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Abstract
We study the performance of stochastic gradient descent (SGD) on smooth and strongly-convex finite-sum
optimization problems. In contrast to the majority of existing theoretical works, which assume that indi-
vidual functions are sampled with replacement, we focus here on popular but poorly-understood heuristics,
which involve going over random permutations of the individual functions. This setting has been investi-
gated in several recent works, but the optimal error rates remains unclear. In this paper, we provide lower
bounds on the expected optimization error with these heuristics (using SGD with any constant step size),
which elucidate their advantages and disadvantages. In particular, we prove that after k passes over n in-
dividual functions, if the functions are re-shuffled after every pass, the best possible optimization error for
SGD is at least Ω

(
1/(nk)2 + 1/nk3

)
, which partially corresponds to recently derived upper bounds, and

we conjecture to be tight. Moreover, if the functions are only shuffled once, then the lower bound increases
to Ω(1/nk2). Since there are strictly smaller upper bounds for random reshuffling, this proves an inherent
performance gap between SGD with single shuffling and repeated shuffling. As a more minor contribution,
we also provide a non-asymptotic Ω(1/k2) lower bound (independent of n) for cyclic gradient descent,
where no random shuffling takes place.

1. Main

We consider variants of stochastic gradient descent (SGD) for solving unconstrained finite-sum problems of
the form

min
x∈X

F (x) =
1

n

n∑
i=1

fi(x) , (1)

where X is some Euclidean space Rd (or more generally some real Hilbert space), F is a strongly convex
function, and each individual function fi is smooth (with Lipschitz gradients) and Lipschitz on a bounded
domain. Such problems are extremely common in machine learning applications, which often boil down to
minimizing the average loss over n data points with respect to a class of predictors parameterized by a vector
x. When n is large, perhaps the most common approach to solve such problems is via stochastic gradient
descent, which initializes at some point in X and involves iterations of the form x′ := x− η∇fi(x) where
i ∈ {1, . . . , n}. The majority of existing theoretical works assume that each i is sampled independently
across iterations (also known as with-replacement sampling). For example, if it is chosen independently
and uniformly at random from {1, . . . , n}, then E[∇fi(x)|x] = ∇F (x), so the algorithm can be seen as a
noisy version of exact gradient descent on F (with iterations of the form x′ := x− η∇F (x)), which greatly
facilitates its analysis.

However, this straightforward sampling approach suffers from practical drawbacks, such as requir-
ing truly random data access and hence longer runtime. In practice, it is quite common to use without-
replacement sampling heuristics, which utilize the individual functions in some random or even determin-
istic order (see for example [1–4, 9, 13, 14]). Moreover, to get sufficiently high accuracy, it is common
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to perform several passes over the data, where each pass either uses the same order as the previous one, or
some new random order. The different algorithm variants we study in this paper are presented as Algorithms
1 to 4 below. We assume that all algorithms take as input the functions f1, . . . , fn, a step size parameter
η > 0 (which remains constant throughout the iterations), and an initialization point x0. The algorithms
then perform k passes (which we will also refer to as epochs) over the individual functions, but differ in
their sampling strategies:

• Algorithm 1 (SGD with random reshuffling) chooses a new permutation of the functions at the begin-
ning of every epoch, and processes the individual functions in that order.

• Algorithm 2 (SGD with single shuffling) uses the same random permutation for all k epochs.

• Algorithm 3 (Cyclic SGD) performs k passes over the individual functions, each in the same fixed
order (which we will assume without loss of generality to be the canonical order f1, . . . , fn)

In contrast, Algorithm 4 presents SGD using with-replacement sampling, where each iteration an individual
function is chosen uniformly and independently.

