 − u, ε˜̀t + at〉+ 〈u, at〉

= 〈xt − x′t+1, ε
˜̀
t + at − εmt〉 − 〈xt, at〉+ 〈x′t+1 − u, ε˜̀t + at〉+ 〈xt − x′t+1, εmt〉+ 〈u, at〉

(7)

Combining the above inequalities with equation (3) gives us

〈xt − u, ˜̀
t〉 ≤

1

ε

(
DR(u, x′t)−DR(u, x′t+1) + 〈u, at〉 − Pt

)
, (8)

where Pt , DR(x′t+1, xt) +DR(xt, x
′
t) ≥ 0 (by non-negativity of Bregman divergence).

We will now proceed to prove a series of lemmas which will build towards the proof of Theorem
2. For any point u ∈ RK , we define the local norm at x with respect toR as ‖u‖x =

√
u>∇2R(x)u

and the corresponding dual norm as ‖u‖x,∗ =
√
u>∇−2R(x)u.

Lemma 6 For some radius r > 0, define the ellipsoid Ex(r) =
{
u ∈ RK : ‖u− x‖x ≤ r

}
. If

x′ ∈ Ex(1), η ≤ 1
81K , then, for all i ∈ [K], we have x′i

xi
≤ 10/9. Additionally, ‖u‖x′ ≥

9
10 ‖u‖x for

all u ∈ RK .

7



ON ADAPTIVITY IN INFORMATION-CONSTRAINED ONLINE LEARNING

Proof of Lemma 6 As x′ ∈ Ex(1), we can say that
∑K

i=1
1
η (x′i−xi)2

(
1
xi

+ 1
Kx2i

)
≤ 1 which further

implies
∑K

i=1
1
ηK

(x′i−xi)2
x2i

≤ 1. Hence, we have |x
′
i−xi|
xi

≤
√
ηK ∀i. Now, since η ≤ 1

81K , the

first part of the lemma follows. Further observe ‖u‖x′ =

√
1
η

∑K
i=1 u

2
i

(
1
x′i

+ 1
Kx′2i

)
≥ 1

10/9 ‖u‖x =

9
10 ‖u‖x .

Lemma 7 Let xt and x′t correspond to our update rules (1) and (2) and suppose η ≤ 1
81K . Then, if∥∥∥ε(˜̀

t −mt) + at

∥∥∥
xt,∗
≤ 1

3 , we have x′ ∈ Ex(1).

Proof of Lemma 7 Let us rewrite our update rules (1) and (2) in the following way:

xt = argmin
x∈Ω

Ft(x) where Ft(x) =
{
〈x, εmt〉+DR(x, x′t)

}
x′t+1 = argmin

x∈Ω
F ′t+1(x) where F ′t+1(x) =

{
〈x, ε˜̀t + at〉+DR(x, x′t)

}
Because of the convexity of F ′t , to prove our claim, it is sufficient to show that F ′t+1(u) ≥

F ′t+1(xt) for all points u on the boundary of the ellipsoid. By Taylor’s theorem, we know that ∃ ξ on
the line segment between u and xt such that:

F ′t+1(u) = F ′t+1(xt) + 〈∇F ′t+1(xt), u− xt〉+
1

2
(u− xt)>∇2F ′t+1(ξ)(u− xt)

= F ′t+1(xt) + 〈ε(˜̀
t −mt) + at, u− xt〉+ 〈∇Ft(xt), u− xt〉

+
1

2
(u− xt)>∇2R(ξ)(u− xt)

≥ F ′t+1(xt) + 〈ε(˜̀
t −mt) + at, u− xt〉+

1

2
‖u− xt‖2ξ

≥ F ′t+1(xt) + 〈ε(˜̀
t −mt) + at, u− xt〉+

81

200
‖u− xt‖2xt

≥ F ′t+1(xt)−
∥∥∥ε(˜̀

t −mt) + at

∥∥∥
xt,∗
‖u− xt‖xt +

1

3
‖u− xt‖2xt

= F ′t+1(xt)−
∥∥∥ε(˜̀

t −mt) + at

∥∥∥
xt,∗

+
1

3
(as ‖u− xt‖xt = 1)

≥ F ′t+1(xt).

Where the first inequality follows from the optimality of xt, the second from Lemma (6), the third
from Hölder’s inequality, and the last by the assumption of this lemma.
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Lemma 8 Let xt and x′t be defined as in our update rules (1) and (2). Additionally, suppose η ≤
1

81K . Then, if
∥∥∥ε(˜̀

t −mt) + at

∥∥∥
xt,∗
≤ 1

3 , we have that
∥∥x′t+1 − xt

∥∥
xt
≤ 3

∥∥∥ε(˜̀
t −mt) + at

∥∥∥
xt,∗

.

Proof of Lemma 8 We will begin by defining Ft(x) and F ′t+1(x) as above. Then we have that:

F ′t+1(xt)− F ′t+1(x′t+1) = 〈xt − x′t+1, ε(
˜̀
t −mt) + at〉+ Ft(xt)− Ft(x′t+1)

≤ 〈xt − x′t+1, ε(
˜̀
t −mt) + at〉

≤
∥∥xt − x′t+1

∥∥
xt

∥∥∥ε(˜̀
t −mt) + at

∥∥∥
xt,∗

(9)

By Taylor’s theorem and the optimality of x′t+1, we again have that,

F ′t+1(xt)− F ′t+1(x′t+1) = 〈∇F ′t+1(x′t+1), xt − x′t+1〉+
1

2
(xt − x′t+1)>∇2F ′t+1(ξ)(xt − x′t+1)

≥ 1

2

∥∥xt − x′t+1

∥∥2

ξ

≥ 1

3

∥∥xt − x′t+1

∥∥2

xt
(10)

where the last inequality again follows using the same arguments as done in Lemma 7. Combining
(9) and (10) proves the claimed result.

Lemma 9 For at = 6ηε2(˜̀
t − mt)

2, ˜̀
t = (`t−mt)

ε 1{dt=1} + mt, η ≤ 1
162K we have that∥∥∥ε(˜̀

t −mt) + at

∥∥∥
xt,∗
≤ 1

3 .

Proof of Lemma 9∥∥∥ε(˜̀
t −mt) + at

∥∥∥2

xt,∗
=

K∑
i=1

η
1
xi

+ 1
Kx2i

(
ε(˜̀

t,i −mt,i) + 6ηε2(˜̀
t,i −mt,i)

2
)2

= η
K∑
i=1

ε2(˜̀
t,i −mt,i)

2

1
xi

+ 1
Kx2i

[
1 + 12ηε(˜̀

t,i −mt,i) + 36η2ε2(˜̀
t,i −mt,i)

2
]

≤ 2ηε2
K∑
i=1

(˜̀
t,i −mt,i)

2xi

≤ 2η

≤ 1

9

The above inequalities follow by observing that |ε(˜̀
t,i −mt,i)| = |(`t −mt)1{dt=1}| ≤ 1 along

with the assumption on η.

9
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Proof of Theorem 2 We will first show that our choices of loss vectors, messages, and corrections
obey the condition of Lemma 1. To this end, observe that:

〈xt − x′t+1, ε(
˜̀
t −mt) + at〉 ≤

∥∥xt − x′t+1

∥∥
xt

∥∥∥ε(˜̀
t −mt) + at

∥∥∥
xt,∗

≤ 3
∥∥∥ε(˜̀

t −mt) + at

∥∥∥2

xt,∗

≤ 3η
K∑
i=1

ε2(˜̀
t −mt)

2

1
xi

+ 1
Kx2i

[
1 + 12ηε(˜̀

t −mt) + 36η2ε2(˜̀
t −mt)

2
]

≤ 6ηε2
K∑
i=1

xt,i(˜̀
t,i −mt,i)

2 = 〈xt, at〉

where the first inequality follows from Hölder’s inequality, the second from Lemma (8), and the
last 2 are as done in the proof of Lemma 9.

We can therefore proceed to sum both sides of the result of Lemma 1 over t to get:

E

[
T∑
t=1

〈xt − u, ˜̀
t〉

]
≤ 1

ε

T∑
t=1

E
[(
DR(u, x′t)−DR(u, x′t+1) + 〈u, at〉

)]
Now we can see that the first 2 terms on the right hand side will telescope to yield a remaining term
of DR(u, x′1). We will pick u = (1− 1

T )ei∗ + 1
KT 1 instead of simply ei∗ so as to ensure that the

log barrier component is well defined. Hence we will have:

E

[
T∑
t=1

〈xt − u, ˜̀
t〉

]
≤ 1

ε

(
DR(u, x′1) + E

[
T∑
t=1

〈u, at〉

])
(11)

DR(u, x′1) = R(u)−R(x′1)− 〈∇R(x′1), u− x′1〉

= R(u)−R(x′1) ≤ log T

η
+

logK

η
=

logK + log T

η

This choice of u will also introduce an additional term in regret of E 1
T

∑T
t=1〈x′1 − ei∗ , ˜̀

t + at〉, but
as can be seen in [15], this term is O(1) .