Algorithm 1 SGD with Random Reshuffling
x := x0

for t = 1, . . . , k do
Sample a permutation σ(1), . . . , σ(n) of
{1, . . . , n} uniformly at random
for j = 1, . . . , n do
x := x− η∇fσ(j)(x)

end for
xt := x

end for

Algorithm 2 SGD with Single Shuffling
x := x0

Sample a permutation σ(1), . . . , σ(n) of
{1, . . . , n} uniformly at random
for t = 1, . . . , k do

for j = 1, . . . , n do
x := x− η∇fσ(j)(x)

end for
xt := x

end for

Algorithm 3 Cyclic SGD
x := x0

for t = 1, . . . , k do
for j = 1, . . . , n do
x := x− η∇fj(x)

end for
xt := x

end for

Algorithm 4 SGD with Replacement
x := x0

for t = 1, . . . , k do
for j = 1, . . . , n do

Sample i ∈ {1, . . . , n} uniformly
x := x− η∇fi(x)

end for
xt := x

end for

These without-replacement sampling heuristics are often easier and faster to implement in practice.
In addition, when using random permutations, they often exhibit faster error decay than with-replacement
SGD. A common intuitive explanation for this phenomenon is that random permutations force the algo-
rithm to touch each individual function exactly once during each epoch, whereas with-replacement makes
the algorithm touch each function once only in expectation. However, theoretically analyzing these sam-
pling heuristics has proven to be very challenging, since the individual iterations are no longer statistically
independent.
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Random Reshuffling Single Shuffling Cyclic With Replacement

Upper 1/k2 [6] 1/k2 [5] 1/k2 [5] 1/nk

Bound 1/n (for k = 1) [15] 1/n (for k = 1) [15]

1/(nk)2 + 1/k3 [7]

1/nk2 [8]

Lower 1/n (for k = 1) [7] 1/nk2 1/k2 ([5], asymptotic) 1/nk

Bound 1/(nk)2 + 1/nk3 1/k2 (non-asymptotic)

Table 1: Upper and lower bounds on the expected optimization error E[F (xk) − infx F (x)] for constant-
step-size SGD with various sampling strategies, after k passes over n individual functions, in
terms of n, k. Boldface letters refer to new results in this paper. We note that the upper bound
of [7] additionally requires that the Hessian of each fi is Lipschitz, and the upper bounds of [7]
and [8] require k to be larger than a problem-dependent parameter (depending for example on the
condition number). Also, the upper bound of [15] requires functions which are generalized linear
functions. Our lower bounds apply under all such assumptions, and for any value of n, k. Finally,
we note that the upper bound of [8] is actually not on the optimization error for xk, but rather on
a certain averaging of several iterates – see Remark 3 in the supplementary material for a further
discussion.
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In the past few years, some progress has been made in this front, and we summarize the known results on
the expected optimization error (or at least what these results imply1), as well as our new results, in Table 1.
First, we note that for SGD with replacement, classic results imply an optimization error of O(1/nk) after
nk stochastic iterations, and this is known to be tight (see for example [10]). For SGD with random reshuf-
fling, better bounds have been shown in recent years, generally implying that when the number of epochs
k is sufficiently large, such sampling schemes are better than with-replacement sampling, with optimization
error decaying quadratically rather than linearly in k. However, the optimal dependencies on n, k and other
problem-dependent parameters remain unclear (HaoChen and Sra [7] point out that for k = 1, one cannot
hope to achieve worst-case error smaller thanO(1/n), but for k > 1 not much is known). Some other recent
theoretical works on SGD with random reshuffling (but under somewhat different settings) include [13, 16].
For cyclic SGD, an O(1/k2) upper bound was shown in [5], as well as a matching asymptotic lower bound
in terms of k. For SGD with single shuffling, we are actually not aware of a rigorous theoretical analysis.
Thus, we only have the upper bound trivially implied by the analysis for cyclic SGD, and for k = 1, the
upper bound implied by the analysis for random reshuffling (since in that case there is no distinction be-
tween single shuffling and random reshuffling). Indeed, for single shuffling, even different epochs are not
statistically independent, which makes the analysis particularly challenging.