E

[
T∑
t=1

〈u, at〉

]
= 6ηε2E

[
T∑
t=1

(`t,i∗ −mt,i∗)
2

ε2
1{dt=1}

]
(12)

≤ 18ηε

[
T∑
t=1

(`t,i∗ − µt,i∗)2 +

T∑
t=1

(µt,i∗ − µt−1,i∗)
2 + E

[
T∑
t=1

(µt−1,i∗ − µ̃t−1,i∗)
2

]]
(13)

10
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The first and third terms of (13) can be bounded using Lemmas 10 and 11 from [12] and are order
O(QT,i∗ + 1). The middle term above is O(1) from Lemma 18 in [15]. Therefore, substituting
everything back into (11), we have that:

E [RT ] ≤ logK + log T

εη
+ 18ηQ∗ (14)

A.1. Unconditional and Parameter-Free Algorithms

The updates we consider for OMD without second order corrections, as mentioned briefly in the
main text are the following:

xt = argmin
x∈Ω

{〈x, εmt〉+DR(x, x′t)} (15)

x′t+1 = argmin
x∈Ω

{〈x, ε˜̀t〉+DR(x, x′t)} (16)

With at = 0, the ε term can be folded into the regularizer and the updates reduce to the ones studied
in [13].

For updates (15) and (16), we have the following analogue of Lemma 1, and then consequently,
the analogue of Theorem 2. We include these here in the interest of completeness, but equivalent
statements can be found in [13].

Lemma 10 For any u ∈ Ω, updates (15) and (16) guarantee that:

〈xt − u, ˜̀
t〉 ≤

1

ε

(
DR(u, x′t)−DR(u, x′t+1)

+ 〈xt − x′t+1, ε
˜̀
t − εmt〉 −DR(x′t+1, xt)−DR(xt, x

′
t)

)
.

Proof of Lemma 10 We will proceed similarly to the proof of Lemma 2 and rewrite (7) with at = 0
:

〈xt − u, ε˜̀t〉 = 〈xt − x′t+1, ε
˜̀
t − εmt〉+ 〈x′t+1 − u, ε˜̀t〉+ 〈xt − x′t+1, εmt〉

We will again use the inequalities (5) and (6) (with at = 0) to get:

〈xt − u, ε˜̀t〉 ≤ 〈xt − x′t+1, ε
˜̀
t − εmt〉+DR(u, x′t)−DR(u, x′t+1)−DR(x′t+1, xt)−DR(xt, x

′
t)

which proves the lemma after rearranging the ε.

Theorem 11 ForR = 1
η

∑K
i=1 xi log xi, ˜̀

t = (`t−mt)
ε 1{dt=1}+mt, ε = n/T and η > 0, where the

sequence of messages are generated using the reservoir sampling scheme, Algorithm 1 with at = 0
yields:

E[RT ] ≤ logK

ηε
+
ηQ

2
.

Optimally tuning η yields a O
(√

QT logK/n
)

bound.

11
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Proof of Theorem 11

ε〈xt − u, ˜̀
t〉 ≤ DR(u, x′t)−DR(u, x′t+1) + 〈xt − x′t+1, ε

˜̀
t − εmt〉 −DR(x′t+1, xt)−DR(xt, x

′
t)

≤ DR(u, x′t)−DR(u, x′t+1) +
1

2η
‖xt − x′t+1‖22 +

η

2
‖ε˜̀t − εmt‖22 −DR(x′t+1, xt)

≤ DR(u, x′t)−DR(u, x′t+1) +
ηε2

2
‖˜̀t −mt‖22

where the first inequality follows from Lemma 10, the second one follows from Hölder’s inequality
and the non-negativity of the Bregman divergence, and the final one from the strong convexity of
negative entropy in the `2 norm. We therefore have that 〈xt − u, ˜̀

t〉 ≤ 1
ε

(
DR(u, x′t)−DR(u, x′t+1)+

ηε2

2 ‖˜̀t −mt‖22
)

. Now summing both sides over t will yield:

T∑
t=1

〈xt − u, ˜̀
t〉 ≤

DR(u, x′1)

ε
+
ηε

2

T∑
t=1

‖˜̀t −mt‖22 (17)

≤ logK

ηε
+
ηε

2

T∑
t=1

K∑
i=1

(˜̀
t,i −mt,i)

2 (18)

Now, substituting the stated estimators, unravelling the right hand side similar to the analysis of (13)
and taking expectation will yield the logK

ηε + ηQ
2 upper bound.

Parameter-Free Algorithms Algorithm 1 along with the discussion above assumes knowledge
of T , Q and Q∗ when optimising for the fixed step size η. This is often not possible and we now
discuss the extent to which we can obtain parameter-free algorithms. We claim that we can choose η
adaptively for the Q dependent bound presented in Theorem 11, and show this in Theorem 124. It
remains open whether aQ∗ dependent bound (or in general, any non-monotone dependent bound) can
be made parameter free for even the standard prediction with expert advice problem. The challenge
is essentially that our primary tool to sidestep prior knowledge of a parameter– the doubling trick is
inapplicable for non-monotone quantities.

Even freeing algorithms from prior knowledge of non-decreasing arm dependent quantities, such
as maxiQi remains open for limited information setups (i.e. anything outside prediction with expert
advice) due to the lack of a clear auxiliary term one can observe.

In Algorithm 2, we proceed in epochs (or rounds) such that η remains fixed per epoch. Denote
by ηα the value of η in epoch α. We write Tα to be the first time instance in epoch α.

4. Note that similarly to [12] we still assume knowledge of T , but this can be circumvented using standard tricks.

12
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Algorithm 2 PARAMETER FREE ADAPTIVE LABEL EFFICIENT PREDICTION

Initialize: η =
√

2 logK
ε , T1 = 1, t = 1.

for α = 1, 2, . . . do
x′t = argminx∈ΩR(x)
while t ≤ T do

Draw dt ∼ Bern(ε), update xt according to (15)
Play it ∼ xt and if dt = 1, observe `t
Update x′t+1 according to (16)
if
∑t

s=Tα

∑K
i=1(˜̀

s,i −ms,i)
2 ≥ 2 logK

ε2η2α−1
then

η ← η/2, Tα+1 ← t, t← t+ 1
break

end
t← t+ 1

end
end

Theorem 12 For the conditions mentioned in Theorem 11, Algorithm 2 (a parameter free algorithm)
achieves:

E[RT ] ≤ O
(√

(QT logK)/n +
√

logK
)
.

Proof of Theorem 12 We start from (18) and get the following for some epoch α:

Tα+1−1∑
t=Tα

〈xt − u, ˜̀
t〉 ≤

1

ε

[
logK

ηα
+
ηαε

2

2

T∑
t=1

K∑
i=1

(˜̀
t,i −mt,i)

2

]

= O
(

logK

εηα

)
We can consequently write:

T∑
t=1

〈xt − u, ˜̀
t〉 ≤

α∗∑
α=0

O
(

logK

εηα

)
≤ O

(
2α
∗√

logK
)

where α∗ is the epoch at T . Now we also know that epoch α∗ − 1 has completed, hence:

Tα∗−1∑
t=Tα∗−1

K∑
i=1

(˜̀
t,i −mt,i)

2 ≥ 2 logK

ε2η2
α∗−1

= Ω
(

22α∗
)

So, we can write the entire bound as

T∑
t=1

〈xt − u, ˜̀
t〉 ≤ O

(
2α
∗√

logK
)
≤ O


√√√√√logK

Tα∗∑
t=Tα∗−1

K∑
i=1

(˜̀
t,i −mt,i)2


13
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≤ O


√√√√logK

T∑
t=1

K∑
i=1

(˜̀
t,i −mt,i)2


Also consider the case when α∗ = 0, where

∑T
t=1〈xt − u, ˜̀

t〉 ≤
√

logK . Combining the above
2 cases, we get:

T∑
t=1

〈xt − u, ˜̀
t〉 ≤ O


√√√√logK

T∑
t=1

K∑
i=1

(˜̀
t,i −mt,i)2 +

√
logK


Taking expectation and using Jensen’s inequality gives us:

E[RT ] ≤ O


√√√√logK E

T∑
t=1

K∑
i=1

(˜̀
t,i −mt,i)2 +

√
logK


We can now plug in the usual ˜̀

t,i =
(`t,i−mt,i)

ε 1{dt=1}+mt,i, and choose messages corresponding
to the quadratic variation based bound (i.e. mt = µ̃t via reservoir sampling) to give us:

E[RT ] ≤ O
(√

(QT logK)/n +
√

logK
)

Note that once again, taking expectation for the above estimates and messages will have to be
done carefully similarly to as it is done for (13).

Appendix B. Label Efficient Bandits

The sequence of lemmas for proving Theorem 5 will be very similar as that done above for Theorem
2. As mentioned in the main text, the key difference in the label efficient bandit setting is that we
will have just the log barrier regularizer (instead of the hybrid regularizer). Additionally, our second
order corrections are also at = 6ηε2xt(˜̀

t −mt)
2. Lemmas 6, 7, and 8 follow almost identically. We

provide the analogue to Lemma 9 below and then prove Theorem 3.