In this paper, we provide lower bounds on the expected optimization error of SGD with these sampling
heuristics, which complement the existing upper bounds and provide further insights on the advantages and
disadvantages of each. We focus on constant-step size SGD, as it simplifies our analysis, and existing upper
bounds in the literature are derived in the same setting. Before we present our contributions, we first specify
the assumptions we use.

We consider finite-sum optimization problems as in Eq. (1), and our lower bound constructions satisfy
the following rather specific conditions for some given positive parametersG,λ (recall that for lower bounds,
making the assumptions more stringent actually strengthens the result):

Assumption 1 F (x) is a quadratic finite-sum function of the form 1
n

∑n
i=1 fi(x) for some n > 1, which is

λ-strongly convex. Each fi is convex and quadratic, has λ-Lipschitz gradients, and moreover, isG-Lipschitz
for any x such that ‖x − x∗‖ ≤ 1 where x∗ = arg minF (x). Also, the algorithm is initialized at some x0

for which ‖x0 − x∗‖ ≤ 1.

We now turn to present our contributions. For SGD with random reshuffling (Algorithm 1), we prove the
following theorem:

Theorem 1 For any k ≥ 1, n > 1, and positive G,λ such that G ≥ 6λ, there exists a function F on R and
an initialization point x0 satisfying Assumption 1, such that for any step size η > 0,

E
[
F (xk)− inf

x
F (x)

]
≥ c ·min

{
λ ,

G2

λ

(
1

(nk)2
+

1

nk3

)}
,

where c > 0 is a universal constant.

For nk large, this implies a lower bound of Ω(1/(nk)2 + 1/nk3). We conjecture that it is tight, as it seems
to combine the “best” behaviors of existing upper bounds: It behaves as 1/n for a small constant number k
of passes (which is optimal as discussed above), interpolating to O(1/(nk)2) when k is large enough, and

1. For example, some of these papers focus on bounding E[‖xk−x∗‖2] where x∗ is the minimum of F (·), rather than the expected
optimization error E[F (xk)− F (x∗)]. However, for strongly convex and smooth functions, ‖xk − x∗‖2 and F (xk)− F (x∗)
are the same up to the strong convexity and smoothness parameters, see for example [11].
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contains a term decaying cubically with k. Moreover, the lower bound holds under more general conditions
than the upper bounds: For example, it holds for any n, k, and even if the function under consideration is
quadratic and on R.

For SGD with a single shuffling (Algorithm 2), we prove the following theorem:

Theorem 2 For any k ≥ 1, n > 1, and positive G,λ such that G ≥ 6λ, there exists a function F on R and
an initialization point x0 satisfying Assumption 1, such that for any step size η > 0,

E
[
F (xk)− inf

x
F (x)

]
≥ c ·min

{
λ ,

G2

λnk2

}
,

where c > 0 is a universal constant.

For nk large this implies a lower bound of Ω(1/nk2). Although we are not aware of an upper bound to
compare to, this lower bound already proves an inherent performance gap compared to random reshuffling:
Indeed, in the latter case there is an upper bound ofO(1/(nk)2+1/k3), which is smaller than the Ω(1/nk2)
lower bound for single shuffling when k is sufficiently large. This implies that the added computational effort
of repeatedly reshuffling the functions can provably pay off in terms of the convergence rate.

For cyclic SGD (Algorithm 3), we prove the following theorem:

Theorem 3 For any k ≥ 1, n > 1, and positive G,λ such that G ≥ 6λ, there exists a function F on R and
an initialization point x0 satisfying Assumption 1, such that if we run cyclic GD for k epochs with any step
size η > 0, then

F (xk)− inf
x
F (x) ≥ c ·min

{
λ ,

G2

λk2

}
where c > 0 is a universal constant.

For large k, this provides an Ω(1/k2) lower bound. We note that a similar bound (at least asymptotically and
for a certain n) is already implied by [5, Theorem 3.4]. Our contribution here is to present a more explicit
and non-asymptotic lower bound which holds for any k and n. All proofs of the above theorems appear in
the supplementary material.
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