Lemma 13 For at = 6ηε2xt,i(˜̀
t,i −mt,i)

2, ˜̀
t,i =

(`t,i−mt,i)
εxt,i

1{dt=1,it=i} + mt,i, η ≤ 1
162K we

have that
∥∥∥ε(˜̀

t −mt) + at

∥∥∥
xt,∗
≤ 1

3 .

Proof of Lemma 13∥∥∥ε(˜̀
t −mt) + at

∥∥∥2

xt,∗
=

K∑
i=1

ηx2
i

(
ε(˜̀

t,i −mt,i) + 6ηε2xi(˜̀
t,i −mt,i)

2
)2

= η
K∑
i=1

x2
i ε

2(˜̀
t,i −mt,i)

2×[
1 + 12ηεxi(˜̀

t,i −mt,i) + 36η2ε2x2
i (

˜̀
t,i −mt,i)

2
]

14
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≤ 2ηε2
K∑
i=1

(˜̀
t,i −mt,i)

2x2
i

≤ 2η

≤ 1

9

The above inequalities again follow by observing that |εxt,i(˜̀
t,i−mt,i)| = |(`t−mt)1{dt=1,it=1}| ≤

1 along with the assumption on η.

Proof of Theorem 3 As before, we will again show that our choices of loss estimates, messages, and
corrections guarantee Lemma 1.

〈xt − x′t+1, ε(
˜̀
t −mt) + at〉 ≤

∥∥xt − x′t+1

∥∥
xt

∥∥∥ε(˜̀
t −mt) + at

∥∥∥
xt,∗

≤ 3
∥∥∥ε(˜̀

t −mt) + at

∥∥∥2

xt,∗

≤ 3η
K∑
i=1

ε2(˜̀
t,i −mt,i)

2x2
i×[

1 + 12ηεxi(˜̀
t,i −mt,i) + 36η2ε2x2

i (
˜̀
t,i −mt,i)

2
]

≤ 6ηε2
K∑
i=1

x2
t,i(

˜̀
t,i −mt,i)

2 = 〈xt, at〉

Therefore we can again proceed to take summation over t on both sides of the result of Lemma 1.

E

[
T∑
t=1

〈xt − u, ˜̀
t〉

]
≤ 1

ε

T∑
t=1

E
[(
DR(u, x′t)−DR(u, x′t+1) + 〈u, at〉

)]
The first 2 terms on the right hand side will again telescope to yield a remaining DR(u, x′1), therefore
giving us:

E

[
T∑
t=1

〈xt − u, ˜̀
t〉

]
≤ 1

ε

(
DR(u, x′1) + E

[
T∑
t=1

〈u, at〉

])

DR(u, x′1) = R(u)−R(x′1)− 〈∇R(x′1), u− x′1〉

= R(u)−R(x′1) ≤ K log T

η

Note that this time, we will not have the cancellation of K as we did for Theorem 2. We will pick
u = (1 − 1

T )ei∗ + 1
KT 1 as before. The rest of the proof will follow similarly to Theorem 2 to

ultimately give us:

E

[
T∑
t=1

〈xt − u, ˜̀
t〉

]
= O

(
K log T

εη
+ 18ηQ∗ +K(log T )2

)
(19)

15
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Also note that now, we will have an added reservoir sampling cost in the final regret bound which is
the K(log T )2 term.

Appendix C. Lower Bound Proofs

Our bounds will be proven in a 2-step manner similar to that in [9]. The main feature of step 1 (the
Lemma step) is that of centering the Bernoulli random variables around a parameter α instead of
1/2, which leads the regret bound to involve the α(1− α) term corresponding to the variance of the
Bernoulli distribution. Step 2 (the Theorem step) builds upon step 1 and shows the existence of a loss
sequence belonging to an α-variation ball (Vα , {{`t}Tt=1 : Q/TK ≤ α} for α ∈ [0, 1/4]) which
also incurs regret of the same order. Theorem 4 follows Lemma 14 while Theorem 5 follows Lemma
15.

Lemma 14 Let α ∈ (0, 1), K ≥ 2, T ≥ n ≥ c2 log(K−1)
1−α . Then, for any randomized strat-

egy for the label efficient prediction problem, there exists a loss sequence under which E[RT ] ≥
cT

√
α(1−α) log(K−1)

n for c =
√
e/
√

5(1+e) where expectation is taken with respect to the internalran-
domization available to the algorithm and the random loss sequence.

Lemma 15 Let α ∈ (0, 1), K ≥ 2, T ≥ n ≥ K/(4(1−α)). Then, for any randomized strategy for
the label efficient bandit problem, there exists a loss sequence under which E[RT ] ≥ T

8

√
α(1− α)K/n

where expectation is taken with respect to the internal randomization available to the algorithm and
the random loss sequence.

Proof of Lemma 14 Our proof for this lemma closely follows the proof of [6] with a few changes:

• Our Bernoulli random variables are centred at α instead of at 1/2.

• We define our random variables a little differently to make the calculations easier. Namely, Z∗

is a Bernoull(α) random variable instead of Bernoulli (α− ε) as is done in [6] (for α = 1/2)
and Zj is Bernoulli (α+ ε) instead of Bernoulli (α) (again for α = 1/2).

Given yt ∈ [0, 1], consider the first K coefficients of its unique dyadic expansion and denote these
as yt1, y

t
2, . . . , y

t
K . We will then define `t,i = yti for all i ∈ [K] = {1, 2, . . . ,K}. We will construct

a random outcome sequence Y1, . . . , YT , where each random variable is supported on [0, 1]. The
realizations of these random variables will then define an associated loss sequence as explained
above. We will show that the expected regret of any randomized algorithm is bounded below by
the claimed quantity, where we will take expectation with respect to the random outcome sequence
as well as the internal/auxiliary randomness available to the algorithm. Denote by A1, A2, . . . AT
the internal randomization available to the strategy (associated distribution is PA), which we will
take to be an i.i.d. sequence of uniform random variables supported on [0, 1]. Now define K(no. of
arms) joint distributions Pi ⊗ PA where P1, . . . ,PK are probability distributions over the outcome
sequence which we define below. For i ∈ [K], define by Qi the distribution of:

Z∗2−i +
∑

j=1,...,K, j 6=i
Zj2

−j + 2−(K+1)A

16
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A,Z∗, Z1, . . . ZK are all independent random variables. A is distributed uniformly over [0, 1], Z∗ is
a Bernoulli (α) random variable, and Zj is distributed Bernoulli (α+ ε) (we specify ε later). Now,
under Pi , the outcome sequence Y1, . . . , YT is i.i.d. from Qi . Hence, under Pi, for all j ∈ [K] and
t ∈ [T ], `t,j are i.i.d. Bernoulli random variables. `t,i is Bernoulli (α), and `t,j , for j 6= i is Bernoulli
(α+ ε). Denote the cumulative loss of the strategy by L̂T =

∑T
t=1 `t,it and the cumulative loss of

arm i by LT,i. Let Ei be the expectation with respect to Pi and EA the expectation with respect to
PA. We then have that:

max
{`s}Ts=1

(
EAL̂T − min

i∈[K]
LT,i

)
= max
{`s}Ts=1, i∈[K]

(
EAL̂T − LT,i

)
≥ max

i∈[K]
Ei
[
EAL̂T − LT,i

]
Using Lemma 16, we have that PA

[
it = i|{`s}t−1

s=1

]
=
∑D

d=1 βd1[idt=i|{`s}t−1
s=1]

where 1[idt=i|{`s}t−1
s=1]

is an indicator for the d-th deterministic algorithm choosing i. We therefore rewrite the regret as:

max
i∈[K]

Ei
[
EAL̂T − LT,i

]
= max

i∈[K]
Ei

[
T∑
t=1

D∑
d=1

βd

K∑
k=1

1[idt=i|{`s}t−1
s=1]

`t,k − LT,i

]

= max
i∈[K]

D∑
d=1

βdEi

[
T∑
t=1

K∑
k=1

1[idt=i|{`s}t−1
s=1]

`t,k − LT,i

]

= E max
i∈[K]

D∑
d=1

βd

T∑
t=1

Pi
[
idt 6= i

]
= ET

(
1− min

i∈[K]

D∑
d=1

T∑
t=1

βd
T
Pi
[
idt = i

])
where the third equality uses the fact that the regret grows by E under Pi whenever it 6= i. Now
for the d-th deterministic algorithm, let 1 ≤ T d1 ≤ · · · ≤ T dn ≤ T be the times when the strategy
asks for the n labels. Then T d1 , . . . , T

d
n correspond to the finite stopping times with respect to the

i.i.d. process Y1, . . . YT . Hence, the revealed outcomes YT d1 , . . . , YT dn are i.i.d. from Y1 (see [8]).
Denote by Rdt the number of revealed labels at time t. Now, as the sub-algorithms are deterministic,
Rdt is fully determined by YT d1 , . . . , YT dn . Hence, in general, idt can be thought to be a function of
YT d1

, . . . , YT dn instead of the revealed labels just till time t, which are YT d1 , . . . , YT dRdt
. As the joint

distribution of YT d1 , . . . , YT dn under Pi is Qn
i , we have that Pi[idt = i] = Qn

i [idt = i]. Hence the regret
becomes:

max
i∈[K]

Ei
[
EAL̂T − LT,i

]
= ET

(
1− min

i∈[K]

D∑
d=1

T∑
t=1

βd
T
Qi

[
idt = i

])

By the generalized Fano’s inequality, we know that mini∈[K]

∑D
d=1

∑T
t=1

βd
T Qi

[
idt = i

]
≤ max

{
e

1+e ,
S̄

log(K−1)

}
where S̄ = 1

K−1

∑K
i=2 KL(Qn

i ,Qn
1 ).

Now observe that:

KL(Qn
i ,Qn

1 ) = nKL(Qi,Q1)

17



ON ADAPTIVITY IN INFORMATION-CONSTRAINED ONLINE LEARNING

≤ n(KL(Bern(α),Bern(α+ E)) + KL(Bern (α+ E),Bern(α)))

≤ n
(
χ2(α, α+ ε) + χ2(α+ ε, α)

)
= n

(
ε2

(α+ ε)(1− α− ε)
+

ε2

α(1− α)

)
≤ 5nε2

α(1− α)

where we upper bound KL divergence by χ2 divergence and restrict ε to
[
0, 3(1−α)

4

]
(our proposed ε

below doesn’t exceed 3(1− α)/4 as n ≥ logK/(1− α)). Therefore, we have that

max
i∈[K]

Ei
[
EAL̂T − LT,i

]
≥ ET

(
1−max

{
e

1 + e
,

5nE2

log(K − 1)α(1− α)

})

Choosing ε =
√

eα(1−α) log(K−1)
5n(1+e) reveals the claimed bound.

Lemma 16 (Lemma 3 from [6]) For any randomized strategy, there exists D deterministic strategies
and a probability vector β = (β1, . . . , βD) such that for every t and every possible outcome sequence
{`s}t−1

s=1,

PA
[
it = i|{`s}t−1

s=1

]
=

D∑
d=1

βd1[idt=i|{`s}t−1
s=1]

Proof of Theorem 4 We will begin by applying Lemma 14 with α/2 and with the constant c = 0.36
(out of convenience) which is indeed lesser than the one we have proven the above lemma for. Note
that there is some j ∈ [K], for which

Ej [RT ] ≥ 0.36

√
α

2
(1− α

2
)T logK

T

n
≥ 0.09

√
7αT logK

T

n
(as α ≤ 1/4) (20)

We will now show that under Pj , the probability that Q ≥ αTK is less than 9
100T . Recall that

µT = 1
T

∑T
t=1 `t andQ =

∑T
t=1 ‖`t − µT ‖

2
2 =

∑K
i=1 vα,i where vα,i =

∑T
t=1(`t,i−µT,i)2. Noting

that `t,i ∈ {0, 1}, we have vα,i = TµT,i(1 − µT,i) ≤ TµT,i =
∑T

t=1 `t,i. Applying Bernstein’s
inequality (refer to Theorem 2.10 in [2] with b = 1, v = T (α/2)(1− α/2), c = b/3 = 1/3) along
with a union bound gives us that for all δ ∈ (0, 1), under Pj , with probability at least 1− δ, we have:

T∑
t=1

`t,i ≤ T
(α

2
+ ε
)

+

√
2T
(α

2
+ ε
)

log
K

δ
+

1

3
log

K

δ
. (21)

for all i ∈ {1, . . . ,K}. Now note that by definition of ε = 0.36
√

(α/2)(1− α/2) log(K − 1)/n
and by the assumption n ≥ 8 log(K − 1)/α,

α

2
+ ε =

α

2
+ 0.36

√
α

2

(
1− α

2

) log(K − 1)

n
≤ 0.59α

18
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Substituting this in (21) above, we get:

T∑
t=1

`t,i ≤ 0.59Tα+

√
2T (0.59α) log

K

δ
+

1

3
log

K

δ
(22)

Now we claim that Tα ≥ 16 log K
δ holds for δ = 9

100T . This follows from our assumptions that
α ≥ 32 log T

T and T ≥ 100
9 K . Substituting this back into (22), we can see that

∑T
t=1 `t,i ≤ Tα .

Hence, this gives us that Q ≤ αTK.

Now we will show that there exists a sequence of losses withQ ≤ αTK and E[RT ] ≥ 0.045
√

7αT logK T
n

where the expectation is taken with respect to the internal randomisation of the strategy. Suppose this

were not true, then we would have that 1{Q≤αTK}Ej [RT |{`t}Tt=1] ≤ 0.045
√

7αT logK T
n (since

Pj is independent of the internal randomisation). Then we would consequently have:

Ej [RT ] = Ej
[
RT1{Q≤αTK}

]
+ Ej

[
RT1{Q>αTK}

]
≤ 0.045

√
7αT logK

T

n
+ T · Pj(Q > αTK)

≤ 0.045

√
7αT logK

T

n
+ 0.09 < 0.09

√
7αT logK

T

n

which contradicts equation (20). Hence, E[RT ] ≥ 0.09
√

7αT logK T
n .

The main difference for label efficient bandits from standard bandit proofs is that now, the total
number of revealed labels (each label is now a single loss vector entry) cannot exceed n. Hence,
the
∑

i∈[K]Ni(t− 1) term which appears in the analysis is upper bounded by n (where Ni(t− 1)
denotes the pulls of arm i up till time t− 1).

Proof of Lemma 15 As mentioned, the key difference here from standard bandit lower bounds
is that

∑
i∈[K]Ni(t − 1) (the sum of all revealed labels till time t − 1) is upper bounded by n.

Barring this, the proof follows almost identically as that done in [9] but we mention it here for
completeness. Consider the following K probability distributions used to construct the stochastic
losses. For i ∈ [K], let Qi be a distributions such that under Qi, `t,i is drawn Bernoulli (α) for all
t ∈ {1, 2, . . . , T}, and `t,j is drawn Bernoulli (α+ ε) for all t ∈ {1, 2, . . . , T}, j ∈ [K], j 6= i (we
specify ε later). Additionally, let Q0 be the joint distribution under which all `t,i are i.i.d Bernoulli
(α + ε) random variables for t ∈ {1, 2, . . . , T} and i ∈ [K]. Also define Q̄ = 1

K

∑K
i=1 Qi, the

distribution our losses will finally be drawn from. As before, let Ei denote the expectation taken with
respect to Qi. Under (each) Qi we have the following:

Ei
[
L̂T − min

j∈[K]
LT,j

]
≥ Ei

[
L̂T

]
− min
j∈[K]

Ei[LT,j ] = Ei

[
T∑
t=1

`t,it

]
− min
j∈[K]

Ei

[
T∑
t=1

`t,j

]

=

T∑
t=1

Ei
[
α+ ε− ε1{it=i}

]
− Tα

19
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= Tε

(
1− 1

T

T∑
t=1

Qi(it = i)

)
, (23)

Now, we can further lower bound the above expression by appealing to Pinsker’s inequality which
tells us that Qi(it = i) ≤ Q0(it = i) + (KL(Qit

0 ,Q
it
i )/2)1/2 5 for all t ∈ {1, 2, . . . , T} and all

i ∈ [K]. We substitute this in (23), average over i ∈ [K] in order to bound the regret under Q̄, and
use the concavity of the square root to yield:

EQ̄

[
L̂T − min

j∈[K]
LT,j

]
≥ Tε

1− 1

K
−

√√√√ 1

2T

T∑
t=1

1

K

K∑
i=1

KL
(
Qit

0 ,Q
it
i

) (24)

Now we will upper bound the KL divergence terms:

KL
(
Qit

0 ,Q
it
i

)
≤ KL

(
Q(ht,it)

0 ,Q(ht,it)
i

)
= EQ0

[
Ni(t− 1)

]
KL
(
Bern(α+ ε),Bern(α)

)
≤ EQ0

[
Ni(t− 1)

] ε2

α(1− α)
,

where the first inequality follows from the Data Processing Inequality and second by upper bounding
the KL divergence by the χ2 divergence. ht denotes the history available at time t and Ni(t − 1)
refers to the number of pulls of arm i till time t− 1. We now average the above quantity over i ∈ [K]
and t ∈ {1, 2, . . . , T} to yield:

1

T

T∑
t=1

1

K

K∑
j=1

KL
(
Qit

0 ,Q
it
i

)
≤ 1

T

T∑
t=1

nε2

Kα(1− α)
≤ nε2

Kα(1− α)
.

The above equation incorporates the strict restriction on the revealed labels as
∑

i∈[K]Ni(t−1) is up-
per bounded by n. Plugging the above inequality into (24) and substituting ε = (1/2

√
2)
√
α(1− α)K/n

gives us the claimed bound.

Proof of Theorem 5 The proof follows almost identically as that of Theorem 4.

5. Qiti denotes the probability measure of it under Qi
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